542
Views
12
CrossRef citations to date
0
Altmetric
Review

Potassium channels as prominent targets and tools for the treatment of epilepsy

ORCID Icon & ORCID Icon
Pages 223-235 | Received 22 Mar 2021, Accepted 22 Mar 2021, Published online: 06 Apr 2021

References

  • Trimmer JS. Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron. 2015 Jan 21;85(2):238–256.
  • Bell TJ, Miyashiro KY, Sul JY, et al. Intron retention facilitates splice variant diversity in calcium-activated big potassium channel populations. Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21152–21157.
  • Tian Y, Liao IH, Zhan X, et al. Exon expression and alternatively spliced genes in Tourette Syndrome. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(1(Jan):72–78.
  • Pitt GS. Ion channels in health and disease. London, United Kingdom: San Diego, CA: Elsevier; 2016. (Perspectives on translational cell biology series)
  • Rang HP, Ritter JM, Flower RJ, et al. Rang and Dale’s pharmacology. Edinburgh: Elsevier, Churchill Livingstone; 2016. English. (Student Consult)
  • Contet C, Goulding SP, Kuljis DA, et al. BK channels in the Central Nervous System. Int Rev Neurobiol. 2016;128:281–342.
  • Pantazis A, Olcese R. Biophysics of BK channel gating. Int Rev Neurobiol. 2016;128:1–49.
  • Martens JR, Kwak YG, Tamkun MM. Modulation of Kv channel alpha/beta subunit interactions. Trends Cardiovasc Med. 1999 Nov;9(8):253–258.
  • Bean BP. The action potential in mammalian central neurons. Nat Rev Neurosci. 2007 Jun;8(6):451–465.
  • Kole MH, Letzkus JJ, Stuart GJ. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron. 2007 Aug 16;55(4):633–647.
  • Battefeld A, Tran BT, Gavrilis J, et al. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons. J Neurosci. 2014 Mar 5;34(10):3719–3732.
  • Hu W, Bean BP. Differential control of axonal and somatic resting potential by voltage-dependent conductances in cortical layer 5 pyramidal neurons. Neuron. 2018 Sep 19;99(6):1355.
  • Wang HS, Pan Z, Shi W, et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science. 1998 Dec 4;282(5395):1890–1893.
  • Monaghan MM, Menegola M, Vacher H, et al. Altered expression and localization of hippocampal A-type potassium channel subunits in the pilocarpine-induced model of temporal lobe epilepsy. Neuroscience. 2008 Oct 15;156(3):550–562.
  • Misonou H, Menegola M, Buchwalder L, et al. Immunolocalization of the Ca2+-activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons. J Comp Neurol. 2006 May 20;496(3):289–302.
  • Puente N, Mendizabal-Zubiaga J, Elezgarai I, et al. Precise localization of the voltage-gated potassium channel subunits Kv3.1b and Kv3.3 revealed in the molecular layer of the rat cerebellar cortex by a pre-embedding immunogold method. Histochem Cell Biol. 2010 Oct;134(4):403–409.
  • Pan Z, Kao T, Horvath Z, et al. A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci. 2006 Mar 8;26(10):2599–2613.
  • Sailer CA, Hu H, Kaufmann WA, et al. Regional differences in distribution and functional expression of small-conductance Ca2+-activated K+ channels in rat brain. J Neurosci. 2002 Nov 15;22(22):9698–9707.
  • Chen X, Yuan LL, Zhao C, et al. Deletion of Kv4.2 gene eliminates dendritic A-type K+ current and enhances induction of long-term potentiation in hippocampal CA1 pyramidal neurons. J Neurosci. 2006 Nov 22;26(47):12143–12151.
  • Lim ST, Antonucci DE, Scannevin RH, et al. A novel targeting signal for proximal clustering of the Kv2.1 K+ channel in hippocampal neurons. Neuron. 2000 Feb;25(2):385–397.
  • Kaczmarek LK, Slack S. Sodium-activated potassium channels. ISRN Neurosci. 2013;2013(2013):354262.
  • Turner RW, Kruskic M, Teves M, et al. Neuronal expression of the intermediate conductance calcium-activated potassium channel KCa3.1 in the mammalian central nervous system. Pflugers Arch. 2015 Feb;467(2):311–328.
  • Heilstedt HA, Burgess DL, Anderson AE, et al. Loss of the potassium channel beta-subunit gene, KCNAB2, is associated with epilepsy in patients with 1p36 deletion syndrome. Epilepsia. 2001 Sep;42(9):1103–1111.
  • Feher JJ. Quantitative human physiology: an introduction. Second edition ed. Amsterdam; Boston: Elsevier/AP, Academic Press is an imprint of Elsevier; 2017. (Academic Press series in biomedical engineering)
  • Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544.
  • McCormick DA, Shu Y, Yu Y. Neurophysiology: Hodgkin and Huxley model–still standing? Nature. 2007 Jan 4;445(7123):E1–2. discussion E2-3.
  • Fleidervish IA, Lasser-Ross N, Gutnick MJ, et al. Na+ imaging reveals little difference in action potential-evoked Na+ influx between axon and soma. Nat Neurosci. 2010 Jul;13(7):852–860.
  • Kole MH. First node of Ranvier facilitates high-frequency burst encoding. Neuron. 2011 Aug 25;71(4):671–682.
  • Zaitsev AV, Povysheva NV, Gonzalez-Burgos G, et al. Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal cortex. J Neurophysiol. 2012 Jul;108(2):595–609.
  • Buckmaster PS, Amaral DG. Intracellular recording and labeling of mossy cells and proximal CA3 pyramidal cells in macaque monkeys. J Comp Neurol. 2001 Feb 5;430(2):264–281.
  • Foust AJ, Yu Y, Popovic M, et al. Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons. J Neurosci. 2011 Oct 26;31(43):15490–15498.
  • Roshchin MV, Matlashov ME, Ierusalimsky VN, et al. A BK channel-mediated feedback pathway links single-synapse activity with action potential sharpening in repetitive firing. Sci Adv. 2018 Jul;4(7):eaat1357.
  • Guan D, Armstrong WE, Foehring RC. Electrophysiological properties of genetically identified subtypes of layer 5 neocortical pyramidal neurons: Ca(2)(+) dependence and differential modulation by norepinephrine. J Neurophysiol. 2015 Apr 1;113(7):2014–2032.
  • Bock T, Stuart GJ. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons. J Neurophysiol. 2016 Mar;115(3):1740–1748.
  • Turner RW, Asmara H, Engbers JD, et al. Assessing the role of IKCa channels in generating the sAHP of CA1 hippocampal pyramidal cells. Channels (Austin). 2016 Jul 3;10(4):313–319.
  • Tiwari MN, Mohan S, Biala Y, et al. Differential contributions of Ca(2+)-activated K(+) channels and Na(+)/K(+)-ATPases to the generation of the slow afterhyperpolarization in CA1 pyramidal cells. Hippocampus. 2018 May;28(5):338–357.
  • Roshchin MV, Ierusalimsky VN, Balaban PM, et al. Ca(2+)-activated KCa3.1 potassium channels contribute to the slow afterhyperpolarization in L5 neocortical pyramidal neurons. Sci Rep. 2020 Sep 2;10(1):14484.
  • Alaimo A, Villarroel A. Calmodulin: a multitasking protein in Kv7.2 potassium channel functions. Biomolecules. 2018 Jul 18;8(3):3.
  • Chang A, Abderemane-Ali F, Hura GL, et al. A calmodulin C-lobe Ca(2+)-dependent switch governs Kv7 channel function. Neuron. 2018 Feb 21;97(4):836–852 e6.
  • Vacher H, Mohapatra DP, Trimmer JS. Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev. 2008;88(4):1407–1447.
  • Casale AE, Foust AJ, Bal T, et al. Cortical interneuron subtypes vary in their axonal action potential properties. J Neurosci. 2015;35(47):15555–15567.
  • Wang LY, Gan L, Forsythe ID, et al. Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J Physiol. 1998 May 15;509(Pt 1):183–194.
  • Hurlock EC, McMahon A, Joho RH. Purkinje-cell-restricted restoration of Kv3.3 function restores complex spikes and rescues motor coordination in Kcnc3 mutants. J Neurosci. 2008 Apr 30;28(18):4640–4648.
  • Olsen ML, Khakh BS, Skatchkov SN, et al. New Insights on astrocyte ion channels: critical for homeostasis and neuron-glia signaling. J Neurosci. 2015;35(41):13827–13835.
  • Olsen ML, Higashimori H, Campbell SL, et al. Functional expression of Kir4.1 channels in spinal cord astrocytes. Glia. 2006;53(5):516–528.
  • Seifert G, Hüttmann K, Binder DK, et al. Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. J Neurosci. 2009;29(23):7474–7488.
  • Nguyen HM, Grössinger EM, Horiuchi M, et al. Differential Kv1.3, KCa3.1, and Kir2.1 expression in “classically” and “alternatively” activated microglia. Glia. 2017 Jan;65(1):106–121.
  • Blomster LV, Strøbaek D, Hougaard C, et al. Quantification of the functional expression of the Ca(2+)-activated K(+) channel K(Ca) 3.1 on microglia from adult human neocortical tissue. Glia. 2016 Dec;64(12):2065–2078.
  • Kessi M, Chen B, Peng J, et al. Intellectual Disability and potassium channelopathies: a Systematic Review. Front Genet. 2020;11:614.
  • Kohling R, Wolfart J. Potassium channels in Epilepsy. Cold Spring Harb Perspect Med. 2016 2;6(5):May.
  • Weckhuysen S, Mandelstam S, Suls A, et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol. 2012;71(1):15–25. .
  • Weckhuysen S, Ivanovic V, Hendrickx R. et al. Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology. 2013;81(19):1697–1703.
  • Miceli F, Soldovieri MV, Ambrosino P, et al. Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits. Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4386–4391.
  • Barrese V, Stott JB, Ia G. KCNQ-encoded potassium channels as therapeutic targets. Annu Rev Pharmacol Toxicol. 2018 Jan;6(58):625–648.
  • Millichap JJ, Miceli F, De Maria M, et al. Infantile spasms and encephalopathy without preceding neonatal seizures caused by KCNQ2 R198Q, a gain-of-function variant. Epilepsia. 2017 Jan;58(1):e10–e15.
  • Malerba F, Alberini G, Balagura G, et al. Genotype-phenotype correlations in patients with de novo KCNQ2 pathogenic variants. Neurol Genet. 2020;6(6):e528.
  • Goto A, Ishii A, Shibata M, et al. Characteristics of KCNQ2 variants causing either benign neonatal epilepsy or developmental and epileptic encephalopathy. Epilepsia. 2019 Sep;60(9):1870–1880.
  • Lee I-C, Yang -J-J, Liang J-S, et al. KCNQ2-associated neonatal epilepsy: phenotype might correlate with genotype. J Child Neurol. 2017;32(8):704–711.
  • Miceli F, Soldovieri MV, Joshi N, et al. KCNQ2-related disorders. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews®. Seattle: University of Washington, Seattle; 2010. p. 1993–2021Apr27
  • Lauritano A, Moutton S, Longobardi E, et al. A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy. Epilepsia open. 2019 Sep;4(3):464–475.
  • Miceli F, Striano P, Soldovieri MV, et al. A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability. Epilepsia. 2015;56(2):e15–e20.
  • Rogers A, Golumbek P, Cellini E, et al. De novo KCNA1 variants in the PVP motif cause infantile epileptic encephalopathy and cognitive impairment similar to recurrent KCNA2 variants. Am J Med Genet Part A. 2018 Aug;176(8):1748–1752.
  • Masnada S, Hedrich UBS, Gardella E, et al. Clinical spectrum and genotype-phenotype associations of KCNA2-related encephalopathies. Brain. 2017 Sep 1;140(9):2337–2354.
  • Torkamani A, Bersell K, Jorge BS, et al. De novo KCNB1 mutations in epileptic encephalopathy. Ann Neurol. 2014 Oct;76(4):529–540.
  • Syrbe S, Hedrich UBS, Riesch E, et al. De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy. Nat Genet. 2015 Apr;47(4):393–399.
  • Thiffault I, Speca DJ, Austin DC, et al. A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization. J General Physiol. 2015;146(5):399–410.
  • Saitsu H, Akita T, Tohyama J, et al. De novo KCNB1 mutations in infantile epilepsy inhibit repetitive neuronal firing. Sci Rep. 2015;5(1):15199.
  • Bar C, Kuchenbuch M, Barcia G, et al. Developmental and epilepsy spectrum of KCNB1 encephalopathy with long-term outcome. Epilepsia. 2020 Nov;61(11):2461–2473.
  • Cameron JM, Maljevic S, Nair U, et al. Encephalopathies with KCNC1 variants: genotype-phenotype-functional correlations. Ann Clin Transl Neurol. 2019;6(7):1263–1272.
  • Vetri L, Calì F, Vinci M, et al. A de novo heterozygous mutation in KCNC2 gene implicated in severe developmental and epileptic encephalopathy. Eur J Med Genet. 2020 Apr;63(4):103848.
  • Jorge BS, Campbell CM, Miller AR, et al. Voltage-gated potassium channel KCNV2 (Kv8.2) contributes to epilepsy susceptibility. Proc Natl Acad Sci U S A. 2011;108(13):5443–5448.
  • Muona M, Berkovic SF, Dibbens LM, et al. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet. 2015 Jan;47(1):39–46.
  • Oliver KL, Franceschetti S, Milligan CJ, et al. Myoclonus epilepsy and ataxia due to KCNC1 mutation: analysis of 20 cases and K(+) channel properties. Ann Neurol. 2017 May;81(5):677–689.
  • Park J, Koko M, Hedrich UBS, et al. KCNC1-related disorders: new de novo variants expand the phenotypic spectrum. Ann Clin Transl Neurol. 2019;6(7):1319–1326.
  • Barot N, Margiotta M, Nei M, et al. Progressive myoclonic epilepsy: myoclonic epilepsy and ataxia due to KCNC1 mutation (MEAK): a case report and review of the literature. Epileptic Disord. 2020 Oct 1;22(5):654–658.
  • Singh B, Ogiwara I, Kaneda M, et al. A Kv4.2 truncation mutation in a patient with temporal lobe epilepsy. Neurobiol Dis. 2006 Nov;24(2):245–253.
  • Busolin G, Malacrida S, Bisulli F, et al. Association of intronic variants of the KCNAB1 gene with lateral temporal epilepsy. Epilepsy Res. 2011 Mar;94(1–2):110–116. .
  • Zuberi SM, Eunson LH, Spauschus A, et al. A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain. 1999;122(5):817–825.
  • Corbett MA, Bellows ST, Li M, et al. Dominant KCNA2 mutation causes episodic ataxia and pharmacoresponsive epilepsy. Neurology. 2016 Nov 8;87(19):1975–1984.
  • Simons C, Rash LD, Crawford J, et al. Mutations in the voltage-gated potassium channel gene KCNH1 cause temple-baraitser syndrome and epilepsy. Nat Genet. 2015 Jan;47(1):73–77.
  • Calhoun JD, Vanoye CG, Kok F, et al. Characterization of a KCNB1 variant associated with autism, intellectual disability, and epilepsy. Neurol Genet. 2017;3(6):e198.
  • Mastrangelo M, Scheffer IE, Bramswig NC, et al. Epilepsy in KCNH1-related syndromes. Epileptic Disord. 2016 June 01;18(2):123–136.
  • Fukai R, Saitsu H, Tsurusaki Y, et al. De novo KCNH1 mutations in four patients with syndromic developmental delay, hypotonia and seizures. J Hum Genet. 2016 May;61(5):381–387.
  • Lee H, Lin MC, Kornblum HI, et al. Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Hum Mol Genet. 2014 Jul 1;23(13):3481–3489.
  • Johnson JN, Hofman N, Haglund CM, et al. Identification of a possible pathogenic link between congenital long QT syndrome and epilepsy. Neurology. 2009 Jan 20;72(3):224–231.
  • Zamorano-León JJ, Yañez R, Jaime G, et al. KCNH2 gene mutation: a potential link between epilepsy and long QT-2 syndrome. J Neurogenet. 2012 September 01;26(3–4):382–386.
  • Partemi S, Cestele S, Pezzella M, et al. Loss-of-function KCNH2 mutation in a family with long QT syndrome, epilepsy, and sudden death. Epilepsia. 2013 Aug;54(8):e112–6.
  • Leo A, Citraro R, Constanti A, et al. Are big potassium-type Ca(2+)-activated potassium channels a viable target for the treatment of epilepsy?. Expert Opin Ther Targets. 2015 Jul;19(7):911–926.
  • Du W, Bautista JF, Yang H, et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet. 2005 Jul;37(7):733–738.
  • Tabarki B, AlMajhad N, AlHashem A, et al. Homozygous KCNMA1 mutation as a cause of cerebellar atrophy, developmental delay and seizures. Hum Genet. 2016 Nov;135(11):1295–1298.
  • Li X, Poschmann S, Chen Q, et al. De novo BK channel variant causes epilepsy by affecting voltage gating but not Ca2+ sensitivity. Eur J Hum Genet. 2018 February 01;26(2):220–229.
  • Barcia G, Fleming MR, Deligniere A, et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet. 2012 Nov;44(11):1255–1259.
  • Heron SE, Grinton BE, Kivity S, et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet. 2012 Jan 13;90(1):152–160.
  • Lim CX, Ricos MG, Dibbens LM, et al. KCNT1 mutations in seizure disorders: the phenotypic spectrum and functional effects. J Med Genet. 2016 Apr;53(4):217–225.
  • Ohba C, Kato M, Takahashi N, et al. De novo KCNT1 mutations in early-onset epileptic encephalopathy. Epilepsia. 2015 September 01;56(9):e121–e128.
  • McTague A, Nair U, Malhotra S, et al. Clinical and molecular characterization of KCNT1-related severe early-onset epilepsy. Neurology. 2018;90(1):e55–e66.
  • Borlot F, Abushama A, Morrison-Levy N, et al. KCNT1-related epilepsy: an international multicenter cohort of 27 pediatric cases. Epilepsia. 2020 April 01;61(4):679–692.
  • Møller RS, Heron SE, Larsen LHG, et al. Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia. 2015 September 01;56(9):e114–e120.
  • Vanderver A, Simons C, Schmidt JL, et al. Identification of a novel de novo p.Phe932Ile KCNT1 mutation in a patient with leukoencephalopathy and severe epilepsy. Pediatr Neurol. 2014 Jan;50(1):112–114.
  • Gertler TS, Thompson CH, Vanoye CG, et al. Functional consequences of a KCNT1 variant associated with status dystonicus and early-onset infantile encephalopathy. Ann Clin Transl Neurol. 2019 September 01;6(9):1606–1615.
  • Gururaj S, Palmer EE, Sheehan GD, et al. A de novo mutation in the sodium-activated potassium channel KCNT2 alters ion selectivity and causes epileptic encephalopathy. Cell Rep. 2017 Oct 24;21(4):926–933.
  • Ambrosino P, Soldovieri MV, Bast T, et al. De novo gain-of-function variants in KCNT2 as a novel cause of developmental and epileptic encephalopathy. Ann Neurol. 2018 June 01;83(6):1198–1204.
  • Inuzuka LM, Macedo-Souza LI, Della-Ripa B, et al. Additional observation of a de novo pathogenic variant in KCNT2 leading to epileptic encephalopathy with clinical features of frontal lobe epilepsy. Brain Dev. 2020 Oct;42(9):691–695.
  • Buono RJ, Lohoff FW, Sander T, et al. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res. 2004 Feb;58(2–3):175–183.
  • Scholl UI, Choi M, Liu T, et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5842-5847.
  • Severino M, Lualdi S, Fiorillo C, et al. Unusual white matter involvement in EAST syndrome associated with novel KCNJ10 mutations. J Neurol. 2018 Jun;265(6):1419–1425.
  • Heuser K, Nagelhus EA, Tauboll E, et al. Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy. Epilepsy Res. 2010 Jan;88(1):55–64.
  • Bordey A, Sontheimer H. Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res. 1998 Sep;32(1–2):286–303.
  • Heuser K, Eid T, Lauritzen F, et al. Loss of perivascular Kir4.1 potassium channels in the sclerotic hippocampus of patients with mesial temporal lobe epilepsy. J Neuropathol Exp Neurol. 2012 Sep;71(9):814–825.
  • Sicca F, Ambrosini E, Marchese M, et al. Gain-of-function defects of astrocytic Kir4.1 channels in children with autism spectrum disorders and epilepsy. Sci Rep. 2016 Sep 28;6(1):34325.
  • Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes. 2005 Sep;54(9):2503–2513.
  • Gloyn AL, Diatloff-Zito C, Edghill EL, et al. KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features. Eur J Hum Genet. 2006 July 01;14(7):824–830.
  • Bahi-Buisson N, Eisermann M, Nivot S, et al. Infantile spasms as an epileptic feature of DEND syndrome associated with an activating mutation in the potassium adenosine triphosphate (ATP) channel, Kir6.2. J Child Neurol. 2007 Sep;22(9):1147–1150.
  • Otto JF, Yang Y, Frankel WN, et al. Mice carrying the szt1 mutation exhibit increased seizure susceptibility and altered sensitivity to compounds acting at the m-channel. Epilepsia. 2004 Sep;45(9):1009–1016.
  • Holter J, Carter D, Leresche N, et al. A TASK3 channel (KCNK9) mutation in a genetic model of absence epilepsy. J Mol Neurosci. 2005;25(1):37–51.
  • Patil N, Cox DR, Bhat D, et al. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet. 1995 Oct;11(2):126–129.
  • Harada Y, Nagao Y, Shimizu S, et al. Expressional analysis of inwardly rectifying Kir4.1 channels in Noda epileptic rat (NER). Brain Res. 2013 Jun 23;1517:141–149.
  • N’Gouemo P, Faingold CL, Morad M. Calcium channel dysfunction in inferior colliculus neurons of the genetically epilepsy-prone rat. Neuropharmacology. 2009 Mar;56(3):665–675.
  • Khandai P, Forcelli PA, N’Gouemo P. Activation of small conductance calcium-activated potassium channels suppresses seizure susceptibility in the genetically epilepsy-prone rats. Neuropharmacology. 2020 Feb;163:107865.
  • Kim SE, Ahn HS, Choi BH, et al. Open channel block of A-type, kv4.3, and delayed rectifier K+ channels, Kv1.3 and Kv3.1, by sibutramine. J Pharmacol Exp Ther. 2007 May;321(2):753–762.
  • Lee SM, Kim JE, Sohn JH, et al. Down-regulation of delayed rectifier K+ channels in the hippocampus of seizure-sensitive gerbils. Brain Res Bull. 2009 Dec 16;80(6):433–442.
  • Niday Z, Hawkins VE, Soh H, et al. Epilepsy-associated KCNQ2 channels regulate multiple intrinsic properties of layer 2/3 pyramidal neurons. J Neurosci. 2017 Jan 18;37(3):576–586.
  • Kim SK, McKay D, Ehrenreich-May J, et al. Assessing treatment efficacy by examining relationships between age groups of children with autism spectrum disorder and clinical anxiety symptoms: prediction by correspondence analysis. J Affect Disord. 2020 Mar;15(265):645–650.
  • Watanabe H, Nagata E, Kosakai A, et al. Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. J Neurochem. 2000 Jul;75(1):28–33.
  • Soh H, Park S, Ryan K, et al. Deletion of KCNQ2/3 potassium channels from PV+ interneurons leads to homeostatic potentiation of excitatory transmission. Elife. 2018 Nov;1;7(2):117–126.
  • Milh M, Roubertoux P, Biba N, et al. In: A knock-in mouse model for KCNQ2-related epileptic encephalopathy displays spontaneous generalized seizures and cognitive impairment. Epilepsia. May;61(5):868-878..
  • Maljevic S, Wuttke TV, Lerche H. Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol. 2008 Apr 1;586(7):1791–1801.
  • Ishida S, Sakamoto Y, Nishio T, et al. Kcna1-mutant rats dominantly display myokymia, neuromyotonia and spontaneous epileptic seizures. Brain Res. 2012 Jan 30;1435:154–166.
  • Rho JM, Szot P, Tempel BL, et al. Developmental seizure susceptibility of kv1.1 potassium channel knockout mice. Dev Neurosci. 1999 Nov;21(3–5):320–327.
  • Brew HM, Gittelman JX, Silverstein RS, et al. Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons. J Neurophysiol. 2007 Sep;98(3):1501–1525.
  • Robbins CA, Tempel BL. Kv1.1 and Kv1.2: similar channels, different seizure models. Epilepsia. 2012 Jun;53(1):134–141.
  • Barnwell LF, Lugo JN, Lee WL, et al. Kv4.2 knockout mice demonstrate increased susceptibility to convulsant stimulation. Epilepsia. 2009 Jul;50(7):1741–1751.
  • Speca DJ, Ogata G, Mandikian D, et al. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability. Genes Brain Behav. 2014 Apr;13(4):394–408.
  • Goldman AM, Glasscock E, Yoo J, et al. Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci Transl Med. 2009 Oct 14;1(2):2ra6.
  • Brenner R, Chen QH, Vilaythong A, et al. BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat Neurosci. 2005 Dec;8(12):1752–1759.
  • Djukic B, Casper KB, Philpot BD, et al. Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci. 2007 Oct 17;27(42):11354–11365.
  • Signorini S, Liao YJ, Duncan SA, et al. Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):923–927.
  • Manis AD, Palygin O, Isaeva E, et al. Kcnj16 knockout produces audiogenic seizures in the Dahl salt-sensitive rat. JCI Insight. 2021 Jan 11;6(1):143251.
  • Monaghan MM, Trimmer JS, Rhodes KJ. Experimental localization of Kv1 family voltage-gated K+ channel α and β subunits in rat hippocampal formation. J Neurosci. 2001;21(16):5973–5983.
  • Pacheco Otalora LF, Hernandez EF, Arshadmansab MF, et al. Down-regulation of BK channel expression in the pilocarpine model of temporal lobe epilepsy. Brain Res. 2008 Mar;20(1200):116–131.
  • Tiwari MN, Mohan S, Biala Y, et al. Protein Kinase A-Mediated Suppression of the Slow Afterhyperpolarizing KCa3.1 Current in Temporal Lobe Epilepsy. J Neurosci. 2019;39(50):9914–9926.
  • Nagao Y, Harada Y, Mukai T, et al. Expressional analysis of the astrocytic Kir4.1 channel in a pilocarpine–induced temporal lobe epilepsy model. Front Cell Neurosci. 2013;7:104.
  • Auzmendi J, Akyuz E, Lazarowski A. The role of P-glycoprotein (P-gp) and inwardly rectifying potassium (Kir) channels in sudden unexpected death in epilepsy (SUDEP). Epilepsy Behav. 2019 Nov;6:106590.
  • Tsaur ML, Sheng M, Lowenstein DH, et al. Differential expression of K+ channel mRNAs in the rat brain and down-regulation in the hippocampus following seizures. Neuron. 1992 Jun;8(6):1055–1067.
  • Francis J, Jugloff DG, Mingo NS, et al. Kainic acid-induced generalized seizures alter the regional hippocampal expression of the rat Kv4.2 potassium channel gene. Neurosci Lett. 1997 Aug 29;232(2):91–94.
  • Greene DL, Kosenko A, Hoshi N. Attenuating M-current suppression in vivo by a mutant Kcnq2 gene knock-in reduces seizure burden and prevents status epilepticus-induced neuronal death and epileptogenesis. Epilepsia. 2018 Oct;59(10):1908–1918.
  • Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci. 2004 Jul;5(7):553–564.
  • Straub H, Kohling R, Hohling J, et al. Effects of retigabine on rhythmic synchronous activity of human neocortical slices. Epilepsy Res. 2001 May;44(2–3):155–165.
  • Smith MD, Adams AC, Saunders GW, et al. Phenytoin- and carbamazepine-resistant spontaneous bursting in rat entorhinal cortex is blocked by retigabine in vitro. Epilepsy Res. 2007 May;74(2–3):97–106.
  • Kobayashi K, Nishizawa Y, Sawada K, et al. K(+)-channel openers suppress epileptiform activities induced by 4-aminopyridine in cultured rat hippocampal neurons. J Pharmacol Sci. 2008 Dec;108(4):517–528.
  • Gunthorpe MJ, Large CH, Sankar R. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia. 2012 Mar;53(3):412–424.
  • Vanhoof-Villalba SL, Gautier NM, Mishra V, et al. Pharmacogenetics of KCNQ channel activation in 2 potassium channelopathy mouse models of epilepsy. Epilepsia. 2018 Feb;59(2):358–368.
  • Lawson K. Pharmacology and clinical applications of flupirtine: current and future options. World J Pharmacol. 2019;8(1):1–13.
  • Zhang F, Liu Y, Tang F, et al. Electrophysiological and pharmacological characterization of a novel and potent neuronal Kv7 channel opener SCR2682 for antiepilepsy. Faseb J. 2019 Aug;33(8):9154–9166.
  • Bialer M, Johannessen SI, Koepp MJ, et al. Progress report on new antiepileptic drugs: a summary of the Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV). I. Drugs in preclinical and early clinical development. Epilepsia. 2020 11 01;61(11):2340–2364.
  • Bialer M, Johannessen SI, Koepp MJ, et al. Progress report on new antiepileptic drugs: a summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). I. Drugs in preclinical and early clinical development. Epilepsia. 2018 Oct;59(10):1811–1841.
  • Bearden D, Strong A, Ehnot J, et al. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann Neurol. 2014 Sep;76(3):457–461.
  • Dietel T, Wolff M, Leitz S, et al. Quinidine: a targeted drug treatment for patients with the syndrome of malignant migrating partial seizures in infancy and KCNT1 mutation. Neuropediatrics. 2015;46(S01):02–22.
  • Numis AL, Nair U, Datta AN, et al. Lack of response to quinidine in KCNT1-related neonatal epilepsy. Epilepsia. 2018 October 01;59(10):1889–1898.
  • Dilena R, DiFrancesco JC, Soldovieri MV, et al. Early treatment with quinidine in 2 patients with Epilepsy of Infancy with Migrating Focal Seizures (EIMFS) due to gain-of-function KCNT1 mutations: functional studies, clinical responses, and critical issues for personalized therapy. Neurotherapeutics. 2018 October 01;15(4):1112–1126.
  • Huang CW, Lai MC, Cheng JT, et al. Pregabalin attenuates excitotoxicity in diabetes. PLoS One. 2013;8(6):e65154. .
  • Huang CW, Huang CC, Wu SN. Activation by zonisamide, a newer antiepileptic drug, of large-conductance calcium-activated potassium channel in differentiated hippocampal neuron-derived H19-7 cells. J Pharmacol Exp Ther. 2007 Apr;321(1):98–106.
  • Manville RW, Abbott GW. Gabapentin is a potent activator of KCNQ3 and KCNQ5 potassium channels. Mol Pharmacol. 2018 Oct;94(4):1155–1163.
  • Wykes RC, Heeroma JH, Mantoan L, et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med. 2012 Nov 21;4(161):161ra152.
  • Lieb A, Qiu Y, Dixon CL, et al. Biochemical autoregulatory gene therapy for focal epilepsy. Nat Med. 2018 Sep;24(9):1324–1329.
  • Snowball A, Chabrol E, Wykes RC, et al. Epilepsy Gene Therapy Using an Engineered Potassium Channel. J Neurosci. 2019 Apr 17;39(16):3159–3169.
  • Magloire V, Cornford J, Lieb A, et al. KCC2 overexpression prevents the paradoxical seizure-promoting action of somatic inhibition. Nat Commun. 2019 Mar 15;10(1):1225.
  • Agostinho AS, Mietzsch M, Zangrandi L, et al. Dynorphin-based “release on demand” gene therapy for drug-resistant temporal lobe epilepsy. EMBO Mol Med. 2019 Oct;11(10):e9963.
  • Katzel D, Nicholson E, Schorge S, et al. Chemical-genetic attenuation of focal neocortical seizures. Nat Commun. 2014 May;27(5):3847.
  • Roth BL. DREADDs for Neuroscientists. Neuron. 2016 Feb 17;89(4):683–694.
  • Walker MC, Kullmann DM. Optogenetic and chemogenetic therapies for epilepsy. Neuropharmacology. 2019 Sep;5:107751.
  • Chavas J, Marty A. Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. J Neurosci. 2003 Mar 15;23(6):2019–2031.
  • Malyshev AY, Roshchin MV, Smirnova GR, et al. Chloride conducting light activated channel GtACR2 can produce both cessation of firing and generation of action potentials in cortical neurons in response to light. Neurosci Lett. 2017 Feb 15;640:76–80.
  • Messier JE, Chen H, Cai ZL, et al. Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon. Elife.2018;Aug:Vol. 9;7:e38506..
  • Payne JA. Chapter 17 - the potassium-chloride cotransporters: from cloning to structure and function. In: Alvarez-Leefmans FJ, Delpire E, editors. Physiology and pathology of chloride transporters and channels in the nervous system. San Diego: Academic Press; 2010. p. 333–356.
  • Schorge S, Walker MC, Kullmann DM, et al. Inventors; UCL Business Plc, assignee. Expression vectors comprising engineered genes. WIPO (PCT) patent WO2018229254A1; 2018 Dec 20.
  • Shu Y, Hasenstaub A, Duque A, et al. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature. 2006 Jun 8;441(7094):761–765.
  • Mao T, O’Connor DH, Scheuss V, et al. Characterization and subcellular targeting of GCaMP-type genetically encoded calcium indicators. PloS One. 2008;3(3):e1796–e1796.
  • Matlashov ME, Bogdanova YA, Ermakova GV, et al. Fluorescent ratiometric pH indicator SypHer2: applications in neuroscience and regenerative biology. Biochim Biophys Acta. 2015 Nov;1850(11):2318–2328.
  • Greenberg KP, Pham A, Werblin FS. Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism. Neuron. 2011 Feb 24;69(4):713–720.
  • Zhang Z, Feng J, Wu C, et al. Targeted expression of channelrhodopsin-2 to the axon initial segment alters the temporal firing properties of retinal ganglion cells. PloS One. 2015;10(11):e0142052–e0142052.
  • Gobbo F, Marchetti L, Jacob A, et al. Activity-dependent expression of Channelrhodopsin at neuronal synapses. Nat Commun. 2017 November 20;8(1):1629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.