384
Views
22
CrossRef citations to date
0
Altmetric
Review

Cysteine cathepsins as therapeutic targets in inflammatory diseases

, , , , &
Pages 573-588 | Received 23 Dec 2019, Accepted 20 Mar 2020, Published online: 06 Apr 2020

References

  • Rossi A, Deveraux Q, Turk B, et al. Comprehensive search for cysteine cathepsins in the human genome. Biol Chem. 2004 May;385(5):363–372.
  • Brix K, Dunkhorst A, Mayer K, et al. Cysteine cathepsins: cellular roadmap to different functions. Biochimie. 2008 Feb;90(2):194–207.
  • Turk V, Stoka V, Vasiljeva O, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta. 2012 Jan;1824(1):68–88.
  • Vasiljeva O, Dolinar M, Pungercar JR, et al. Recombinant human procathepsin S is capable of autocatalytic processing at neutral pH in the presence of glycosaminoglycans. FEBS Lett. 2005 Feb 14;579(5):1285–1290.
  • Duncan EM, Muratore-Schroeder TL, Cook RG, et al. Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell. 2008 Oct 17;135(2):284–294.
  • Muntener K, Zwicky R, Csucs G, et al. Exon skipping of cathepsin B: mitochondrial targeting of a lysosomal peptidase provokes cell death. J Biol Chem. 2004 Sep 24;279(39):41012–41017.
  • Lechner AM, Assfalg-Machleidt I, Zahler S, et al. RGD-dependent binding of procathepsin X to integrin alphavbeta3 mediates cell-adhesive properties. J Biol Chem. 2006 Dec 22;281(51):39588–39597.
  • Hu HY, Vats D, Vizovisek M, et al. In vivo imaging of mouse tumors by a lipidated cathepsin S substrate. Angew Chem Int Ed Engl. 2014 Jul 14;53(29):7669–7673.
  • Kramer L, Turk D, Turk B. The future of cysteine cathepsins in disease management. Trends Pharmacol Sci. 2017 Oct;38(10):873–898.
  • Reiser J, Adair B, Reinheckel T. Specialized roles for cysteine cathepsins in health and disease. J Clin Invest. 2010 Oct;120(10):3421–3431.
  • Vizovisek M, Fonovic M, Turk B. Cysteine cathepsins in extracellular matrix remodeling: extracellular matrix degradation and beyond. Matrix Biol. 2019 Jan;75-76:141–159.
  • Repnik U, Starr AE, Overall CM, et al. Cysteine cathepsins activate ELR chemokines and inactivate non-ELR chemokines. J Biol Chem. 2015 May 29;290(22):13800–13811.
  • Ainscough JS, Macleod T, McGonagle D, et al. Cathepsin S is the major activator of the psoriasis-associated proinflammatory cytokine IL-36gamma. Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2748–E2757.
  • Breznik B, Motaln H, Lah Turnsek T. Proteases and cytokines as mediators of interactions between cancer and stromal cells in tumours. Biol Chem. 2017 Jun 27;398(7):709–719.
  • Hira VV, Verbovsek U, Breznik B, et al. Cathepsin K cleavage of SDF-1alpha inhibits its chemotactic activity towards glioblastoma stem-like cells. Biochim Biophys Acta Mol Cell Res. 2017 Mar;1864(3):594–603.
  • Vasiljeva O, Dolinar M, Turk V, et al. Recombinant human cathepsin H lacking the mini chain is an endopeptidase. Biochemistry. 2003 Nov 25;42(46):13522–13528.
  • Turk V, Turk B, Turk D. Lysosomal cysteine proteases: facts and opportunities. Embo J. 2001 Sep 3;20(17):4629–4633.
  • Bossard MJ, Tomaszek TA, Thompson SK, et al. Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem. 1996 May 24;271(21):12517–12524.
  • Shi GP, Villadangos JA, Dranoff G, et al. Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity. 1999 Feb;10(2):197–206.
  • Palermo C, Joyce JA. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci. 2008 Jan;29(1):22–28.
  • Liu CL, Guo J, Zhang X, et al. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol. 2018 Jun;15(6):351–370.
  • Loser R, Pietzsch J. Cysteine cathepsins: their role in tumor progression and recent trends in the development of imaging probes. Front Chem. 2015;3:37.
  • Weidle UH, Tiefenthaler G, Georges G. Proteases as activators for cytotoxic prodrugs in antitumor therapy. Cancer Genomics Proteomics. 2014 Mar–Apr.;11(2): 67–79.
  • Vizovisek M, Vidmar R, Drag M, et al. Protease specificity: towards in vivo imaging applications and biomarker discovery. Trends Biochem Sci. 2018 Oct;43(10):829–844.
  • Hughes CS, Burden RE, Gilmore BF, et al. Strategies for detection and quantification of cysteine cathepsins-evolution from bench to bedside. Biochimie. 2016 Mar;122:48–61.
  • Unanue ER, Turk V, Neefjes J. Variations in MHC class II antigen processing and presentation in health and disease. Annu Rev Immunol. 2016 May;20(34):265–297.
  • Bird PI, Trapani JA, Villadangos JA. Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol. 2009 Dec;9(12):871–882.
  • Deschamps K, Cromlish W, Weicker S, et al. Genetic and pharmacological evaluation of cathepsin s in a mouse model of asthma. Am J Respir Cell Mol Biol. 2011 Jul;45(1):81–87.
  • Ewald SE, Engel A, Lee J, et al. Nucleic acid recognition by toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J Exp Med. 2011 Apr 11;208(4):643–651.
  • Asagiri M, Hirai T, Kunigami T, et al. Cathepsin K-dependent toll-like receptor 9 signaling revealed in experimental arthritis. Science. 2008 Feb 1;319(5863):624–627.
  • Olson OC, Joyce JA. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer. 2015 Dec;15(12):712–729.
  • Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011 Jun;332(6036):1429–1433.
  • Yan D, Wang HW, Bowman RL, et al. STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1α activation. Cell Rep. 2016 09; 16(11): 2914–2927.
  • Kreuzaler PA, Staniszewska AD, Li W, et al. Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol. 2011 Mar;13(3):303–309.
  • Caglič D, Repnik U, Jedeszko C, et al. The proinflammatory cytokines interleukin-1α and tumor necrosis factor α promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes. Biol Chem. 2013 Feb;394(2):307–316.
  • Mohamed MM, Cavallo-Medved D, Rudy D, et al. Interleukin-6 increases expression and secretion of cathepsin B by breast tumor-associated monocytes. Cell Physiol Biochem. 2010;25(2–3):315–324.
  • Troen BR. The regulation of cathepsin K gene expression. Ann N Y Acad Sci. 2006 Apr;1068(1):165–172.
  • Stellos K, Gatsiou A, Stamatelopoulos K, et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat Med. 2016 Oct;22(10):1140–1150.
  • Ruettger A, Schueler S, Mollenhauer JA, et al. Cathepsins B, K, and L are regulated by a defined collagen type II peptide via activation of classical protein kinase C and p38 MAP kinase in articular chondrocytes. J Biol Chem. 2007 Jan;283(2):1043–1051.
  • Hashimoto Y, Kondo C, Katunuma N. An active 32-kDa cathepsin L is secreted directly from HT 1080 fibrosarcoma cells and not via lysosomal exocytosis. PLoS One. 2015;10(12):e0145067.
  • Rodríguez A, Webster P, Ortego J, et al. Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J Cell Biol. 1997 Apr;137(1):93–104.
  • Orlowski GM, Colbert JD, Sharma S, et al. Multiple cathepsins promote pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation. J Iimmunol. 2015 Aug 15;195(4):1685–1697.
  • Wu H, Du Q, Dai Q, et al. Cysteine protease cathepsins in atherosclerotic cardiovascular diseases. J Atheroscler Thromb. 2018 Feb;25(2):111–123.
  • Sobotic B, Vizovisek M, Vidmar R, et al. Proteomic identification of cysteine cathepsin substrates shed from the surface of cancer cells. Mol Cell Proteomics. 2015 Aug;14(8):2213–2228.
  • Hashimoto Y, Kakegawa H, Narita Y, et al. Significance of cathepsin B accumulation in synovial fluid of rheumatoid arthritis. Biochem Biophys Res Commun. 2001 May 4;283(2):334–339.
  • Lalmanach G, Saidi A, Marchand-Adam S, et al. Cysteine cathepsins and cystatins: from ancillary tasks to prominent status in lung diseases. Biol Chem. 2015 Feb;396(2):111–130.
  • Small DM, Brown RR, Doherty DF, et al. Targeting of cathepsin S reduces cystic fibrosis-like lung disease. Eur Respir J. 2019 Mar;53(3):1801523.
  • Mortier A, Van Damme J, Proost P. Regulation of chemokine activity by posttranslational modification. Pharmacol Ther. 2008 Nov;120(2):197–217.
  • Zhang D, Huang C, Yang C, et al. Antifibrotic effects of curcumin are associated with overexpression of cathepsins K and L in bleomycin treated mice and human fibroblasts. Respir Res. 2011 Nov 29;12(1):154.
  • Grace PM, Hutchinson MR, Maier SF, et al. Pathological pain and the neuroimmune interface. Nat Rev Immunol. 2014 Apr;14(4):217–231.
  • Wolf Y, Yona S, Kim KW, et al. Microglia, seen from the CX3CR1 angle. Front Cell Neurosci. 2013;7:26.
  • Clark AK, Grist J, Al-Kashi A, et al. Spinal cathepsin S and fractalkine contribute to chronic pain in the collagen-induced arthritis model. Arthritis Rheum. 2012 Jun;64(6):2038–2047.
  • Zhao P, Lieu T, Barlow N, et al. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J Biol Chem. 2014 Sep 26;289(39):27215–27234.
  • Jennewein C, Tran N, Paulus P, et al. Novel aspects of fibrin(ogen) fragments during inflammation. Mol Med. 2011 May–Jun;17(5–6):568–573.
  • Mitrovic A, Pecar Fonovic U, Kos J. Cysteine cathepsins B and X promote epithelial-mesenchymal transition of tumor cells. Eur J Cell Biol. 2017 Sep;96(6):622–631.
  • Bruchard M, Mignot G, Derangere V, et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med. 2013 Jan;19(1):57–64.
  • Sevenich L, Bowman RL, Mason SD, et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat Cell Biol. 2014 Sep;16(9):876–888.
  • Prudova A, Gocheva V, Auf Dem Keller U, et al. TAILS N-terminomics and proteomics show protein degradation dominates over proteolytic processing by cathepsins in pancreatic tumors. Cell Rep. 2016 Aug 9;16(6):1762–1773.
  • Nakao S, Zandi S, Sun D, et al. Cathepsin B-mediated CD18 shedding regulates leukocyte recruitment from angiogenic vessels. Faseb J. 2018 Jan;32(1):143–154.
  • Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006 Oct;6(10):764–775.
  • Weidauer E, Yasuda Y, Biswal BK, et al. Effects of disease-modifying anti-rheumatic drugs (DMARDs) on the activities of rheumatoid arthritis-associated cathepsins K and S. Biol Chem. 2007 Mar;388(3):331–336.
  • Qin Y, Shi GP. Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases. Pharmacol Ther. 2011 Sep;131(3):338–350.
  • Menzel K, Hausmann M, Obermeier F, et al. Cathepsins B, L and D in inflammatory bowel disease macrophages and potential therapeutic effects of cathepsin inhibition in vivo. Clin Exp Immunol. 2006 Oct;146(1):169–180.
  • Hirai T, Kanda T, Sato K, et al. Cathepsin K is involved in development of psoriasis-like skin lesions through TLR-dependent Th17 activation. J Iimmunol. 2013 May 1;190(9):4805–4811.
  • Edman MC, Janga SR, Meng Z, et al. Increased Cathepsin S activity associated with decreased protease inhibitory capacity contributes to altered tear proteins in Sjogren’s syndrome patients. Sci Rep. 2018 Jul 23;8(1):11044.
  • Janga SR, Shah M, Ju Y, et al. Longitudinal analysis of tear cathepsin S activity levels in male non-obese diabetic mice suggests its potential as an early stage biomarker of Sjogren’s syndrome. Biomarkers. 2019 Feb;24(1):91–102.
  • Fukuo Y, Yamashina S, Sonoue H, et al. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol Res. 2014 Sep;44(9):1026–1036.
  • Runger TM, Adami S, Benhamou CL, et al. Morphea-like skin reactions in patients treated with the cathepsin K inhibitor balicatib. J Am Acad Dermatol. 2012 Mar;66(3):e89–96.
  • Turk B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov. 2006 Sep;5(9):785–799.
  • Podgorski I. Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med Chem. 2009 Apr;1(1):21–34.
  • Eastell R, Nagase S, Small M, et al. Effect of ONO-5334 on bone mineral density and biochemical markers of bone turnover in postmenopausal osteoporosis: 2-year results from the OCEAN study. J Bone Miner Res. 2014 Feb;29(2):458–466.
  • McClung MR, O’Donoghue ML, Papapoulos SE, et al. Odanacatib for the treatment of postmenopausal osteoporosis: results of the LOFT multicentre, randomised, double-blind, placebo-controlled trial and LOFT extension study. Lancet Diabetes Endocrinol. 2019 Dec;7(12):899–911.
  • Jadhav PK, Schiffler MA, Gavardinas K, et al. Discovery of cathepsin S inhibitor LY3000328 for the treatment of abdominal aortic aneurysm. ACS Med Chem Lett. 2014 Oct 9;5(10):1138–1142.
  • Payne CD, Deeg MA, Chan M, et al. Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects. Br J Clin Pharmacol. 2014 Dec;78(6):1334–1342.
  • Duong LT. Therapeutic inhibition of cathepsin K-reducing bone resorption while maintaining bone formation. Bonekey Rep. 2012;1(5):67.
  • Bromme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: commonalities and differences. Expert Opin Drug Discov. 2016;11(5):457–472.
  • Colon-Bernal ID, Duong LT, Pennypacker B, et al. Cathepsin K inhibition preserves compressive load in lumbar vertebrae of osteoporotic monkeys. Bone Rep. 2018 Dec;9:159–164.
  • Engelke K, Nagase S, Fuerst T, et al. The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study. J Bone Miner Res. 2014 Mar;29(3):629–638.
  • Panwar P, Soe K, Guido RV, et al. A novel approach to inhibit bone resorption: exosite inhibitors against cathepsin K. Br J Pharmacol. 2016 Jan;173(2):396–410.
  • Buhling F, Rocken C, Brasch F, et al. Pivotal role of cathepsin K in lung fibrosis. Am J Pathol. 2004 Jun;164(6):2203–2216.
  • Zhang D, Leung N, Weber E, et al. The effect of cathepsin K deficiency on airway development and TGF-beta1 degradation. Respir Res. 2011 May 31;12(1):72.
  • Dauth S, Sirbulescu RF, Jordans S, et al. Cathepsin K deficiency in mice induces structural and metabolic changes in the central nervous system that are associated with learning and memory deficits. BMC Neurosci. 2011 Jul 27;12(1):74.
  • Sharma V, Panwar P, O’Donoghue AJ, et al. Structural requirements for the collagenase and elastase activity of cathepsin K and its selective inhibition by an exosite inhibitor. Biochem J. 2015 Jan 1;465(1):163–173.
  • Panwar P, Xue L, Soe K, et al. An ectosteric inhibitor of cathepsin K inhibits bone resorption in ovariectomized mice. J Bone Miner Res. 2017 Dec;32(12):2415–2430.
  • Panwar P, Law S, Jamroz A, et al. Tanshinones that selectively block the collagenase activity of cathepsin K provide a novel class of ectosteric antiresorptive agents for bone. Br J Pharmacol. 2018 Mar;175(6):902–923.
  • Novinec M, Lenarcic B, Baici A. Probing the activity modification space of the cysteine peptidase cathepsin K with novel allosteric modifiers. PLoS One. 2014;9(9):e106642.
  • Svelander L, Erlandsson-Harris H, Astner L, et al. Inhibition of cathepsin K reduces bone erosion, cartilage degradation and inflammation evoked by collagen-induced arthritis in mice. Eur J Pharmacol. 2009 Jun 24;613(1–3):155–162.
  • Yamada H, Mori H, Nakanishi Y, et al. Effects of the cathepsin K inhibitor ONO-5334 and concomitant use of ONO-5334 with methotrexate on collagen-induced arthritis in cynomolgus monkeys. Int J Rheumatol. 2019;2019:5710340.
  • Yamashita T, Hagino H, Hayashi I, et al. Effect of a cathepsin K inhibitor on arthritis and bone mineral density in ovariectomized rats with collagen-induced arthritis. Bone Rep. 2018 Dec;9:1–10.
  • Vasiljeva O, Papazoglou A, Kruger A, et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 2006 May 15;66(10):5242–5250.
  • Vasiljeva O, Korovin M, Gajda M, et al. Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene. 2008 Jul 10;27(30):4191–4199.
  • Gocheva V, Zeng W, Ke D, et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 2006 Mar 1;20(5):543–556.
  • Gopinathan A, Denicola GM, Frese KK, et al. Cathepsin B promotes the progression of pancreatic ductal adenocarcinoma in mice. Gut. 2012 Jun;61(6):877–884.
  • Sevenich L, Schurigt U, Sachse K, et al. Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2497–2502.
  • Withana NP, Blum G, Sameni M, et al. Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res. 2012 Mar 1;72(5):1199–1209.
  • Shim JS, Matsui Y, Bhat S, et al. Effect of nitroxoline on angiogenesis and growth of human bladder cancer. J Natl Cancer Inst. 2010 Dec 15;102(24):1855–1873.
  • Mirkovic B, Markelc B, Butinar M, et al. Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity. Oncotarget. 2015 Aug 7;6(22):19027–19042.
  • Dennemarker J, Lohmuller T, Mayerle J, et al. Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis. Oncogene. 2010 Mar 18;29(11):1611–1621.
  • Benavides F, Perez C, Blando J, et al. Protective role of cathepsin L in mouse skin carcinogenesis. Mol Carcinog. 2012 Apr;51(4):352–361.
  • Reinheckel T, Hagemann S, Dollwet-Mack S, et al. The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J Cell Sci. 2005 Aug 1;118(Pt 15):3387–3395.
  • Zajc I, Hreljac I, Lah T. Cathepsin L affects apoptosis of glioblastoma cells: a potential implication in the design of cancer therapeutics. Anticancer Res. 2006 Sep-Oct.;26(5A): 3357–3364.
  • Sudhan DR, Siemann DW. Cathepsin L inhibition by the small molecule KGP94 suppresses tumor microenvironment enhanced metastasis associated cell functions of prostate and breast cancer cells. Clin Exp Metastasis. 2013 Oct;30(7):891–902.
  • Zheng X, Chu F, Chou PM, et al. Cathepsin L inhibition suppresses drug resistance in vitro and in vivo: a putative mechanism. Am J Physiol Cell Physiol. 2009 Jan;296(1):C65–74.
  • Pogorzelska A, Zolnowska B, Bartoszewski R. Cysteine cathepsins as a prospective target for anticancer therapies-current progress and prospects. Biochimie. 2018 Aug;151:85–106.
  • Liang W, Wang F, Chen Q, et al. Targeting cathepsin K diminishes prostate cancer establishment and growth in murine bone. J Cancer Res Clin Oncol. 2019 Aug;145(8):1999–2012.
  • Le Gall C, Bellahcene A, Bonnelye E, et al. A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden. Cancer Res. 2007 Oct 15;67(20):9894–9902.
  • Mikhaylov G, Mikac U, Magaeva AA, et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol. 2011 Aug 7;6(9):594–602.
  • Shree T, Olson OC, Elie BT, et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 2011 Dec 1;25(23):2465–2479.
  • Duong LT, Crawford R, Scott K, et al. Odanacatib, effects of 16-month treatment and discontinuation of therapy on bone mass, turnover and strength in the ovariectomized rabbit model of osteopenia. Bone. 2016 Dec;93:86–96.
  • Fan W, Zhang W, Alshehri S, et al. Enhanced tumor retention of NTSR1-targeted agents by employing a hydrophilic cysteine cathepsin inhibitor. Eur J Med Chem. 2019 Sep 1;177:386–400.
  • Gangoda L, Keerthikumar S, Fonseka P, et al. Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin. Oncotarget. 2015 May 10;6(13):11175–11190.
  • Salpeter SJ, Pozniak Y, Merquiol E, et al. A novel cysteine cathepsin inhibitor yields macrophage cell death and mammary tumor regression. Oncogene. 2015 Dec 10;34(50):6066–6078.
  • Yan X, Wu C, Chen T, et al. Cathepsin S inhibition changes regulatory T-cell activity in regulating bladder cancer and immune cell proliferation and apoptosis. Mol Immunol. 2017 Feb;82:66–74.
  • Thanei S, Theron M, Silva AP, et al. Cathepsin S inhibition suppresses autoimmune-triggered inflammatory responses in macrophages. Biochem Pharmacol. 2017 Dec 15;146:151–164.
  • Schurigt U, Stopfel N, Huckel M, et al. Local expression of matrix metalloproteinases, cathepsins, and their inhibitors during the development of murine antigen-induced arthritis. Arthritis Res Ther. 2005;7(1):R174–88.
  • Ruge T, Sodergren A, Wallberg-Jonsson S, et al. Circulating plasma levels of cathepsin S and L are not associated with disease severity in patients with rheumatoid arthritis. Scand J Rheumatol. 2014;43(5):371–373.
  • Pozgan U, Caglic D, Rozman B, et al. Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biol Chem. 2010 May;391(5):571–579.
  • Baugh M, Black D, Westwood P, et al. Therapeutic dosing of an orally active, selective cathepsin S inhibitor suppresses disease in models of autoimmunity. J Autoimmun. 2011 May;36(3–4):201–209.
  • Hamm-Alvarez SF, Janga SR, Edman MC, et al. Tear cathepsin S as a candidate biomarker for Sjogren’s syndrome. Arthritis Rheumatol. 2014 Jul;66(7):1872–1881.
  • Theron M, Bentley D, Nagel S, et al. Pharmacodynamic monitoring of RO5459072, a small molecule inhibitor of cathepsin S. Front Immunol. 2017;8:806.
  • Hargreaves P, Daoudlarian D, Theron M, et al. Differential effects of specific cathepsin S inhibition in biocompartments from patients with primary Sjogren syndrome. Arthritis Res Ther. 2019 Jul 18;21(1):175.
  • Klinngam W, Janga SR, Lee C, et al. Inhibition of cathepsin S reduces lacrimal gland inflammation and increases tear flow in a mouse model of Sjögren’s syndrome. Sci Rep. 2019 Jul 2;9(1):9559.
  • Gupta S, Singh RK, Dastidar S, et al. Cysteine cathepsin S as an immunomodulatory target: present and future trends. Expert Opin Ther Targets. 2008 Mar;12(3):291–299.
  • Xu SQ, Zhang H, Yang XD, et al. Inhibition of cathepsin L alleviates the microglia-mediated neuroinflammatory responses through caspase-8 and NF-kappa B pathways. Neurobiol Aging. 2018 Feb;62:159–167.
  • Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007 Jan;8(1):57–69.
  • Schreiber A, Pham CT, Hu Y, et al. Neutrophil serine proteases promote IL-1beta generation and injury in necrotizing crescentic glomerulonephritis. J Am Soc Nephrol. 2012 Mar;23(3):470–482.
  • Korkmaz B, Lesner A, Letast S, et al. Neutrophil proteinase 3 and dipeptidyl peptidase I (cathepsin C) as pharmacological targets in granulomatosis with polyangiitis (Wegener granulomatosis). Semin Immunopathol. 2013 Jul;35(4):411–421.
  • Taggart CC, Greene CM, Smith SG, et al. Inactivation of human beta-defensins 2 and 3 by elastolytic cathepsins. J Iimmunol. 2003 Jul 15;171(2):931–937.
  • Zheng T, Kang MJ, Crothers K, et al. Role of cathepsin S-dependent epithelial cell apoptosis in IFN-gamma-induced alveolar remodeling and pulmonary emphysema. J Iimmunol. 2005 Jun 15;174(12):8106–8115.
  • McKelvey MC, Weldon S, McAuley DF, et al. Targeting proteases in cystic fibrosis lung disease: paradigms, progress, and potential. Am J Respir Crit Care Med. 2020 Jan 15;201(2):141-147.
  • Korkmaz B, Caughey GH, Chapple I, et al. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther. 2018 Oct;190:202–236.
  • Adkison AM, Raptis SZ, Kelley DG, et al. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest. 2002 Feb;109(3):363–371.
  • Sandhaus RA, Turino G. Neutrophil elastase-mediated lung disease. Copd. 2013 Mar;10(Suppl 1):60–63.
  • Palmer R, Maenpaa J, Jauhiainen A, et al. Dipeptidyl peptidase 1 inhibitor AZD7986 induces a sustained, exposure-dependent reduction in neutrophil elastase activity in healthy subjects. Clin Pharmacol Ther. 2018 Dec;104(6):1155–1164.
  • Miller BE, Mayer RJ, Goyal N, et al. Epithelial desquamation observed in a phase I study of an oral cathepsin C inhibitor (GSK2793660). Br J Clin Pharmacol. 2017 Dec;83(12):2813–2820.
  • Pham CT, Ivanovich JL, Raptis SZ, et al. Papillon-Lefevre syndrome: correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans. J Iimmunol. 2004 Dec 15;173(12):7277–7281.
  • Weiss-Sadan T, Ben-Nun Y, Maimoun D, et al. A theranostic cathepsin activity-based probe for noninvasive intervention in cardiovascular diseases. Theranostics. 2019;9(20):5731–5738.
  • Sukhova GK, Shi GP, Simon DI, et al. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest. 1998 Aug 1;102(3):576–583.
  • Lutgens E, Lutgens SP, Faber BC, et al. Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation. 2006 Jan 3;113(1):98–107.
  • Sukhova GK, Zhang Y, Pan JH, et al. Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest. 2003 Mar;111(6):897–906.
  • Samokhin AO, Wong A, Saftig P, et al. Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient mice. Atherosclerosis. 2008 Sep;200(1):58–68.
  • Sasaki T, Kuzuya M, Nakamura K, et al. AT1 blockade attenuates atherosclerotic plaque destabilization accompanied by the suppression of cathepsin S activity in apoE-deficient mice. Atherosclerosis. 2010 Jun;210(2):430–437.
  • Andrault PM, Panwar P, Mackenzie NCW, et al. Elastolytic activity of cysteine cathepsins K, S, and V promotes vascular calcification. Sci Rep. 2019 Jul 4;9(1):9682.
  • Herias V, Biessen EA, Beckers C, et al. Leukocyte cathepsin C deficiency attenuates atherosclerotic lesion progression by selective tuning of innate and adaptive immune responses. Arterioscler Thromb Vasc Biol. 2015 Jan;35(1):79–86.
  • Kitamoto S, Sukhova GK, Sun J, et al. Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation. 2007 Apr 17;115(15):2065–2075.
  • Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2006 May;26(5):987–994.
  • Qin Y, Cao X, Guo J, et al. Deficiency of cathepsin S attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Cardiovasc Res. 2012 Dec 1;96(3):401–410.
  • Klaus V, Schmies F, Reeps C, et al. Cathepsin S is associated with degradation of collagen I in abdominal aortic aneurysm. Vasa. 2018 Jun;47(4):285–293.
  • Sun J, Sukhova GK, Zhang J, et al. Cathepsin L activity is essential to elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2500–2508.
  • Sun J, Sukhova GK, Zhang J, et al. Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol. 2012 Jan;32(1):15–23.
  • Chen L, Lu B, Yang Y, et al. Elevated circulating cathepsin S levels are associated with metabolic syndrome in overweight and obese individuals. Diabetes Metab Res Rev. 2019 Mar;35(3):e3117.
  • Araujo TF, Cordeiro AV, Vasconcelos DAA, et al. The role of cathepsin B in autophagy during obesity: a systematic review. Life Sci. 2018 Sep 15;209:274–281.
  • Guo R, Hua Y, Rogers O, et al. Cathepsin K knockout protects against cardiac dysfunction in diabetic mice. Sci Rep. 2017 Aug 18;7(1):8703.
  • Lafarge JC, Pini M, Pelloux V, et al. Cathepsin S inhibition lowers blood glucose levels in mice. Diabetologia. 2014 Aug;57(8):1674–1683.
  • Larionov A, Dahlke E, Kunke M, et al. Cathepsin B increases ENaC activity leading to hypertension early in nephrotic syndrome. J Cell Mol Med. 2019 Oct;23(10):6543–6553.
  • Chang CJ, Hsu HC, Ho WJ, et al. Cathepsin S promotes the development of pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2019 Jul 1;317(1):L1–L13.
  • Lafarge JC, Naour N, Clement K, et al. Cathepsins and cystatin C in atherosclerosis and obesity. Biochimie. 2010 Nov;92(11):1580–1586.
  • Garsen M, Rops AL, Dijkman H, et al. Cathepsin L is crucial for the development of early experimental diabetic nephropathy. Kidney Int. 2016 Nov;90(5):1012–1022.
  • Baricos WH, Cortez SL, Le QC, et al. Evidence suggesting a role for cathepsin L in an experimental model of glomerulonephritis. Arch Biochem Biophys. 1991 Aug 1;288(2):468–472.
  • Hua Y, Zhang Y, Dolence J, et al. Cathepsin K knockout mitigates high-fat diet-induced cardiac hypertrophy and contractile dysfunction. Diabetes. 2013 Feb;62(2):498–509.
  • Yang M, Sun J, Zhang T, et al. Deficiency and inhibition of cathepsin K reduce body weight gain and increase glucose metabolism in mice. Arterioscler Thromb Vasc Biol. 2008 Dec;28(12):2202–2208.
  • Tang Y, Cao G, Min X, et al. Cathepsin B inhibition ameliorates the non-alcoholic steatohepatitis through suppressing caspase-1 activation. J Physiol Biochem. 2018 Nov;74(4):503–510.
  • Gonzalez EA, Martins GR, Tavares AMV, et al. Cathepsin B inhibition attenuates cardiovascular pathology in mucopolysaccharidosis I mice. Life Sci. 2018 Mar 1;196:102–109.
  • Choe Y, Leonetti F, Greenbaum DC, et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem. 2006 May 5;281(18):12824–12832.
  • Biniossek ML, Nagler DK, Becker-Pauly C, et al. Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J Proteome Res. 2011 Dec 2;10(12):5363–5373.
  • Vizovisek M, Vidmar R, Van Quickelberghe E, et al. Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S. Proteomics. 2015 Jul;15(14):2479–2490.
  • Vidmar R, Vizovisek M, Turk D, et al. Protease cleavage site fingerprinting by label-free in-gel degradomics reveals pH-dependent specificity switch of legumain. Embo J. 2017 Aug 15;36(16):2455–2465.
  • Poreba M, Rut W, Vizovisek M, et al. Selective imaging of cathepsin L in breast cancer by fluorescent activity-based probes. Chem Sci. 2018 Feb 28;9(8):2113–2129.
  • Lee-Dutra A, Wiener DK, Sun S. Cathepsin S inhibitors: 2004-2010. Expert Opin Ther Pat. 2011 Mar;21(3):311–337.
  • Deaton DN, Kumar S. 6. Cathepsin K inhibitors: their potential as anti-osteoporosis agents. Prog Med Chem. 2004;42:245–375.
  • Mons E, Jansen IDC, Loboda J, et al. The alkyne moiety as a latent electrophile in irreversible covalent small molecule inhibitors of cathepsin K. J Am Chem Soc. 2019 Feb 27;141(8):3507–3514.
  • Desmarais S, Black WC, Oballa R, et al. Effect of cathepsin k inhibitor basicity on in vivo off-target activities. Mol Pharmacol. 2008 Jan;73(1):147–156.
  • Vandooren J, Opdenakker G, Loadman PM, et al. Proteases in cancer drug delivery. Adv Drug Deliv Rev. 2016 Feb 1;97:144–155.
  • Dorywalska M, Dushin R, Moine L, et al. Molecular basis of valine-citrulline-PABC linker instability in site-specific ADCs and its mitigation by linker design. Mol Cancer Ther. 2016 May;15(5):958–970.
  • Katz J, Janik JE, Younes A. Brentuximab Vedotin (SGN-35). Clin Cancer Res. 2011 Oct 15;17(20):6428–6436.
  • de Goeij BE, Lambert JM. New developments for antibody-drug conjugate-based therapeutic approaches. Curr Opin Immunol. 2016 Jun;40:14–23.
  • Mikhaylov G, Klimpel D, Schaschke N, et al. Selective targeting of tumor and stromal cells by a nanocarrier system displaying lipidated cathepsin B inhibitor. Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10077–10081.
  • Bratovs A, Kramer L, Mikhaylov G, et al. Stefin A-functionalized liposomes as a system for cathepsins S and L-targeted drug delivery. Biochimie. 2019 Nov;166:94–102.
  • Ben-Nun Y, Fichman G, Adler-Abramovich L, et al. Cathepsin nanofiber substrates as potential agents for targeted drug delivery. J Control Release. 2017 Jul 10;257:60–67.
  • Withana NP, Saito T, Ma X, et al. Dual-modality activity-based probes as molecular imaging agents for vascular inflammation. J Nucl Med. 2016 Oct;57(10):1583–1590.
  • Abd-Elrahman I, Kosuge H, Wises Sadan T, et al. Cathepsin activity-based probes and inhibitor for preclinical atherosclerosis imaging and macrophage depletion. PLoS One. 2016;11(8):e0160522.
  • Ofori LO, Withana NP, Prestwood TR, et al. Design of protease activated optical contrast agents that exploit a latent lysosomotropic effect for use in fluorescence-guided surgery. ACS Chem Biol. 2015 Sep 18;10(9):1977–1988.
  • Garland M, Yim JJ, Bogyo M. A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem Biol. 2016 Jan 21;23(1):122–136.
  • Kramer L, Renko M, Zavrsnik J, et al. Non-invasive in vivo imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin. Theranostics. 2017;7(11):2806–2821.
  • Blau R, Epshtein Y, Pisarevsky E, et al. Image-guided surgery using near-infrared Turn-ON fluorescent nanoprobes for precise detection of tumor margins. Theranostics. 2018;8(13):3437–3460.
  • Tsvirkun D, Ben-Nun Y, Merquiol E, et al. CT Imaging of enzymatic activity in cancer using covalent probes reveal a size-dependent pattern. J Am Chem Soc. 2018 Sep 26;140(38):12010–12020.
  • Gaikwad HK, Tsvirkun D, Ben-Nun Y, et al. Molecular imaging of cancer using X-ray computed tomography with protease targeted iodinated activity-based probes. Nano Lett. 2018 Mar 14;18(3):1582–1591.
  • Haris M, Singh A, Mohammed I, et al. In vivo magnetic resonance imaging of tumor protease activity. Sci Rep. 2014 Aug;15(4):6081.
  • Rebernik M, Snoj T, Klemencic M, et al. Interplay between tetrameric structure, enzymatic activity and allosteric regulation of human dipeptidyl-peptidase I. Arch Biochem Biophys. 2019 Oct 30;675:108121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.