245
Views
10
CrossRef citations to date
0
Altmetric
Review

The necroptosis pathway and its role in age-related neurodegenerative diseases: will it open up new therapeutic avenues in the next decade?

ORCID Icon & ORCID Icon
Pages 679-693 | Received 17 Jan 2020, Accepted 17 Apr 2020, Published online: 04 May 2020

References

  • Wan H, Goodkind D, Kowal P U.S. Census Bureau, international population reports. P95/16-1, An Aging World: 2015. Washington, DC: U.S. Government Publishing Office; 2016.
  • Moquin DM, McQuade T, Chan FKM. CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One. 2013;8(10):1–15.
  • Li J, McQuade T, Siemer AB, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 2012 Jul;150(2):339–350. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867412007726
  • Sun L, Wang H, Wang Z, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1–2):213–227.
  • Choi ME, Price DR, Ryter SW, et al. Necroptosis: A crucial pathogenic mediator of human disease. JCI Insight. 2019;4(15). DOI:10.1172/jci.insight.128834.
  • Gong Y, Fan Z, Luo G, et al. The role of necroptosis in cancer biology and therapy. Mol Cancer. 2019;18(1):1–17.
  • Xia X, Lei L, Wang S, et al. Necroptosis and its role in infectious diseases. Apoptosis. 2020;25:169–178.
  • Khoury MK, Gupta K, Franco SR, et al. Necroptosis in the pathophysiology of disease. Am J Pathol. 2020;190(2):272–285.
  • Ruan ZH, Xu ZX, Zhou XY, et al. Implications of necroptosis for cardiovascular diseases. Curr Med Sci. 2019;39(4):513–522.
  • Molnár T, Mázló A, Tslaf V, et al. Current translational potential and underlying molecular mechanisms of necroptosis. Cell Death Dis. 2019;10:11.
  • Vanden Berghe T, Hassannia B, Vandenabeele P. An outline of necrosome triggers. Cell Mol Life Sci. 2016;73(11–12):2137–2152.
  • Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114(2):181–190.
  • Lin Y, Devin A, Rodriguez Y, et al. Cleavage of the death domain kinase RIP by Caspase-8 prompts TNF-induced apoptosis. Genes Dev. 1999;13(19):2514–2526.
  • Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137(6):1112–1123.
  • Hanna-Addams S, Liu S, Liu H, et al. CK1α, CK1δ, and CK1ε are necrosome components which phosphorylate serine 227 of human RIPK3 to activate necroptosis. Proc Natl Acad Sci U S A. 2020;117(4):1962–1970.
  • Chen W, Zhou Z, Li S, et al. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J Biol Chem. 2013;288(23):16247–16261.
  • Upton JW, Kaiser WJ, Mocarski ES. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe. 2010 Apr;7(4):302–313. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1931312810001034
  • Kaiser WJ, Sridharan H, Huang C, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 2013;288(43):31268–31279.
  • Dillon CP, Weinlich R, Rodriguez DA, et al. RIPK1 blocks early postnatal lethality mediated by Caspase-8 and RIPK3. Cell. 2014 May;157(5):1189–1202. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
  • Dannappel M, Vlantis K, Kumari S, et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 2014;513(7516):90–94.
  • Lin Y, Choksi S, Shen HM, et al. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem. 2004;279(11):10822–10828.
  • Ardestani S, Deskins DL, Young PP. Membrane TNF-alpha-activated programmed necrosis is mediated by Ceramide-induced reactive oxygen species. J Mol Signal. 2013;8:1–10.
  • Vanlangenakker N, Vanden Berghe T, Bogaert P, et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 2011;18(4):656–665.
  • Zhang D-W, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science (80-). 2009 Jul 17;325(5938):332–336. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1172308
  • He S, Wang L, Miao L, et al. Receptor interacting protein Kinase-3 determines cellular necrotic response to TNF-α. Cell . 2009;137(6):1100–1111.
  • Temkin V, Huang Q, Liu H, et al. Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol Cell Biol. 2006;26(6):2215–2225.
  • Lim SY, Davidson SM, Mocanu MM, et al. The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther. 2007;21(6):467–469.
  • Roca FJ, Ramakrishnan L. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell. 2013 Apr;153(3):521–534. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867413003449
  • Tait SWG, Oberst A, Quarato G, et al. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 2013 Nov;5(4):878–885. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2211124713006189
  • Remijsen Q, Goossens V, Grootjans S, et al. Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis. 2014;5(1):e1004. Available from: http://www.nature.com/doifinder/10.1038/cddis.2013.531
  • Yang Z, Wang Y, Zhang Y, et al. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat Cell Biol. 2018;20(2):186–197.
  • Murphy JM, Czabotar PE, Hildebrand JM, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 2013;39(3):443–453.
  • Wang H, Sun L, Su L, et al. Mixed lineage kinase domain-like protein mlkl causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54(1):133–146.
  • Hildebrand JM, Tanzer MC, Lucet IS, et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci U S A. 2014;111(42):15072–15077.
  • Dondelinger Y, Declercq W, Montessuit S, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014;7(4):971–981.
  • Tanzer MC, Matti I, Hildebrand JM, et al. Evolutionary divergence of the necroptosis effector MLKL. Cell Death Differ. 2016;23(7):1185–1197.
  • Petrie EJ, Sandow JJ, Jacobsen AV, et al. Conformational switching of the pseudokinase domain promotes human MLKL tetramerization and cell death by necroptosis. Nat Commun. 2018;9(1). DOI:10.1038/s41467-018-04714-7.
  • McNamara DE, Quarato G, Guy CS, et al. Characterization of MLKL-mediated plasma membrane rupture in necroptosis. J Vis Exp. 2018;2018(138):1–12.
  • Quarato G, Guy CS, Grace CR, et al. Sequential engagement of distinct MLKL phosphatidylinositol-binding sites executes necroptosis. Mol Cell. 2016;61(4):589–601.
  • Su L, Quade B, Wang H, et al. A plug release mechanism for membrane permeation by MLKL. Structure. 2014 Oct;22(10):1489–1500. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969212614002469
  • Cai Z, Jitkaew S, Zhao J, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol. 2013;16(1):55–65. Available from: http://www.nature.com/doifinder/10.1038/ncb2883
  • Weinlich R, Oberst A, Beere HM, et al. Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol . 2017;18(2):127–136.
  • Wu J, Huang Z, Ren J, et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res . 2013;23(8):994–1006.
  • Dondelinger Y, Hulpiau P, Saeys Y, et al. An evolutionary perspective on the necroptotic pathway. Trends Cell Biol . 2016;26(10):721–732.
  • Shan B, Pan H, Najafov A, et al., Necroptosis in development and diseases. Genes Dev. 2018;32(5–6):327–340. Available from: http://genesdev.cshlp.org/lookup/doi/10.1101/gad.312561.118
  • Kaiser WJ, Upton JW, Long AB, et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature . 2011 Mar 2;471(7338):368–372. Available from: http://www.nature.com/articles/nature09857
  • Alvarez-Diaz S, Dillon CP, Lalaoui N, et al. The pseudokinase MLKL and the kinase RIPK3 have distinct roles in autoimmune disease caused by loss of death-receptor-induced apoptosis. Immunity. 2016 Sep;45(3):513–526. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1074761316302898
  • Tummers B, Green DR. RIPped for neuroinflammation. Cell Res. 2017 Sep 19;27(9):1081–1082.
  • Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013;38(2):209–223.
  • Nichols DB, De Martini W, Cottrell J. Poxviruses utilize multiple strategies to inhibit apoptosis. Viruses. 2017;9(8):215.
  • Nailwal H, Chan FKM. Necroptosis in anti-viral inflammation. Cell Death Differ. 2019;26(1):4–13.
  • Daniels BP, Snyder AG, Olsen TM, et al. RIPK3 restricts viral pathogenesis via cell death-independent neuroinflammation. Cell. 2017;169(2):301–313.e11.
  • Kitur K, Wachtel S, Brown A, et al. Necroptosis Promotes Staphylococcus aureus Clearance by Inhibiting excessive inflammatory signaling. Cell. Rep. 2016;16(8):2219–2230.
  • Wong Fok Lung T, Monk IR, Acker KP, et al. Staphylococcus aureus small colony variants impair host immunity by activating host cell glycolysis and inducing necroptosis. Nat Microbiol. 2020;5(1):141–153.
  • Liu M, Wu W, Li H, et al. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J Spinal Cord Med. 2015;38(6):745–753.
  • Chen S, Lv X, Hu B, et al. RIPK1/RIPK3/MLKL-mediated necroptosis contributes to compression-induced rat nucleus pulposus cells death. Apoptosis. 2017;22(5):626–638.
  • Zhang S, Su Y, Ying Z, et al. RIP1 kinase inhibitor halts the progression of an immune-induced demyelination disease at the stage of monocyte elevation. Proc Natl Acad Sci U S A. 2019;116(12):5675–5680.
  • Cougnoux A, Clifford S, Salman A, et al. Necroptosis inhibition as a therapy for Niemann-Pick disease, type C1: inhibition of RIP kinases and combination therapy with 2-hydroxypropyl-β-cyclodextrin. Mol Genet Metab. 2018 Dec;125(4):345–350. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1096719218305456
  • Fauster A, Rebsamen M, Huber KVM, et al. A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death Dis. 2015;6(5):e1767–10.
  • Yang XS, Yi TL, Zhang S, et al. Hypoxia-inducible factor-1 alpha is involved in RIP-induced necroptosis caused by in vitro and in vivo ischemic brain injury. Sci Rep. 2017;7(1):1–11.
  • Wang Y, Wang J, Wang H, et al. Necrosulfonamide attenuates spinal cord injury via necroptosis inhibition. World Neurosurg. 2018;114:e1186–91.
  • Yan B, Liu L, Huang S, et al. Discovery of a new class of highly potent necroptosis inhibitors targeting the mixed lineage kinase domain-like protein. Chem Commun. 2017;53(26):3637–3640.
  • Reynoso E, Liu H, Li L, et al. Thioredoxin-1 actively maintains the pseudokinase MLKL in a reduced state to suppress disulfide bond-dependent MLKL polymer formation and necroptosis. J Biol Chem. 2017;292(42):17514–17524.
  • Ma B, Marcotte D, Paramasivam M, et al. ATP-competitive MLKL binders have no functional impact on necroptosis. PLoS One. 2016;11(11):1–19.
  • Feldmann F, Schenk B, Martens S, et al. Sorafenib inhibits therapeutic induction of necroptosis in acute leukemia cells. Oncotarget. 2017 Sep 15;8(40):68208–68220. Available from: www.impactjournals.com/oncotarget/
  • Jacobsen AV, Lowes KN, Tanzer MC, et al. HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis. 2016;7(1):e2051.
  • Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1(2):112–119. Available from: http://www.nature.com/doifinder/10.1038/nchembio711
  • Wu J, Wang J, Zhou S, et al. Necrostatin-1 protection of dopaminergic neurons. Neural Regen Res. 2015;10(7):1120. Available from: http://www.nrronline.org/text.asp?2015/10/7/1120/160108
  • Qinli Z, Meiqing L, Xia J, et al. Necrostatin-1 inhibits the degeneration of neural cells induced by aluminum exposure. Restor Neurol Neurosci. 2013;31(5):543–555.
  • Zhang S, Wang Y, Li D, et al. Necrostatin-1 attenuates inflammatory response and improves cognitive function in chronic ischemic stroke mice. Medicines. 2016;3(3):16.
  • Deng XX, Li SS, Sun FY. Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling. Aging Dis. 2019;10(4):807–817.
  • Zhu S, Zhang Y, Bai G, et al. Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington’s disease. Cell Death Dis. 2011;2(1):6–9.
  • Wang Y, Guo L, Wang J, et al. Necrostatin-1 ameliorates the pathogenesis of experimental autoimmune encephalomyelitis by suppressing apoptosis and necroptosis of oligodendrocyte precursor cells. Exp Ther Med. 2019;18(5):4113–4119.
  • Wang Y, Wang H, Tao Y, et al. Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury. Neuroscience. 2014;266:91–101.
  • Wang S, Wu J, Zeng YZ, et al. Necrostatin-1 mitigates endoplasmic reticulum stress after spinal cord injury. Neurochem Res. 2017;42(12):3548–3558.
  • You Z, Savitz SI, Yang J, et al. Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab. 2008 Sep 21;28(9):1564–1573. Available from: http://journals.sagepub.com/doi/10.1038/jcbfm.2008.44
  • Takahashi N, Duprez L, Grootjans S, et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 2012;3(11):e437–10.
  • Harris PA, Berger SB, Jeong JU, et al. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J Med Chem. 2017;60(4):1247–1261.
  • Harris PA, Marinis JM, Lich JD, et al. Identification of a RIP1 kinase inhibitor clinical candidate (GSK3145095) for the treatment of pancreatic cancer. ACS Med Chem Lett. 2019;10(6):857–862.
  • Clinicaltrials.Gov. Available from: https://clinicaltrials.gov/
  • Ren Y, Su Y, Sun L, et al. Discovery of a highly potent, selective, and metabolically stable inhibitor of Receptor-Interacting Protein 1 (RIP1) for the treatment of systemic inflammatory response syndrome. J Med Chem. 2017;60(3):972–986.
  • Harris PA, Bandyopadhyay D, Berger SB, et al. Discovery of small molecule RIP1 kinase inhibitors for the treatment of pathologies associated with necroptosis. ACS Med Chem Lett. 2013;4(12):1238–1243.
  • Berger S, Harris P, Nagilla R, et al. Characterization of GSK′963: a structurally distinct, potent and selective inhibitor of RIP1 kinase. Cell Death Discov. 2015;1(1):1–7.
  • Mandal P, Berger SB, Pillay S, et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell 2014;56(4):481–495.
  • Li JX, Feng JM, Wang Y, et al. The B-Raf V600E inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis. 2014;5(6):1–11.
  • Rodriguez DA, Weinlich R, Brown S, et al. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ. 2016;23(1):76–88.
  • Park HH, Park SY, Mah S, et al. HS-1371, a novel kinase inhibitor of RIP3-mediated necroptosis. Exp Mol Med. 2018;50(9). DOI:10.1038/s12276-018-0152-8.
  • Dvoriantchikova G, Degterev A, Ivanov D. Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia–reperfusion-induced retinal damage. Exp Eye Res. 2014 Jun;123(1):1–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
  • Do YJ, Sul JW, Jang KH, et al. A novel RIPK1 inhibitor that prevents retinal degeneration in a rat glaucoma model. Exp Cell Res. 2017;359(1):30–38.
  • Rosenbaum DM, Degterev A, David J, et al. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res. 2010;88(7):1569–1576.
  • Lin H, Roh M, Matsumoto H, et al. Blocking the necroptosis pathway decreases RPE and photoreceptor damage induced by NaIO3. bioRxiv. 2018. DOI:10.1101/387068.
  • Murakami Y, Matsumoto H, Roh M, et al. Receptor interacting protein kinase mediates necrotic cone but not rod cell death in a mouse model of inherited degeneration. Proc Natl Acad Sci U S A. 2012;109(36):14598–14603.
  • Sato K, Li S, Gordon WC, et al. Receptor interacting protein kinase-mediated necrosis contributes to cone and rod photoreceptor degeneration in the retina lacking interphotoreceptor retinoid-binding protein. J Neurosci. 2013;33(44):17458–17468.
  • Ni Y, Gu WW, Liu ZH, et al. RIP1K contributes to neuronal and astrocytic cell death in ischemic stroke via activating autophagic-lysosomal pathway. Neuroscience. 2018;371(November):60–74.
  • Cougnoux A, Cluzeau C, Mitra S, et al. Necroptosis in niemann–pick disease, type C1: A potential therapeutic target. Cell Death Dis. 2016;7(3):1–9.
  • Fan H, Zhang K, Shan L, et al. Reactive astrocytes undergo M1 microglia/macrophages-induced necroptosis in spinal cord injury. Mol Neurodegener. 2016;11(1):1–16.
  • Yang H, Fu Y, Liu X, et al. Role of the sigma-1 receptor chaperone in rod and cone photoreceptor degenerations in a mouse model of retinitis pigmentosa. Mol Neurodegener. 2017;12(1):1–15.
  • Yang J, Zhao Y, Zhang L, et al. RIPK3/MLKL-mediated neuronal necroptosis modulates the M1/M2 polarization of microglia/macrophages in the ischemic cortex. Cereb Cortex. 2018;28(7):2622–2635.
  • Ofengeim D, Ito Y, Najafov A, et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 2015;10(11):1836–1849.
  • Fan H, Bin TH, Shan LQ, et al. Quercetin prevents necroptosis of oligodendrocytes by inhibiting macrophages/microglia polarization to M1 phenotype after spinal cord injury in rats. J Neuroinflammation. 2019;16(1):1–15.
  • Liu S, Li Y, Choi HMC, et al. Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell Death Dis. 2018;9(5):1–14.
  • Wang Y, Jiao J, Ren P, et al. Upregulation of miRNA-223-3p ameliorates RIP3-mediated necroptosis and inflammatory responses via targeting RIP3 after spinal cord injury. J Cell Biochem. 2019;120(7):11582–11592.
  • Wu C, Chen J, Liu Y, et al. Upregulation of PSMB4 is associated with the necroptosis after spinal cord injury. Neurochem Res. 2016;41(11):3103–3112.
  • Bao Z, Fan L, Zhao L, et al. Silencing of A20 aggravates neuronal death and inflammation after traumatic brain injury: a potential trigger of necroptosis. Front Mol Neurosci. 2019;12(September):1–21.
  • Liu ZM, Chen QX, Chen ZB, et al. RIP3 deficiency protects against traumatic brain injury (TBI) through suppressing oxidative stress, inflammation and apoptosis: dependent on AMPK pathway. Biochem Biophys Res Commun. 2018;499(2):112–119.
  • Ni H, Rui Q, Lin X, et al. 2-BFI provides neuroprotection against inflammation and necroptosis in a rat model of traumatic brain injury. Front Neurosci. 2019;13(JUN):1–13.
  • Zhang HB, Cheng SX, Tu Y, et al. Protective effect of mild-induced hypothermia against moderate traumatic brain injury in rats involved in necroptotic and apoptotic pathways. Brain Inj. 2017;31(3):406–415.
  • Vitner EB, Salomon R, Farfel-Becker T, et al. RIPK3 as a potential therapeutic target for Gaucher’s disease. Nat Med. 2014;20(2):204–208.
  • Li W, Wei D, Liang J, et al. Comprehensive evaluation of white matter damage and neuron death and whole-transcriptome analysis of rats with chronic cerebral hypoperfusion. Front Cell Neurosci. 2019;13(July):1–20.
  • Gaugler J, James B, Johnson T, et al. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2016 Apr;12(4):459–509.
  • Caccamo A, Branca C, Piras IS, et al. Necroptosis activation in Alzheimer’s disease. Nat Neurosci. 2017;20(July):1236–1246. Available from: http://www.nature.com/doifinder/10.1038/nn.4608
  • Koper MJ, Van Schoor E, Ospitalieri S, et al. Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer’s disease. Acta Neuropathol. 2019. DOI:10.1007/s00401-019-02103-y.
  • Köhler C. Granulovacuolar degeneration: a neurodegenerative change that accompanies tau pathology. Acta Neuropathol. 2016;132(3):339–359.
  • Morsch R, Simon W, Coleman PD. Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol . 1999 Feb;58(2):188–197. Available from: https://academic.oup.com/jnen/article-lookup
  • Nikseresht S, Bush AI, Ayton S. Treating Alzheimer’s disease by targeting iron. Br J Pharmacol. 2019;176(18):3622–3635.
  • Shimohama S. Apoptosis in Alzheimer ’ s disease — an update. Apoptosis. 2000;5(1):9–16.
  • Telegina DV, Suvorov GK, Kozhevnikova OS, et al. Mechanisms of neuronal death in the cerebral cortex during aging and development of Alzheimer’s disease-like pathology in rats. Int J Mol Sci. 2019;20(22):5632.
  • de Lau LML, Breteler MMB. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006 Jun 5;5(6):525–535.
  • Goldman JG, Postuma R. Premotor and nonmotor features of Parkinson’s disease. Curr Opin Neurol. 2014 Aug;27(4):434–441. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
  • Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003 Sep 11;39(6):889–909. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12971891
  • Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev. 2011;91(4):1161–1218.
  • Iannielli A, Bido S, Folladori L, et al. Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s disease models. Cell Rep. 2018;22(8):2066–2079. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2211124718301530
  • Lin QS, Chen P, Wang WX, et al. RIP1/RIP3/MLKL mediates dopaminergic neuron necroptosis in a mouse model of Parkinson disease. Lab Investig. 2019. DOI:10.1038/s41374-019-0319-5.
  • Tagliaferro P, Burke RE. Retrograde axonal degeneration in Parkinson disease. J Parkinsons Dis. 2016;6(1):1–15.
  • Chu Y, Morfini GA, Langhamer LB, et al. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain. 2012;135(7):2058–2073.
  • Arrázola MS, Saquel C, Catalán RJ, et al. Axonal degeneration is mediated by necroptosis activation. J Neurosci . 2019 May 15;39(20):3832–3844. Available from: http://www.jneurosci.org/lookup
  • Hernández DE, Salvadores NA, Moya-Alvarado G, et al. Axonal degeneration induced by glutamate excitotoxicity is mediated by necroptosis. J Cell Sci. 2018 Nov 15;131(22):jcs214684. Available from: http://jcs.biologists.org/lookup
  • Oñate M, Catenaccio A, Salvadores N, et al. The necroptosis machinery mediates axonal degeneration in a model of Parkinson disease. Cell Death Differ. 2019. DOI:10.1038/s41418-019-0408-4.
  • Al-Chalabi A, Van Den Berg LH, Veldink J. Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol. 2017;13(2):96–104.
  • Re DB, Le Verche V, Yu C, et al. Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron. 2014 Mar;81(5):1001–1008. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0896627314000166
  • Nagai M, Re DB, Nagata T, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci. 2007 May 15;10(5):615–622. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
  • Salvadores N, Sanhueza M, Manque P, et al. Axonal degeneration during aging and its functional role in neurodegenerative disorders. Front Neurosci. 2017;11(SEP):451.
  • Ito Y, Ofengeim D, Najafov A, et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science. 2016;353(6299):603–608. Available from: http://www.sciencemag.org/lookup
  • Dermentzaki G, Politi KA, Lu L, et al. Deletion of Ripk3 prevents motor neuron death in Vitro but not in Vivo. eNeuro. 2019;6(1):1–16.
  • Wang T, Perera ND, Chiam MDF, et al. Necroptosis is dispensable for motor neuron degeneration in a mouse model of ALS. Cell Death Differ. 2019; Available from: http://www.nature.com/articles/s41418-019-0457-8
  • Thomas CN, Thompson AM, Ahmed Z, et al. Retinal Ganglion cells die by necroptotic mechanisms in a site-specific manner in a rat blunt ocular injury model. Cells . 2019 Nov 26;8(12):1517. Available from: https://www.mdpi.com/2073-4409/8/12/1517
  • Adalbert R, Coleman MP. Review: axon pathology in age-related neurodegenerative disorders. Neuropathol Appl Neurobiol. 2013;39(2):90–108.
  • Marangoni M, Adalbert R, Janeckova L, et al. Age-related axonal swellings precede other neuropathological hallmarks in a knock-in mouse model of Huntington’s disease. Neurobiol Aging . 2014;35(10):2382–2393.
  • Chidlow G, Ebneter A, Wood JPM, et al. The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma. Acta Neuropathol. 2011;121(6):737–751.
  • Crish SD, Sappington RM, Inman DM, et al. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci U S A. 2010;107(11):5196–5201.
  • Akassoglou K, Merlini M, Rafalski VA, et al. In vivo imaging of CNS injury and disease. J Neurosci. 2017;37(45):10808–10816.
  • Williams PR, Marincu BN, Sorbara CD, et al. A recoverable state of axon injury persists for hours after spinal cord contusion in vivo. Nat Commun. 2014;5:1–11.
  • Nikić I, Merkler D, Sorbara C, et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med. 2011;17(4):495–499.
  • Knöferle J, Koch JC, Ostendorf T, et al. Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc Natl Acad Sci U S A. 2010;107(13):6064–6069.
  • Blazquez-Llorca L, Valero-Freitag S, Rodrigues EF, et al. High plasticity of axonal pathology in Alzheimer’s disease mouse models. Acta Neuropathol Commun. 2017;5(1):14.
  • Zheng B, Lorenzana AO, Ma L. Understanding the axonal response to injury by in vivo imaging in the mouse spinal cord: A tale of two branches. Exp Neurol. 2019;318(January):277–285.
  • Dadon-Nachum M, Melamed E, Offen D. The “dying-back” phenomenon of motor neurons in ALS. J Mol Neurosci. 2011;43(3):470–477.
  • Deckwerth TL, Johnson EM. Neurites can remain viable after destruction of the neuronal soma by programmed cell death (apoptosis). Dev Biol. 1994;165:63–72.
  • Wang JT, Medress ZA, Barres BA. Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol. 2012;196(1):7–18.
  • Court FA, Coleman MP. Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci . 2012;35(6):364–372.
  • Barrientos SA, Martinez NW, Yoo S, et al. Axonal degeneration is mediated by the mitochondrial permeability transition pore. J Neurosci. 2011;31(3):966–978.
  • Villegas R, Martinez NW, Lillo J, et al. Calcium release from intra-axonal endoplasmic reticulum leads to axon degeneration through mitochondrial dysfunction. J Neurosci. 2014;34(21):7179–7189.
  • Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch Eur J Physiol. 2010;460(2):525–542.
  • Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114(5):2283–2301.
  • Cheng H-C, Ulane CM, Burke RE. Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol . 2010 Jun;67(6):715–725. Available from: http://wiley.com
  • Kramer ML, Schulz-Schaeffer WJ. Presynaptic α-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with lewy bodies. J Neurosci. 2007;27(6):1405–1410.
  • Li Y, Liu W, Oo TF, et al. Mutant LRRK2R1441G BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci. 2009 Jul 7;12(7):826–828. Available from: http://www.nature.com/articles/nn.2349
  • Tagliaferro P, Kareva T, Oo TF, et al. An early axonopathy in a hLRRK2(R1441G) transgenic model of Parkinson disease. Neurobiol Dis. 2015 Oct;82(1):359–371. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969996115300139
  • Volpicelli-Daley LA, Abdelmotilib H, Liu Z, et al. G2019s-LRRK2 expression augments α-synuclein sequestration into inclusions in neurons. J Neurosci. 2016;36(28):7415–7427.
  • Saha AR, Hill J, Utton MA, et al. Parkinson’s disease α-synuclein mutations exhibit defective axonal transport in cultured neurons. J Cell Sci. 2004;117(7):1017–1024.
  • Chung CY, Koprich JB, Siddiqi H, et al. Dynamic changes in presynaptic and axonal transport proteins combined with striatal neuroinflammation precede dopaminergic neuronal loss in a rat model of AAV α-synucleinopathy. J Neurosci. 2009;29(11):3365–3373.
  • Rivas A, Vidal RL, Hetz C. Targeting the unfolded protein response for disease intervention. Expert Opin Ther Targets. 2015;19(9):1203–1218.
  • Ofengeim D, Mazzitelli S, Ito Y, et al. RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2017;114(41):E8788–97.
  • Degterev A, Ofengeim D, Yuan J. Targeting RIPK1 for the treatment of human diseases. Proc Natl Acad Sci U S A. 2019;116(20):9714–9722.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.