715
Views
23
CrossRef citations to date
0
Altmetric
Review

HSP47: a potential target for fibrotic diseases and implications for therapy

, , &
Pages 49-62 | Received 27 Aug 2020, Accepted 04 Dec 2020, Published online: 04 Jan 2021

References

  • Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008 Jan;214(2):199–210.
  • Kisseleva T, Brenner DA. Mechanisms of fibrogenesis [Research Support, Non-U.S. Gov’t Review]. Exp Biol Med (Maywood). 2008 Feb;233(2):109–122.
  • Friedman SL, Sheppard D, Duffield JS, et al. Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med. 2013 Jan 9;5(167):167sr1.
  • Thannickal VJ, Zhou Y, Gaggar A, et al. Fibrosis: ultimate and proximate causes. J Clin Invest. 2014 Nov;124(11):4673–4677.
  • Vos MJ, Hageman J, Carra S, et al. Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families [Research Support, Non-U.S. Gov’t Review]. Biochemistry. 2008 Jul 8;47(27):7001–7011.
  • Gething MJ, Sambrook J. Protein folding in the cell [Research Support, Non-U.S. Gov’t Review]. Nat. 1992 Jan 2;355(6355):33–45.
  • Lanneau D, Wettstein G, Bonniaud P, et al. Heat shock proteins: cell protection through protein triage [Research Support, Non-U.S. Gov’t Review]. Sci World J. 2010;10:1543–1552.
  • Westerheide SD, Raynes R, Powell C, et al. HSF transcription factor family, heat shock response, and protein intrinsic disorder. Curr Protein Pept Sci. 2012 Feb;13(1):86–103.
  • Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell. 2000 May 26;101(5):451–454.
  • Ito S, Nagata K. Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. Semin Cell Dev Biol. 2017 Feb;62:142–151.
  • Mala JG, Rose C. Interactions of heat shock protein 47 with collagen and the stress response: an unconventional chaperone model? [Review]. Life Sci. 2010 Nov 20;87(19–22):579–586.
  • Bellaye PS, Burgy O, Causse S, et al. Heat shock proteins in fibrosis and wound healing: good or evil? Pharmacol Ther. 2014 Aug;143(2):119–132.
  • Neuman RE, Logan MA. The determination of collagen and elastin in tissues. J Biol Chem. 1950 Oct;186(2):549–556.
  • Ricard-Blum S. The collagen family. Cold Spring Harbor Perspect Biol. 2011 Jan 1;3(1):a004978.
  • Bodian DL, Madhan B, Brodsky B, et al. Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations. Biochem. 2008 May 13;47(19):5424–5432.
  • Beck K, Chan VC, Shenoy N, et al. Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. PNAS. 2000 Apr 11;97(8):4273–4278.
  • Ramshaw JA, Shah NK, Brodsky B. Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. J Struct Biol. 1998;122(1–2):86–91.
  • Canty EG, Kadler KE. Procollagen trafficking, processing and fibrillogenesis. J Cell Sci. 2005 Apr 1;118(Pt 7):1341–1353.
  • Laurent GJ. Lung collagen: more than scaffolding. Thorax. 1986 Jun;41(6):418–428.
  • Laurent GJ, Harrison NK, McAnulty RJ. The regulation of collagen production in normal lung and during interstitial lung disease. Postgraduate Med J. 1988;64(4):26–34.
  • Phan SH. The myofibroblast in pulmonary fibrosis [Review]. Chest. 2002 Dec;122(6):286S–289S.
  • Carew RM, Wang B, Kantharidis P. The role of EMT in renal fibrosis [Review]. Cell Tissue Res. 2012 Jan;347(1):103–116.
  • Shimbori C, Bellaye P-S, Kolb P, et al. Idiopathic Pulmonary Fibrosis. Milestones in Drug Therapy Milestones in Drug Therapy. 2017:39–69.
  • Sakaida I, Matsumura Y, Kubota M, et al. The prolyl 4-hydroxylase inhibitor HOE 077 prevents activation of Ito cells, reducing procollagen gene expression in rat liver fibrosis induced by choline-deficient L-amino acid-defined diet. Hepatol. 1996 Apr;23(4):755–763.
  • Sakaida I, Uchida K, Hironaka K, et al. Prolyl 4-hydroxylase inhibitor (HOE 077) prevents TIMP-1 gene expression in rat liver fibrosis. J Gastroenterol. 1999 Jun;34(3):376–377.
  • Fielitz J, Philipp S, Herda LR, et al. Inhibition of prolyl 4-hydroxylase prevents left ventricular remodelling in rats with thoracic aortic banding. Eur J Fail. 2007 Apr;9(4):336–342.
  • Chung JM, Jung MJ, Lee SJ, et al. Effects of prolyl 4-hydroxylase inhibitor on bladder function, bladder hypertrophy and collagen subtypes in a rat model with partial bladder outlet obstruction. Urol. 2012 Dec;80(6):1390 e7–12.
  • Barry-Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med. 2010 Sep;16(9):1009–1017.
  • Olsen KC, Sapinoro RE, Kottmann RM, et al. Transglutaminase 2 and its role in pulmonary fibrosis. Am J Respir Crit Care Med. 2011 Sep 15;184(6):699–707.
  • Bellaye PS, Shimbori C, Upagupta C, et al. Lysyl Oxidase-Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-beta1-induced Pulmonary Fibrosis. Am J Respir Cell Mol Biol. 2018 Apr;58(4):461–470.
  • Froese AR, Shimbori C, Bellaye PS, et al. Stretch-induced Activation of Transforming Growth Factor-beta1 in Pulmonary Fibrosis. Am J Res Crit Care Med. 2016 Jul 1;194(1):84–96.
  • Bellaye PS, Shimbori C, Yanagihara T, et al. Synergistic role of HSP90alpha and HSP90beta to promote myofibroblast persistence in lung fibrosis. Eur Respir J. 2018 Feb;51(2). DOI:10.1183/13993003.00386-2017
  • Booth AJ, Hadley R, Cornett AM, et al. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Res Crit Care Med. 2012 Nov 1;186(9):866–876.
  • Wipff PJ, Rifkin DB, Meister JJ, et al. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007 Dec 17;179(6):1311–1323.
  • Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-beta signaling in fibrosis. Growth Factors. 2011 Oct;29(5):196–202.
  • Nagai N, Hosokawa M, Itohara S, et al. Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol. 2000 Sep 18;150(6):1499–1506.
  • Ovchinnikov DA, Deng JM, Ogunrinu G, et al. Col2a1-directed expression of Cre recombinase in differentiating chondrocytes in transgenic mice. Genesis. 2000 Feb;26(2):145–146.
  • Masago Y, Hosoya A, Kawasaki K, et al. The molecular chaperone Hsp47 is essential for cartilage and endochondral bone formation. J Cell Sci. 2012 Mar 1;125(Pt 5):1118–1128.
  • Matsuoka Y, Kubota H, Adachi E, et al. Insufficient folding of type IV collagen and formation of abnormal basement membrane-like structure in embryoid bodies derived from Hsp47-null embryonic stem cells. Mol Biol Cell. 2004 Oct;15(10):4467–4475.
  • Ishida Y, Kubota H, Yamamoto A, et al. Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. Mol Biol Cell. 2006 May;17(5):2346–2355.
  • Kawasaki K, Ushioda R, Ito S, et al. Deletion of the collagen-specific molecular chaperone Hsp47 causes endoplasmic reticulum stress-mediated apoptosis of hepatic stellate cells. J Biol Chem. 2015 Feb 6;290(6):3639–3646.
  • Yagi-Utsumi M, Yoshikawa S, Yamaguchi Y, et al. NMR and mutational identification of the collagen-binding site of the chaperone Hsp47. PloS One. 2012;7(9):e45930. .
  • Widmer C, Gebauer JM, Brunstein E, et al. Molecular basis for the action of the collagen-specific chaperone Hsp47/SERPINH1 and its structure-specific client recognition. PNAS. 2012 Aug 14;109(33):13243–13247.
  • Koide T, Asada S, Takahara Y, et al. Specific recognition of the collagen triple helix by chaperone HSP47: minimal structural requirement and spatial molecular orientation. J Biol Chem. 2006 Feb 10;281(6):3432–3438.
  • Koide T, Nishikawa Y, Asada S, et al. Specific recognition of the collagen triple helix by chaperone HSP47. II. The HSP47-binding structural motif in collagens and related proteins. J Biol Chem. 2006 Apr 21;281(16):11177–11185.
  • Satoh M, Hirayoshi K, Yokota S, et al. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J Cell Biol. 1996 Apr;133(2):469–483.
  • Masuda H, Fukumoto M, Hirayoshi K, et al. Coexpression of the collagen-binding stress protein HSP47 gene and the alpha 1(I) and alpha 1(III) collagen genes in carbon tetrachloride-induced rat liver fibrosis [Comparative Study Research Support, Non-U.S. Gov’t]. J Clin Invest. 1994 Dec;94(6):2481–2488.
  • Mishima Y, Miyazaki M, Abe K, et al. Enhanced expression of heat shock protein 47 in rat model of peritoneal fibrosis [Research Support, Non-U.S. Gov’t]. Peritoneal Dialysis Int: J Int Soc Peritoneal Dialysis. 2003 Jan-Feb;23(1):14–22.
  • Razzaque MS, Hossain MA, Kohno S, et al. Bleomycin-induced pulmonary fibrosis in rat is associated with increased expression of collagen-binding heat shock protein (HSP) 47. Virchows Archiv: Int J Pathol. 1998 May;432(5):455–460.
  • Honzawa Y, Nakase H, Shiokawa M, et al. Involvement of interleukin-17A-induced expression of heat shock protein 47 in intestinal fibrosis in Crohn’s disease. Gut. 2014 Dec;63(12):1902–1912.
  • Kakugawa T, Mukae H, Hishikawa Y, et al. Localization of HSP47 mRNA in murine bleomycin-induced pulmonary fibrosis. Virchows Archiv : Int J Pathol. 2010 Mar;456(3):309–315.
  • Kaur J, Rao M, Chakravarti N, et al. Co-expression of colligin and collagen in oral submucous fibrosis: plausible role in pathogenesis. Oral Oncol. 2001 Apr;37(3):282–287.
  • Huang JQ, Tao R, Li L, et al. Involvement of heat shock protein 47 in Schistosoma japonicum-induced hepatic fibrosis in mice. Int J Parasitol. 2014 Jan;44(1):23–35.
  • Chu H, Wu T, Wu W, et al. Involvement of collagen-binding heat shock protein 47 in scleroderma-associated fibrosis. Protein Cell. 2015 Aug;6(8):589–598.
  • Iwashita T, Kadota J, Naito S, et al. Involvement of collagen-binding heat shock protein 47 and procollagen type I synthesis in idiopathic pulmonary fibrosis: contribution of type II pneumocytes to fibrosis. Hum Pathol. 2000 Dec;31(12):1498–1505.
  • Xiao HB, Liu RH, Ling GH, et al. HSP47 regulates ECM accumulation in renal proximal tubular cells induced by TGF-beta1 through ERK1/2 and JNK MAPK pathways [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Am J Physiol Renal Physiol. 2012 Sep;303(5):F757–65.
  • Sasaki H, Sato T, Yamauchi N, et al. Induction of heat shock protein 47 synthesis by TGF-beta and IL-1 beta via enhancement of the heat shock element binding activity of heat shock transcription factor 1. J Immunol. 2002 May 15;168(10):5178–5183.
  • Park SJ, Sohn HY, Park SI. TRAIL regulates collagen production through HSF1-dependent Hsp47 expression in activated hepatic stellate cells. Cell Signalling. 2013 Jul;25(7):1635–1643.
  • Duran I, Nevarez L, Sarukhanov A, et al. HSP47 and FKBP65 cooperate in the synthesis of type I procollagen. Hum Mol Genet. 2015 Apr 1;24(7):1918–1928.
  • Thomson CA, Atkinson HM, Ananthanarayanan VS. Identification of small molecule chemical inhibitors of the collagen-specific chaperone Hsp47. J Med Chem. 2005 Mar 10;48(5):1680–1684.
  • Katarkar A, Haldar PK, Chaudhuri K. De novo design based pharmacophore query generation and virtual screening for the discovery of Hsp-47 inhibitors. Biochem Biophys Res Commun. 2015 Jan 16;456(3):707–713.
  • Kitamura A, Ishida Y, Kubota H, et al. Detection of substrate binding of a collagen-specific molecular chaperone HSP47 in solution using fluorescence correlation spectroscopy. Biochem Biophys Res Commun. 2018 Feb 26;497(1):279–284.
  • Ito S, Saito M, Yoshida M, et al. A BRET-based assay reveals collagen-Hsp47 interaction dynamics in the endoplasmic reticulum and small-molecule inhibition of this interaction. J Biol Chem. 2019 Nov 1;294(44):15962–15972.
  • Ito S, Ogawa K, Takeuchi K, et al. A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis. J Biol Chem. 2017 Dec 8;292(49):20076–20085.
  • Yoshida M, Saito M, Ito S, et al. Structure-activity relationship study on Col-003, a protein-protein interaction inhibitor between collagen and Hsp47. Chem Pharm Bull. 2020 Mar 1;68(3):220–226.
  • Chen JJ, Zhao S, Cen Y, et al. Effect of heat shock protein 47 on collagen accumulation in keloid fibroblast cells [Research Support, Non-U.S. Gov’t]. Br J Dermatol. 2007 Jun;156(6):1188–1195.
  • Chen JJ, Jin PS, Zhao S, et al. Effect of heat shock protein 47 on collagen synthesis of keloid in vivo [Comparative Study Research Support, Non-U.S. Gov’t]. ANZ J Surg. 2011 Jun;81(6):425–430.
  • Hagiwara S, Iwasaka H, Matsumoto S, et al. An antisense oligonucleotide to HSP47 inhibits paraquat-induced pulmonary fibrosis in rats. Toxicol. 2007 Jul 17;236(3):199–207.
  • Hagiwara S, Iwasaka H, Matsumoto S, et al. Antisense oligonucleotide inhibition of heat shock protein (HSP) 47 improves bleomycin-induced pulmonary fibrosis in rats [Comparative Study]. Respiratory Res. 2007;8:37.
  • Iyer AK, He J. Radiolabeled oligonucleotides for antisense imaging. Curr Org Synth. 2011 Aug 1;8(4):604–614.
  • Xia Z, Abe K, Furusu A, et al. Suppression of renal tubulointerstitial fibrosis by small interfering RNA targeting heat shock protein 47. Am J Nephrol. 2008;28(1):34–46.
  • Obata Y, Nishino T, Kushibiki T, et al. HSP47 siRNA conjugated with cationized gelatin microspheres suppresses peritoneal fibrosis in mice [Research Support, Non-U.S. Gov’t]. Acta Biomater. 2012 Jul;8(7):2688–2696.
  • Asefa T, Tao Z. Biocompatibility of mesoporous silica nanoparticles. Chem Res Toxicol. 2012 Nov 19;25(11):2265–2284.
  • Li X, Chen Y, Wang M, et al. A mesoporous silica nanoparticle–PEI–fusogenic peptide system for siRNA delivery in cancer therapy. Biomater. 2013 Jan;34(4):1391–1401.
  • Morry J, Ngamcherdtrakul W, Gu S, et al. Dermal delivery of HSP47 siRNA with NOX4-modulating mesoporous silica-based nanoparticles for treating fibrosis. Biomater. 2015 Oct;66:41–52.
  • Chelstowska S, Widjaja-Adhi MA, Silvaroli JA, et al. Molecular basis for vitamin A uptake and storage in vertebrates. Nutrs. 2016 Oct 26;8:11.
  • Sato Y, Murase K, Kato J, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol. 2008 Apr;26(4):431–442.
  • Ishiwatari H, Sato Y, Murase K, et al. Treatment of pancreatic fibrosis with siRNA against a collagen-specific chaperone in vitamin A-coupled liposomes. Gut. 2013 Sep;62(9):1328–1339.
  • Otsuka M, Shiratori M, Chiba H, et al. Treatment of pulmonary fibrosis with siRNA against a collagen-specific chaperone HSP47 in vitamin A-coupled liposomes. Exp Lung Res. 2017 Aug - Sep;43(6–7):271–282.
  • Ohigashi H, Hashimoto D, Hayase E, et al. Ocular instillation of vitamin A-coupled liposomes containing HSP47 siRNA ameliorates dry eye syndrome in chronic GVHD. Blood Adv. 2019 Apr 9;3(7):1003–1010.
  • Yamakawa T, Ohigashi H, Hashimoto D, et al. Vitamin A-coupled liposomes containing siRNA against HSP47 ameliorate skin fibrosis in chronic graft-versus-host disease. Blood. 2018 Mar 29;131(13):1476–1485.
  • Cushing L, Kuang P, Lu J. The role of miR-29 in pulmonary fibrosis. Biochem Cell Biol. 2015 Apr;93(2):109–118.
  • Zhu J, Xiong G, Fu H, et al. Chaperone Hsp47 drives malignant growth and invasion by modulating an ECM gene network. Cancer Res. 2015 Apr 15;75(8):1580–1591.
  • Xu R. MiR-29/Hsp47 in ECM network. Oncoscience. 2015;2(10):843–844.
  • Kamikawaji K, Seki N, Watanabe M, et al. Regulation of LOXL2 and SERPINH1 by antitumor microRNA-29a in lung cancer with idiopathic pulmonary fibrosis. J Hum Genet. 2016 Dec;61(12):985–993.
  • Zhang Y, Ghazwani M, Li J, et al. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase. Biochem Bioph Res Commun. 2014 Apr 18;446(4):940–944.
  • Wei S, Wang Q, Zhou H, et al. miR-455-3p alleviates hepatic stellate cell activation and liver fibrosis by suppressing HSF1 expression. Mol Ther Nucleic Acids. 2019 Jun 7;16:758–769.
  • Tung YT, Tang TY, Chen HL, et al. Lactoferrin protects against chemical-induced rat liver fibrosis by inhibiting stellate cell activation. J Dairy Sci. 2014;97(6):3281–3291.
  • Rizk FH, Sarhan NI, Soliman NA, et al. Heat shock protein 47 as indispensible participant in liver fibrosis: possible protective effect of lactoferrin. IUBMB Life. 2018 Aug;70(8):795–805.
  • Martinez FJ, Collard HR, Pardo A, et al. Idiopathic pulmonary fibrosis. Nat Rev Dis Primers. 2017 Oct 20;3:17074.
  • Hisatomi K, Mukae H, Sakamoto N, et al. Pirfenidone inhibits TGF-beta1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells. BMC Pulmonary Med. 2012 Jun 13;12:24.
  • Xiang XH, Jiang TP, Zhang S, et al. Pirfenidone inhibits proliferation, arrests the cell cycle, and downregulates heat shock protein-47 and collagen type I in rat hepatic stellate cells in vitro. Mol Med Rep. 2015 Jul;12(1):309–314.
  • Kakugawa T, Mukae H, Hayashi T, et al. Pirfenidone attenuates expression of HSP47 in murine bleomycin-induced pulmonary fibrosis. Eur Respir J. 2004 Jul;24(1):57–65.
  • Knuppel L, Ishikawa Y, Aichler M, et al. A novel antifibrotic mechanism of Nintedanib and Pirfenidone. Inhibition of collagen fibril assembly. Am J Respir Cell Mol Biol. 2017 Jul;57(1):77–90.
  • Kakugawa T, Yokota S, Ishimatsu Y, et al. Serum heat shock protein 47 levels in patients with drug-induced lung disease. Respir Res. 2013 Nov 20;14:133.
  • Kakugawa T, Yokota S, Ishimatsu Y, et al. Serum heat shock protein 47 levels are elevated in acute exacerbation of idiopathic pulmonary fibrosis. Cell Stress Chaperones. 2013 Sep;18(5):581–590.
  • Kakugawa T, Yokota S, Ishimatsu Y, et al. Serum heat shock protein 47 levels are elevated in acute interstitial pneumonia. BMC Pulmonary Med. 2014 Mar 21;14(1):48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.