502
Views
10
CrossRef citations to date
0
Altmetric
Review

Emerging therapeutic targets for neuroblastoma

ORCID Icon, ORCID Icon & ORCID Icon
Pages 899-914 | Received 04 May 2020, Accepted 29 Jun 2020, Published online: 06 Oct 2020

References

  • Howlader N, Noone AM, Krapcho M, et al. SEER cancer statistics review, 1975–2009 (Vintage 2009 populations). Bethesda (MD): National Cancer Institute; 2012 [cited 2020 Feb 26]. Based on November 2011 SEER data submission. Posted to the SEER web site. Available from: https://seer.cancer.gov/csr/1975_2009_pops09/
  • London WB, Castleberry RP, Matthay KK, et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the children’s oncology group. J Clin Oncol. 2005 Sep 20;23(27):6459–6465.
  • Aravindan N, Jain D, Somasundaram DB, et al. Cancer stem cells in neuroblastoma therapy resistance. Cancer Drug Resist. 2019 Dec;19(2):948–967.
  • Ritenour LE, Randall MP, Bosse KR, et al. Genetic susceptibility to neuroblastoma: current knowledge and future directions. Cell Tissue Res. 2018 May;372(2):287–307.
  • Board PPTE. PDQ neuroblastoma treatment: health professional version. PDQ cancer information summaries. Bethesda (MD); 2020 [cited Feb 26] Available from: https://www.cancer.gov/types/neuroblastoma/hp/neuroblastoma-treatment-pdq
  • Schleiermacher G, Janoueix-Lerosey I, Ribeiro A, et al. Accumulation of segmental alterations determines progression in neuroblastoma. J Clin Oncol. 2010 Jul 1;28(19):3122–3130.
  • Campbell K, Gastier-Foster JM, Mann M, et al. Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma: a report from the children’s oncology group. Cancer. 2017 Nov 1;123(21):4224–4235.
  • Kreissman SG, Seeger RC, Matthay KK, et al. Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial. Lancet Oncol. 2013 Sep;14(10):999–1008.
  • Peifer M, Hertwig F, Roels F, et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature. 2015 Oct 29;526(7575):700–704.
  • Sausen M, Leary RJ, Jones S, et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat Genet. 2013 Jan;45(1):12–17.
  • Brodeur GM, Iyer R, Croucher JL, et al. Therapeutic targets for neuroblastomas. Expert Opin Ther Targets. 2014 Mar;18(3):277–292.
  • Salehi S, Taheri MN, Azarpira N, et al. State of the art technologies to explore long non-coding RNAs in cancer. J Cell Mol Med. 2017 Dec;21(12):3120–3140.
  • Lian D, Amin B, Du D, et al. Enhanced expression of the long non-coding RNA SNHG16 contributes to gastric cancer progression and metastasis. Cancer Biomark. 2017 Dec 12;21(1):151–160.
  • Han W, Du X, Liu M, et al. Increased expression of long non-coding RNA SNHG16 correlates with tumor progression and poor prognosis in non-small cell lung cancer. Int J Biol Macromol. 2019 Jan;121:270–278.
  • Feng F, Chen A, Huang J, et al. Long noncoding RNA SNHG16 contributes to the development of bladder cancer via regulating miR-98/STAT3/Wnt/beta-catenin pathway axis. J Cell Biochem. 2018 Nov;119(11):9408–9418.
  • Su P, Mu S, Wang Z. Long noncoding RNA SNHG16 promotes osteosarcoma cells migration and invasion via sponging miRNA-340. DNA Cell Biol. 2019 Feb;38(2):170–175.
  • Wen Y, Gong X, Dong Y, et al. Long non coding RNA SNHG16 facilitates proliferation, migration, invasion and autophagy of neuroblastoma cells via sponging miR-542-3p and upregulating ATG5 expression. Onco Targets Ther. 2020;13:263–275.
  • Zhao X, Li D, Yang F, et al. Long noncoding RNA NHEG1 drives beta-catenin transactivation and neuroblastoma progression through interacting with DDX5. Mol Ther. 2020;28(3):946–962.
  • Hu C, Yang T, Pan J, et al. Associations between H19 polymorphisms and neuroblastoma risk in Chinese children. Biosci Rep. 2019;39:4.
  • Yang T, Zhang Z, Zhang J, et al. The rs2147578 C > G polymorphism in the Inc-LAMC2-1:1 gene is associated with increased neuroblastoma risk in the Henan children. BMC Cancer. 2018 Oct 3;18(1):948.
  • Li Y, Zhuo ZJ, Zhou H, et al. Additional data support the role of LINC00673 rs11655237 C>T in the development of neuroblastoma. Aging (Albany NY). 2019 Apr 20;11(8):2369–2377.
  • Yang X, He J, Chang Y, et al. HOTAIR gene polymorphisms contribute to increased neuroblastoma susceptibility in Chinese children. Cancer. 2018 Jun 15;124(12):2599–2606.
  • Barnhill LM, Williams RT, Cohen O, et al. High expression of CAI2, a 9p21-embedded long noncoding RNA, contributes to advanced-stage neuroblastoma. Cancer Res. 2014 Jul 15;74(14):3753–3763.
  • Yu M, Ohira M, Li Y, et al. High expression of ncRAN, a novel non-coding RNA mapped to chromosome 17q25.1, is associated with poor prognosis in neuroblastoma. Int J Oncol. 2009 Apr;34(4):931–938.
  • Liu PY, Erriquez D, Marshall GM, et al. Effects of a novel long noncoding RNA, lncUSMycN, on N-Myc expression and neuroblastoma progression. J Natl Cancer Inst. 2014 Jul;106(7). DOI:10.1093/jnci/dju113
  • Zhao X, Li D, Pu J, et al. CTCF cooperates with noncoding RNA MYCNOS to promote neuroblastoma progression through facilitating MYCN expression. Oncogene. 2016 Jul 7;35(27):3565–3576.
  • Pandey GK, Mitra S, Subhash S, et al. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell. 2014 Nov 10;26(5):722–737.
  • Chi R, Chen X, Liu M, et al. Role of SNHG7-miR-653-5p-STAT2 feedback loop in regulating neuroblastoma progression. J Cell Physiol. 2019 Aug;234(8):13403–13412.
  • Sahu D, Hsu CL, Lin CC, et al. Co-expression analysis identifies long noncoding RNA SNHG1 as a novel predictor for event-free survival in neuroblastoma. Oncotarget. 2016 Sep 6;7(36):58022–58037.
  • Yu Y, Chen F, Yang Y, et al. lncRNA SNHG16 is associated with proliferation and poor prognosis of pediatric neuroblastoma. Int J Oncol. 2019 Jul;55(1):93–102.
  • Li D, Wang X, Mei H, et al. Long noncoding RNA pancEts-1 promotes neuroblastoma progression through hnRNPK-mediated beta-catenin stabilization. Cancer Res. 2018 Mar 1;78(5):1169–1183.
  • Mondal T, Juvvuna PK, Kirkeby A, et al. Sense-antisense lncRNA pair encoded by locus 6p22.3 determines neuroblastoma susceptibility via the USP36-CHD7-SOX9 regulatory axis. Cancer Cell. 2018 Mar 12;33(3):417–434e7.
  • Russell MR, Penikis A, Oldridge DA, et al. CASC15-S is a tumor suppressor lncRNA at the 6p22 neuroblastoma susceptibility locus. Cancer Res. 2015 Aug 1;75(15):3155–3166.
  • Tang W, Dong K, Li K, et al. MEG3, HCN3 and linc01105 influence the proliferation and apoptosis of neuroblastoma cells via the HIF-1alpha and p53 pathways. Sci Rep. 2016 Nov 8;6:36268.
  • Bi S, Wang C, Li Y, et al. LncRNA-MALAT1-mediated Axl promotes cell invasion and migration in human neuroblastoma. Tumour Biol. 2017 May;39(5):1010428317699796.
  • Tee AE, Ling D, Nelson C, et al. The histone demethylase JMJD1A induces cell migration and invasion by up-regulating the expression of the long noncoding RNA MALAT1. Oncotarget. 2014 Apr 15;5(7):1793–1804.
  • Tee AE, Liu B, Song R, et al. The long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating pro-angiogenic gene expression. Oncotarget. 2016 Feb 23;7(8):8663–8675.
  • Bao J, Zhang S, Meng Q, et al. SNHG16 silencing inhibits neuroblastoma progression by downregulating HOXA7 via sponging miR-128-3p. Neurochem Res. 2020 Apr;45(4):825–836.
  • Vance KW, Sansom SN, Lee S, et al. The long non-coding RNA paupar regulates the expression of both local and distal genes. Embo J. 2014 Feb 18;33(4):296–311.
  • Pavlaki I, Alammari F, Sun B, et al. The long non-coding RNA paupar promotes KAP1-dependent chromatin changes and regulates olfactory bulb neurogenesis. Embo J. 2018 May 15;37(10). DOI:10.15252/embj.201798219
  • Zhang J, Li WY, Yang Y, et al. LncRNA XIST facilitates cell growth, migration and invasion via modulating H3 histone methylation of DKK1 in neuroblastoma. Cell Cycle. 2019 Aug;18(16):1882–1892.
  • Bountali A, Tonge DP, Mourtada-Maarabouni M. RNA sequencing reveals a key role for the long non-coding RNA MIAT in regulating neuroblastoma and glioblastoma cell fate. Int J Biol Macromol. 2019 Jun;1(130):878–891.
  • Zhang HY, Xing MQ, Guo J, et al. Long noncoding RNA DLX6-AS1 promotes neuroblastoma progression by regulating miR-107/BDNF pathway. Cancer Cell Int. 2019;19:313.
  • Zhang N, Liu FL, Ma TS, et al. LncRNA SNHG1 contributes to tumorigenesis and mechanism by targeting miR-338-3p to regulate PLK4 in human neuroblastoma. Eur Rev Med Pharmacol Sci. 2019 Oct;23(20):8971–8983.
  • Zhao X, Li D, Huang D, et al. Risk-associated long noncoding RNA FOXD3-AS1 inhibits neuroblastoma progression by repressing PARP1-mediated activation of CTCF. Mol Ther. 2018 Mar 7;26(3):755–773.
  • Sousares M, Partridge V, Weigum S, et al. MicroRNAs in neuroblastoma differentiation and differentiation therapy. Adv Modern Oncol Res. 2017;3(5):213–222.
  • He XY, Tan ZL, Mou Q, et al. microRNA-221 enhances MYCN via targeting nemo-like kinase and functions as an oncogene related to poor prognosis in neuroblastoma. Clin Cancer Res. 2017 Jun 1;23(11):2905–2918.
  • Aravindan N, Subramanian K, Somasundaram DB, et al. MicroRNAs in neuroblastoma tumorigenesis, therapy resistance, and disease evolution. Cancer Drug Resist. 2019;2:1086–1105.
  • Megiorni F, Colaiacovo M, Cialfi S, et al. A sketch of known and novel MYCN-associated miRNA networks in neuroblastoma. Oncol Rep. 2017 Jul;38(1):3–20.
  • Nallasamy P, Chava S, Verma SS, et al. PD-L1, inflammation, non-coding RNAs, and neuroblastoma: immuno-oncology perspective. Semin Cancer Biol. 2018 Oct;52(Pt 2):53–65.
  • Vanhauwaert S, Decaesteker B, De Brouwer S, et al. In silico discovery of a FOXM1 driven embryonal signaling pathway in therapy resistant neuroblastoma tumors. Sci Rep. 2018 Nov 30;8(1):17468.
  • Liu X, Peng H, Liao W, et al. MiR-181a/b induce the growth, invasion, and metastasis of neuroblastoma cells through targeting ABI1. Mol Carcinog. 2018 Sep;57(9):1237–1250.
  • Ye W, Liang F, Ying C, et al. Downregulation of microRNA-3934-5p induces apoptosis and inhibits the proliferation of neuroblastoma cells by targeting TP53INP1. Exp Ther Med. 2019 Nov;18(5):3729–3736.
  • Han LL, Zhou XJ, Li FJ, et al. MiR-223-3p promotes the growth and invasion of neuroblastoma cell via targeting FOXO1. Eur Rev Med Pharmacol Sci. 2019 Oct;23(20):8984–8990.
  • Ramraj SK, Aravindan S, Somasundaram DB, et al. Serum-circulating miRNAs predict neuroblastoma progression in mouse model of high-risk metastatic disease. Oncotarget. 2016 Apr 5;7(14):18605–18619.
  • Gholamin S, Mirzaei H, Razavi SM, et al. GD2-targeted immunotherapy and potential value of circulating microRNAs in neuroblastoma. J Cell Physiol. 2018 Feb;233(2):866–879.
  • Mohammadniaei M, Yoon J, Choi HK, et al. Multifunctional nanobiohybrid material composed of Ag@Bi2Se3/RNA three-way junction/miRNA/retinoic acid for neuroblastoma differentiation. ACS Appl Mater Interfaces. 2019 Mar 6;11(9):8779–8788.
  • Curtin C, Nolan JC, Conlon R, et al. A physiologically relevant 3D collagen-based scaffold-neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models. Acta Biomater. 2018 Apr 1;70:84–97.
  • Saeki N, Saito A, Sugaya Y, et al. Indirect down-regulation of tumor-suppressive let-7 family microRNAs by LMO1 in neuroblastoma. Cancer Genomics Proteomics. 2018 Sep-Oct;15(5):413–420.
  • Roth SA, Hald OH, Fuchs S, et al. MicroRNA-193b-3p represses neuroblastoma cell growth via downregulation of cyclin D1, MCL-1 and MYCN. Oncotarget. 2018 Apr 6;9(26):18160–18179.
  • Wu T, Lin Y, Xie Z. MicroRNA-1247 inhibits cell proliferation by directly targeting ZNF346 in childhood neuroblastoma. Biol Res. 2018 May 24;51(1):13.
  • Mao F, Zhang J, Cheng X, et al. miR-149 inhibits cell proliferation and enhances chemosensitivity by targeting CDC42 and BCL2 in neuroblastoma. Cancer Cell Int. 2019;19:357.
  • Soriano A, Masanas M, Boloix A, et al. Functional high-throughput screening reveals miR-323a-5p and miR-342-5p as new tumor-suppressive microRNA for neuroblastoma. Cell Mol Life Sci. 2019 Jun;76(11):2231–2243.
  • Zhao J, Zhou K, Ma L, et al. MicroRNA-145 overexpression inhibits neuroblastoma tumorigenesis in vitro and in vivo. Bioengineered. 2020 Dec;11(1):219–228.
  • Bhavsar SP, Lokke C, Flaegstad T, et al. Hsa-miR-376c-3p targets Cyclin D1 and induces G1-cell cycle arrest in neuroblastoma cells. Oncol Lett. 2018 Nov;16(5):6786–6794.
  • Wang X, Li J, Xu X, et al. miR-129 inhibits tumor growth and potentiates chemosensitivity of neuroblastoma by targeting MYO10. Biomed Pharmacother. 2018 Jul;103:1312–1318.
  • Li SH, Li JP, Chen L, et al. miR-146a induces apoptosis in neuroblastoma cells by targeting BCL11A. Med Hypotheses. 2018 Aug;117:21–27.
  • Zhou X, Lu H, Li F, et al. MicroRNA-429 inhibits neuroblastoma cell proliferation, migration and invasion via the NF-kappaB pathway. Cell Mol Biol Lett. 2020;25:5.
  • Marengo B, Monti P, Miele M, et al. Etoposide-resistance in a neuroblastoma model cell line is associated with 13q14.3 mono-allelic deletion and miRNA-15a/16-1 down-regulation. Sci Rep. 2018 Sep 13;8(1):13762.
  • Zhao Z, Shelton SD, Oviedo A, et al. The PLAGL2/MYCN/miR-506-3p interplay regulates neuroblastoma cell fate and associates with neuroblastoma progression. J Exp Clin Cancer Res. 2020 Feb 22;39(1):41.
  • Chava S, Reynolds CP, Pathania AS, et al. miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol Oncol. 2020 Jan;14(1):180–196.
  • Sharif S, Ghahremani MH, Soleimani M. Induction of morphological and functional differentiation of human neuroblastoma cells by miR-124. J Biosci. 2017 Dec;42(4):555–563.
  • You Q, Gong Q, Han YQ, et al. Role of miR-124 in the regulation of retinoic acid-induced neuro-2A cell differentiation. Neural Regen Res. 2020 Jun;15(6):1133–1139.
  • Ramachandran M, Yu D, Dyczynski M, et al. Safe and effective treatment of experimental neuroblastoma and glioblastoma using systemically delivered triple microRNA-detargeted oncolytic semliki forest virus. Clin Cancer Res. 2017 Mar 15;23(6):1519–1530.
  • Yu AL, Gilman AL, Ozkaynak MF, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010 Sep 30;363(14):1324–1334.
  • Szanto CL, Cornel AM, Vijver SV, et al. Monitoring immune responses in neuroblastoma patients during therapy. Cancers (Basel). 2020 Feb 24;12(2). DOI:10.3390/cancers12020519
  • Casey DL, Cheung NV. Immunotherapy of pediatric solid tumors: treatments at a crossroads, with an emphasis on antibodies. Cancer Immunol Res. 2020 Feb;8(2):161–166.
  • Kholodenko IV, Kalinovsky DV, Doronin II, et al. Neuroblastoma origin and therapeutic targets for immunotherapy. J Immunol Res. 2018;2018:7394268.
  • Terzic T, Cordeau M, Herblot S, et al. Expression of disialoganglioside (gd2) in neuroblastic tumors: a prognostic value for patients treated with anti-GD2 immunotherapy. Pediatr Dev Pathol. 2018 Jul-Aug;21(4):355–362.
  • Pennington B, Ren S, Barton S, et al. Dinutuximab beta for treating neuroblastoma: an evidence review group and decision support unit perspective of a NICE single technology appraisal. Pharmacoeconomics. 2019 Aug;37(8):985–993.
  • Ladenstein R, Potschger U, Valteau-Couanet D, et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018 Dec;19(12):1617–1629.
  • Greenwood KL, Foster JH. The safety of dinutuximab for the treatment of pediatric patients with high-risk neuroblastoma. Expert Opin Drug Saf. 2018 Dec;17(12):1257–1262.
  • Ladenstein R, Potschger U, Valteau-Couanet D, et al. Investigation of the role of dinutuximab beta-based immunotherapy in the SIOPEN high-risk neuroblastoma 1 trial (HR-NBL1). Cancers (Basel). 2020 Jan 28;12:2.
  • Furman WL, Federico SM, McCarville MB, et al. A phase II trial of Hu14.18K322A in combination with induction chemotherapy in children with newly diagnosed high-risk neuroblastoma. Clin Cancer Res. 2019 Nov 1;25(21):6320–6328.
  • London CA, Gardner HL, Rippy S, et al. KTN0158, a humanized anti-KIT monoclonal antibody, demonstrates biologic activity against both normal and malignant canine mast cells. Clin Cancer Res. 2017 May 15;23(10):2565–2574.
  • Stahl M, Gedrich R, Peck R, et al. Targeting KIT on innate immune cells to enhance the antitumor activity of checkpoint inhibitors. Immunotherapy. 2016 Jun;8(7):767–774.
  • Garton AJ, Seibel S, Lopresti-Morrow L, et al. Anti-KIT monoclonal antibody treatment enhances the antitumor activity of immune checkpoint inhibitors by reversing tumor-induced immunosuppression. Mol Cancer Ther. 2017 Apr;16(4):671–680.
  • Tomolonis JA, Agarwal S, Shohet JM. Neuroblastoma pathogenesis: deregulation of embryonic neural crest development. Cell Tissue Res. 2018 May;372(2):245–262.
  • Zage PE, Whittle SB, Shohet JM. CD114: a new member of the neural crest-derived cancer stem cell marker family. J Cell Biochem. 2017 Feb;118(2):221–231.
  • Schlitter AM, Dorneburg C, Barth TF, et al. CD57(high) neuroblastoma cells have aggressive attributes ex situ and an undifferentiated phenotype in patients. PLoS One. 2012;7(8):e42025.
  • Szemes M, Greenhough A, Melegh Z, et al. Wnt signalling drives context-dependent differentiation or proliferation in neuroblastoma. Neoplasia. 2018 Apr;20(4):335–350.
  • Tian X, Zhou D, Chen L, et al. Polo-like kinase 4 mediates epithelial-mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway. Cell Death Dis. 2018 Jan 19;9(2):54.
  • Semina EV, Rubina KA, Shmakova AA, et al. Downregulation of uPAR promotes urokinase translocation into the nucleus and epithelial to mesenchymal transition in neuroblastoma. J Cell Physiol. 2020 Jan;235(9):6268–6286.
  • Rysenkova KD, Semina EV, Karagyaur MN, et al. CRISPR/Cas9 nickase mediated targeting of urokinase receptor gene inhibits neuroblastoma cell proliferation. Oncotarget. 2018 Jun 29;9(50):29414–29430.
  • Vega FM, Colmenero-Repiso A, Gomez-Munoz MA, et al. CD44-high neural crest stem-like cells are associated with tumour aggressiveness and poor survival in neuroblastoma tumours. EBioMedicine. 2019 Nov;49:82–95.
  • Guo YF, Duan JJ, Wang J, et al. Inhibition of the ALDH18A1-MYCN positive feedback loop attenuates MYCN-amplified neuroblastoma growth. Sci Transl Med. 2020 Feb 19;12:531.
  • Prieto-Vila M, Takahashi RU, Usuba W, et al. Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci. 2017 Dec 1;18(12). DOI:10.3390/ijms18122574
  • Phi LTH, Sari IN, Yang YG, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923.
  • Wang XH, Wu HY, Gao J, et al. IGF1R facilitates epithelial-mesenchymal transition and cancer stem cell properties in neuroblastoma via the STAT3/AKT axis. Cancer Manag Res. 2019;11:5459–5472.
  • Goncalves JM, Silva CAB, Rivero ERC, et al. Inhibition of cancer stem cells promoted by pimozide. Clin Exp Pharmacol Physiol. 2019 Feb;46(2):116–125.
  • He K, Duan G, Li Y. Dehydroeffusol inhibits viability and epithelial-mesenchymal transition through the hedgehog and Akt/mTOR signaling pathways in neuroblastoma cells. Eur J Pharmacol. 2018 Jun;15(829):93–101.
  • Oh J-M, Lee J, Im W-T, et al. Ginsenoside Rk1 induces apoptosis in neuroblastoma cells through loss of mitochondrial membrane potential and activation of caspases. Int J Mol Sci. 2019 Mar 11;20(5):5.
  • Campos-Arroyo D, Maldonado V, Bahena I, et al. Probenecid sensitizes neuroblastoma cancer stem cells to cisplatin. Cancer Invest. 2016;34(3):155–166.
  • Kim KW, Kim JY, Qiao J, et al. Dual-targeting AKT2 and ERK in cancer stem-like cells in neuroblastoma. Oncotarget. 2019 Sep 24;10(54):5645–5659.
  • Bahmad HF, Mouhieddine TH, Chalhoub RM, et al. The Akt/mTOR pathway in cancer stem/progenitor cells is a potential therapeutic target for glioblastoma and neuroblastoma. Oncotarget. 2018 Sep 11;9(71):33549–33561.
  • Almstedt E, Elgendy R, Hekmati N, et al. Integrative discovery of treatments for high-risk neuroblastoma. Nat Commun. 2020 Jan 3;11(1):71.
  • Kolb EA, Houghton PJ, Kurmasheva RT, et al. Preclinical evaluation of the combination of AZD1775 and irinotecan against selected pediatric solid tumors: a pediatric preclinical testing consortium report. Pediatr Blood Cancer. 2020;23:e28098.
  • Cole KA, Pal S, Kudgus RA, et al. Phase I clinical trial of the wee1 inhibitor adavosertib (AZD1775) with irinotecan in children with relapsed solid tumors. A COG phase I consortium report (ADVL1312). Clin Cancer Res. 2019 Dec;26(6):1213–1219.
  • Chuang HC, Lin HY, Liao PL, et al. Immunomodulator polyinosinic-polycytidylic acid enhances the inhibitory effect of 13-cis-retinoic acid on neuroblastoma through a TLR3-related immunogenic-apoptotic response. Lab Invest. 2020 Apr;100(4):606–618.
  • Ruano D, Lopez-Martin JA, Moreno L, et al. First-in-human, first-in-child trial of autologous MSCs carrying the oncolytic virus icovir-5 in patients with advanced tumors. Mol Ther. 2020 Jan;284:1033–1042.
  • Franco-Luzon L, Gonzalez-Murillo A, Alcantara-Sanchez C, et al. Systemic oncolytic adenovirus delivered in mesenchymal carrier cells modulate tumor infiltrating immune cells and tumor microenvironment in mice with neuroblastoma. Oncotarget. 2020 Jan 28;11(4):347–361.
  • Maniwa J, Fumino S, Kimura K, et al. Novel mesenchymal stem cell delivery system as targeted therapy against neuroblastoma using the TH-MYCN mouse model. J Pediatr Surg. 2019 Dec;54(12):2600–2605.
  • Anongpornjossakul Y, Sriwatcharin W, Thamnirat K, et al. Iodine-131 metaiodobenzylguanidine (131I-mIBG) treatment in relapsed/refractory neuroblastoma. Nucl Med Commun. 2020 Apr;41(4):336–343.
  • Olecki E, Grant CN. MIBG in neuroblastoma diagnosis and treatment. Semin Pediatr Surg. 2019 Dec;28(6):150859.
  • Suh JK, Koh KN, Min SY, et al. Feasibility and effectiveness of treatment strategy of tandem high-dose chemotherapy and autologous stem cell transplantation in combination with (131) I-MIBG therapy for high-risk neuroblastoma. Pediatr Transplant. 2020 Mar;24(2):e13658.
  • Cervantes-Madrid D, Szydzik J, Lind DE, et al. Repotrectinib (TPX-0005), effectively reduces growth of ALK driven neuroblastoma cells. Sci Rep. 2019 Dec 18;9(1):19353.
  • Yoda H, Nakayama T, Miura M, et al. Vitamin K3 derivative induces apoptotic cell death in neuroblastoma via downregulation of MYCN expression. Biochem Biophys Rep. 2019;20:100701.
  • Fang E, Wang X, Yang F, et al. Therapeutic targeting of MZF1-AS1/PARP1/E2F1 axis inhibits proline synthesis and neuroblastoma progression. Adv Sci (Weinh). 2019 Oct 2;6(19):1900581.
  • Li H, Yang F, Hu A, et al. Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol Med. 2019 Dec;11(12):e10835.
  • Das SK, Maji S, Wechman SL, et al. MDA-9/syntenin (SDCBP): novel gene and therapeutic target for cancer metastasis. Pharmacol Res. 2020 Feb;13:104695.
  • Bhoopathi P, Pradhan AK, Bacolod MD, et al. Regulation of neuroblastoma migration, invasion, and in vivo metastasis by genetic and pharmacological manipulation of MDA-9/syntenin. Oncogene. 2019 Oct;38(41):6781–6793.
  • Lopez de la Oliva AR, Campos-Sandoval JA, Gomez-Garcia MC, et al. Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation. Sci Rep. 2020 Feb 10;10(1):2259.
  • Bibbo S, Lamolinara A, Capone E, et al. Repurposing a psychoactive drug for children with cancer: p27(Kip1)-dependent inhibition of metastatic neuroblastomas by prozac. Oncogenesis. 2020 Jan 2;9(1):3.
  • Chen S, Gu S, Xu M, et al. Kruppel-like factor 9 promotes neuroblastoma differentiation via targeting the sonic hedgehog signaling pathway. Pediatr Blood Cancer. 2020 Mar;67(3):e28108.
  • Wang F, Zhang J, Ke X, et al. WDR5-Myc axis promotes the progression of glioblastoma and neuroblastoma by transcriptional activating CARM1. Biochem Biophys Res Commun. 2020 Mar 12;523(3):699–706.
  • Fang E, Wang X, Wang J, et al. Therapeutic targeting of YY1/MZF1 axis by MZF1-uPEP inhibits aerobic glycolysis and neuroblastoma progression. Theranostics. 2020;10(4):1555–1571.
  • Vrenken KS, Vervoort BMT, van Ingen Schenau DS, et al. The transcriptional repressor SNAI2 impairs neuroblastoma differentiation and inhibits response to retinoic acid therapy. Biochim Biophys Acta Mol Basis Dis. 2020 Mar 1;1866(3):165644.
  • Po’uha ST, Le Grand M, Brandl MB, et al. Stathmin levels alter PTPN14 expression and impact neuroblastoma cell migration. Br J Cancer. 2020 Feb;122(3):434–444.
  • Meng J, Tagalakis AD, Hart SL. Silencing E3 ubiqutin ligase ITCH as a potential therapy to enhance chemotherapy efficacy in p53 mutant neuroblastoma cells. Sci Rep. 2020 Jan 23;10(1):1046.
  • Tilve S, Iweka CA, Bao J, et al. Phospholipid phosphatase related 1 (PLPPR1) increases cell adhesion through modulation of Rac1 activity. Exp Cell Res. 2020 Apr 15;389(2):111911.
  • MacFarland SP, Naraparaju K, Iyer R, et al. Mechanisms of entrectinib resistance in a neuroblastoma xenograft model. Mol Cancer Ther. 2020 Mar;19(3):920–926.
  • Cimmino F, Avitabile M, Lasorsa VA, et al. Functional characterization of full-length BARD1 strengthens its role as a tumor suppressor in neuroblastoma. J Cancer. 2020;11(6):1495–1504.
  • Coggins GE, Farrel A, Rathi KS, et al. YAP1 mediates resistance to MEK1/2 inhibition in neuroblastomas with hyperactivated RAS signaling. Cancer Res. 2019 Dec 15;79(24):6204–6214.
  • Shen X, Xu X, Xie C, et al. YAP promotes the proliferation of neuroblastoma cells through decreasing the nuclear location of p27(Kip1) mediated by Akt. Cell Prolif. 2020 Feb;53(2):e12734.
  • Huang M, Zeki J, Sumarsono N, et al. Epigenetic targeting of TERT-associated gene expression signature in human neuroblastoma with TERT overexpression. Cancer Res. 2020 Mar 1;80(5):1024–1035.
  • Tee AE, Ciampa OC, Wong M, et al. Combination therapy with the CDK7 inhibitor and the tyrosine kinase inhibitor exerts synergistic anticancer effects against MYCN-amplified neuroblastoma. Int J Cancer. 2020 Feb 22. DOI:10.1002/ijc.32936
  • Wang L, Tan TK, Durbin AD, et al. ASCL1 is a MYCN- and LMO1-dependent member of the adrenergic neuroblastoma core regulatory circuitry. Nat Commun. 2019 Dec 9;10(1):5622.
  • Cournoyer S, Addioui A, Belounis A, et al. GX15-070 (Obatoclax), a Bcl-2 family proteins inhibitor engenders apoptosis and pro-survival autophagy and increases chemosensitivity in neuroblastoma. BMC Cancer. 2019 Oct 29;19(1):1018.
  • Almutairi B, Charlet J, Dallosso AR, et al. Epigenetic deregulation of GATA3 in neuroblastoma is associated with increased GATA3 protein expression and with poor outcomes. Sci Rep. 2019 Dec 12;9(1):18934.
  • Trigg RM, Lee LC, Prokoph N, et al. The targetable kinase PIM1 drives ALK inhibitor resistance in high-risk neuroblastoma independent of MYCN status. Nat Commun. 2019 Nov 28;10(1):5428.
  • Ognibene M, Podesta M, Garaventa A, et al. Role of GOLPH3 and TPX2 in neuroblastoma DNA damage response and cell resistance to chemotherapy. Int J Mol Sci. 2019 Sep 25;20:19.
  • Hsieh CH, Cheung CHY, Liu YL, et al. Quantitative proteomics of Th-MYCN transgenic mice reveals aurora kinase inhibitor altered metabolic pathways and enhanced ACADM to suppress neuroblastoma progression. J Proteome Res. 2019 Nov 1;18(11):3850–3866.
  • Nunes-Xavier CE, Aurtenetxe O, Zaldumbide L, et al. Protein tyrosine phosphatase PTPN1 modulates cell growth and associates with poor outcome in human neuroblastoma. Diagn Pathol. 2019 Dec 14;14(1):134.
  • Xu Y, Chen K, Cai Y, et al. Overexpression of Rad51 predicts poor prognosis and silencing of Rad51 increases chemo-sensitivity to doxorubicin in neuroblastoma. Am J Transl Res. 2019;11(9):5788–5799.
  • Boratyn E, Nowak I, Karnas E, et al. MCPIP1 overexpression in human neuroblastoma cell lines causes cell-cycle arrest by G1/S checkpoint block. J Cell Biochem. 2020 Jun;121(5–6):3406–3425.
  • Su D, Wang W, Wu X, et al. Meriolin1 induces cell cycle arrest, apoptosis, autophagy and targeting the Akt/MAPKs pathways in human neuroblastoma SH-SY5Y cells. J Pharm Pharmacol. 2020 Feb 7;72(4):561–574.
  • Montemurro L, Raieli S, Angelucci S, et al. A novel MYCN-specific antigene oligonucleotide deregulates mitochondria and inhibits tumor growth in MYCN-amplified neuroblastoma. Cancer Res. 2019 Dec 15;79(24):6166–6177.
  • Flynn SM, Lesperance J, Macias A, et al. The multikinase inhibitor RXDX-105 is effective against neuroblastoma in vitro and in vivo. Oncotarget. 2019 Oct 29;10(59):6323–6333.
  • Cong S, Luo H, Li X, et al. Isatin inhibits SH-SY5Y neuroblastoma cell invasion and metastasis through PTEN signaling. Int J Clin Exp Pathol. 2019;12(7):2446–2454.
  • Otsuka K, Sasada M, Iyoda T, et al. Combining peptide TNIIIA2 with all-trans retinoic acid accelerates N-Myc protein degradation and neuronal differentiation in MYCN-amplified neuroblastoma cells. Am J Cancer Res. 2019;9(2):434–448.
  • Dar MI, Jan S, Reddy GL, et al. Differentiation of human neuroblastoma cell line IMR-32 by sildenafil and its newly discovered analogue IS00384. Cell Signal. 2020 Jan;65:109425.
  • Kumar A, Ghosh DK, Ranjan A. Mefloquine binding to human acyl-CoA binding protein leads to redox stress-mediated apoptotic death of human neuroblastoma cells. Neurotoxicology. 2020 Mar;77:169–180.
  • Huynh T, Murray J, Flemming CL, et al. CCI52 sensitizes tumors to 6-mercaptopurine and inhibits MYCN-amplified tumor growth. Biochem Pharmacol. 2020 Feb;172:113770.
  • Aravindan S, Natarajan M, Awasthi V, et al. Novel synthetic monoketone transmute radiation-triggered NFkappaB-dependent TNFalpha cross-signaling feedback maintained NFkappaB and favors neuroblastoma regression. PLoS One. 2013;8(8):e72464.
  • Aravindan N, Veeraraghavan J, Madhusoodhanan R, et al. Curcumin regulates low-linear energy transfer gamma-radiation-induced NFkappaB-dependent telomerase activity in human neuroblastoma cells. Int J Radiat Oncol Biol Phys. 2011 Mar 15;79(4):1206–1215.
  • Aravindan N, Madhusoodhanan R, Ahmad S, et al. Curcumin inhibits NFkappaB mediated radioprotection and modulate apoptosis related genes in human neuroblastoma cells. Cancer Biol Ther. 2008 Apr;7(4):569–576.
  • Caruso Bavisotto C, Marino Gammazza A, Lo Cascio F, et al. Curcumin affects HSP60 folding activity and levels in neuroblastoma cells. Int J Mol Sci. 2020 Jan 19;21:2.
  • Alshangiti AM, Tuboly E, Hegarty SV, et al. 4-hydroxychalcone induces cell death via oxidative stress in MYCN-amplified human neuroblastoma cells. Oxid Med Cell Longev. 2019;2019:1670759.
  • Yang J, Shao X, Wang L, et al. Angelica polysaccharide exhibits antitumor effect in neuroblastoma cell line SH-SY5Y by up-regulation of miR-205. Biofactors. 2019 Nov 23. DOI:10.1002/biof.1586
  • Kanamori Y, Via LD, Macone A, et al. Aged garlic extract and its constituent, S-allyl-L-cysteine, induce the apoptosis of neuroblastoma cancer cells due to mitochondrial membrane depolarization. Exp Ther Med. 2020 Feb;19(2):1511–1521.
  • Pottoo FH, Barkat MA, Harshita H, et al. Nanotechnological based miRNA intervention in the therapeutic management of neuroblastoma. Semin Cancer Biol. 2019 Sep 25. DOI:10.1016/j.semcancer.2019.09.017
  • Li F, Song L, Yang X, et al. Anticancer and genotoxicity effect of (Clausena lansium (Lour.) skeels) peel ZnONPs on neuroblastoma (SH-SY5Y) cells through the modulation of autophagy mechanism. Journal of photochemistry and photobiology B. Biology (Basel). 2020;203:111748.
  • Piazzini V, Vasarri M, Degl’Innocenti D, et al. Comparison of chitosan nanoparticles and soluplus micelles to optimize the bioactivity of posidonia oceanica extract on human neuroblastoma cell migration. Pharmaceutics. 2019 Dec 6;11:12.
  • Orienti I, Nguyen F, Guan P, et al. A novel nanomicellar combination of fenretinide and lenalidomide shows marked antitumor activity in a neuroblastoma xenograft model. Drug Des Devel Ther. 2019;13:4305–4319.
  • Yoshida S, Duong C, Oestergaard M, et al. MXD3 antisense oligonucleotide with superparamagnetic iron oxide nanoparticles: a new targeted approach for neuroblastoma. Nanomedicine. 2019 Nov 26;24:102127.
  • Luo Y, Xu T, Xie HQ, et al. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on spontaneous movement of human neuroblastoma cells. Sci Total Environ. 2020 May 1;715:136805.
  • Fu SC, Liu JM, Lee KI, et al. Cr(VI) induces ROS-mediated mitochondrial-dependent apoptosis in neuronal cells via the activation of Akt/ERK/AMPK signaling pathway. Toxicol In Vitro. 2020 Feb;12(65):104795.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.