313
Views
3
CrossRef citations to date
0
Altmetric
Review

Hepatitis B virus: promising drug targets and therapeutic implications

, , &
Pages 451-466 | Received 30 Nov 2020, Accepted 08 Apr 2021, Published online: 19 Apr 2021

References

  • Tsukuda S, Watashi K. Hepatitis B virus biology and life cycle. Antiviral Res. 2020 Oct;182:104925.
  • Revill PA, Chisari FV, Block JM, et al. A global scientific strategy to cure hepatitis B. Lancet Gastroenterol Hepatol. 2019 Jul;4(7):545–558.
  • Yan H, Zhong G, Xu G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife. 2012 Nov;13(1):e00049.
  • Iwamoto M, Saso W, Sugiyama R, et al. Epidermal growth factor receptor is a host-entry cofactor triggering hepatitis B virus internalization. Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8487–8492.
  • Schulze A, Gripon P, Urban S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology. 2007 Dec;46(6):1759–1768.
  • Herrscher C, Pastor F, Burlaud-Gaillard J, et al. Hepatitis B virus entry into HepG2-NTCP cells requires clathrin-mediated endocytosis. Cell Microbiol. 2020 Aug;22(8):e13205.
  • Gao W, Hu J. Formation of hepatitis B virus covalently closed circular DNA: removal of genome-linked protein. J Virol. 2007 Jun;81(12):6164–6174.
  • Guo H, Jiang D, Zhou T, et al. Characterization of the intracellular deproteinized relaxed circular DNA of hepatitis B virus: an intermediate of covalently closed circular DNA formation. J Virol. 2007 Nov;81(22):12472–12484.
  • Guo H, Mao R, Block TM, et al. Production and function of the cytoplasmic deproteinized relaxed circular DNA of hepadnaviruses. J Virol. 2010 Jan;84(1):387–396.
  • Kock J, Rosler C, Zhang JJ, et al. Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner. PLoS Pathog. 2010 Sep 2;6(9):e1001082.
  • Tu T, Zehnder B, Qu B, et al. De novo synthesis of Hepatitis B virus nucleocapsids is dispensable for the maintenance and transcriptional regulation of cccDNA JHEP Reports. 2020 2020/10/14/: 100195.
  • Liu S, Zhou B, Valdes JD, et al. Serum hepatitis B virus RNA: a new potential biomarker for chronic hepatitis B virus infection. Hepatology. 2019 Apr;69(4):1816–1827.
  • Testoni B, Lebosse F, Scholtes C, et al. Serum hepatitis B core-related antigen (HBcrAg) correlates with covalently closed circular DNA transcriptional activity in chronic hepatitis B patients. J Hepatol. 2019 Apr;70(4):615–625.
  • Tao Y, Wu D, Zhou L, et al. Present and future therapies for chronic Hepatitis B. Adv Exp Med Biol. 2020;1179:137–186.
  • Smolders EJ, Burger DM, Feld JJ, et al. Review article: clinical pharmacology of current and investigational hepatitis B virus therapies Aliment. Pharmacol Ther. 2020 Jan;51(2):231–243.
  • Lv K, Li W, Wu S, et al. Amino acid prodrugs of NVR3-778: design, synthesis and anti-HBV activity. Bioorg Med Chem Lett. 2020 May 1;30(9):127103.
  • Wang A, Wu S, Tao Z, et al. Design, synthesis, and anti-HBV activity of new bis(l-amino acid) ester tenofovir prodrugs. ACS Med Chem Lett. 2019;10(6):991–995. 2019/06/13
  • Lebosse F, Inchauspe A, Locatelli M, et al. Quantification and epigenetic evaluation of the residual pool of hepatitis B covalently closed circular DNA in long-term nucleoside analogue-treated patients. Sci Rep. 2020 Dec 3;10(1):21097.
  • Podlaha O, Wu G, Downie B, et al. Genomic modeling of hepatitis B virus integration frequency in the human genome. PLoS One. 2019;14(7):e0220376.
  • Wooddell CI, Yuen MF, Chan HL, et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci Transl Med. 2017 Sep 27;9(409):eaan0241.
  • Lee S, Ahn SH, Jung KS, et al. Tenofovir versus tenofovir plus entecavir for chronic hepatitis B with lamivudine resistance and entecavir resistance. J Viral Hepat. 2017 Feb;24(2):141–147.
  • Su Q, Liu Y, Li J. Combined effect of pegylated interferon alpha with adefovir on renal function in Chinese patients with chronic hepatitis B. Medicine (Baltimore). 2018 Aug;97(34):e12089.
  • Liu J, Liang W, Jing W, et al. Countdown to 2030: eliminating hepatitis B disease, China.Bull of the World Health Organization. 2019Mar1; 97(3):230–238.
  • Asselah T, Loureiro D, Boyer N, et al. Targets and future direct-acting antiviral approaches to achieve hepatitis B virus cure. Lancet Gastroenterol Hepatol. 2019 Nov;4(11):883–892.
  • Tout I, Loureiro D, Mansouri A, et al. Hepatitis B surface antigen seroclearance: immune mechanisms, clinical impact, importance for drug development. J Hepatol. 2020 Aug;73(2):409–422.
  • Decorsiere A, Mueller H, Van Breugel PC, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016 Mar 17;531(7594):386–389.
  • Bloom K, Maepa MB, Ely A, et al. Gene therapy for chronic HBV-can we eliminate cccDNA? Genes (Basel). 2018 Apr 12;9(4):e207.
  • Ely A, Moyo B, Arbuthnot P. Progress with developing use of gene editing to cure chronic infection with hepatitis B virus. Mol Ther. 2016 Apr;24(4):671–677.
  • Bloom K, Ely A, Mussolino C, et al. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Ther. 2013 Oct;21(10):1889–1897.
  • Ely A, Singh P, Smith TS, et al. In vitro transcribed mRNA for expression of designer nucleases: advantages as a novel therapeutic for the management of chronic HBV infection. Adv Drug Deliv Rev. 2021 Jan;168:134–146.
  • Wu X, Ma W, Mei C, et al. Description of CRISPR/Cas9 development and its prospect in hepatocellular carcinoma treatment. J Exp Clin Cancer Res. 2020 Jun 1;39(1):97.
  • Yang YC, Chen YH, Kao JH, et al. Permanent Inactivation of HBV Genomes by CRISPR/Cas9-mediated non-cleavage base editing. Mol Ther Nucleic Acids. 2020 Jun;5(20):480–490.
  • Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2013 Jun;2(3):130–143.
  • Seeger C, Sohn JA. Complete Spectrum of CRISPR/Cas9-induced Mutations on HBV cccDNA. Mol Ther. 2016 Aug;24(7):1258–1266.
  • Ramanan V, Shlomai A, Cox DB, et al. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep. 2015 Jun;2(5):10833.
  • Schiwon M, Ehrke-Schulz E, Oswald A, et al. One-vector system for multiplexed CRISPR/Cas9 against hepatitis B virus cccDNA utilizing high-capacity adenoviral vectors. Mol Ther Nucleic Acids. 2018 Sep;7(12):242–253.
  • Scott T, Moyo B, Nicholson S, et al. ssAAVs containing cassettes encoding SaCas9 and guides targeting hepatitis B virus inactivate replication of the virus in cultured cells. Sci Rep. 2017 Aug 7;7(1):7401.
  • Kostyushev D, Kostyusheva A, Brezgin S, et al. Suppressing the NHEJ pathway by DNA-PKcs inhibitor NU7026 prevents degradation of HBV cccDNA cleaved by CRISPR/Cas9. Sci Rep. 2019 Feb 12;9(1):1847.
  • Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2019 Feb;25(2):249–254.
  • Li A, Tanner MR, Lee CM, et al. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol Ther. 2020 Jun 3;28(6):1432–1441.
  • Ates I, Rathbone T, Stuart C, et al. Delivery approaches for therapeutic genome editing and challenges. Genes (Basel). 2020 Sep 23;11:10.
  • Tong S, Moyo B, Lee CM, et al. Engineered materials for in vivo delivery of genome-editing machinery. Nat Rev Mater. 2019;4(11):726–737. 2019/11/01
  • Weber ND, Stone D, Sedlak RH, et al. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication. PLoS One. 2014;9(5):e97579.
  • Li H, Sheng C, Liu H, et al. Inhibition of HBV expression in HBV transgenic mice using AAV-delivered CRISPR-SaCas9. Front Immunol. 2018;9:2080.
  • Jiang C, Mei M, Li B, et al. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 2017 Mar;27(3):440–443.
  • Vakulskas CA, Behlke MA. Evaluation and Reduction of CRISPR Off-Target Cleavage Events. Nucleic Acid Ther. 2019 Aug;29(4):167–174.
  • Chen SJ. Minimizing off-target effects in CRISPR-Cas9 genome editing. Cell Biol Toxicol. 2019 Oct;35(5):399–401.
  • Li D, Zhou H, Battling ZX. CRISPR-Cas9 off-target genome editing. Cell Biol Toxicol. 2019 Oct;35(5):403–406.
  • Kostyushev D, Brezgin S, Kostyusheva A, et al. Orthologous CRISPR/Cas9 systems for specific and efficient degradation of covalently closed circular DNA of hepatitis B virus. Cell Mol Life Sci. 2019 May;76(9):1779–1794.
  • Karimova M, Beschorner N, Dammermann W, et al. CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci Rep. 2015 Sep;3(5):13734.
  • Sakuma T, Masaki K, Abe-Chayama H, et al. Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells. 2016 Nov;21(11):1253–1262.
  • Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015 Jul 23;523(7561):481–485.
  • Luo W, Wang J, Xu D, et al. Engineered zinc-finger transcription factors inhibit the replication and transcription of HBV in vitro and in vivo. Int J Mol Med. 2018 Apr;41(4):2169–2176.
  • Zhao X, Zhao Z, Guo J, et al. Creation of a six-fingered artificial transcription factor that represses the hepatitis B virus HBx gene integrated into a human hepatocellular carcinoma cell line. J Biomol Screen. 2013 Apr;18(4):378–387.
  • Bloom K, Kaldine H, Cathomen T, et al. Inhibition of replication of hepatitis B virus using transcriptional repressors that target the viral DNA. BMC Infect Dis. 2019 Sep 12;19(1):802.
  • Xirong L, Rui L, Xiaoli Y, et al. Hepatitis B virus can be inhibited by DNA methyltransferase 3a via specific zinc-finger-induced methylation of the X promoter. Biochem Biokhimiia. 2014 Feb;79(2):111–123.
  • Pulecio J, Verma N, Mejia-Ramirez E, et al. CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell. 2017 Oct 5;21(4):431–447.
  • Allweiss L, Giersch K, Pirosu A, et al. Therapeutic shutdown of HBV transcripts promotes reappearance of the SMC5/6 complex and silencing of the viral genome in vivo. Gut. 2021 Jan 28; gutjnl-2020-322571. doi:10.1136/gutjnl-2020-322571
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb 19;391(6669):806–811.
  • Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009 Feb;10(2):126–139.
  • McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol. 2003 Jun;21(6):639–644.
  • Ren XR, Zhou LJ, Luo GB, et al. Inhibition of hepatitis B virus replication in 2. 2.15 cells by expressed shRNA. J Viral Hepat. 2005 May;12(3):236–242.
  • Carmona S, Ely A, Crowther C, et al. Effective inhibition of HBV replication in vivo by anti-HBx short hairpin RNAs. Mol Ther. 2006 Feb;13(2):411–421.
  • Ely A, Naidoo T, Mufamadi S, et al. Expressed anti-HBV primary microRNA shuttles inhibit viral replication efficiently in vitro and in vivo. Mol Ther. 2008 Jun;16(6):1105–1112.
  • Ely A, Naidoo T, Arbuthnot P. Efficient silencing of gene expression with modular trimeric Pol II expression cassettes comprising microRNA shuttles. Nucleic Acids Res. 2009 Jul;37(13):e91.
  • Van Den Berg F, Limani SW, Mnyandu N, et al. Advances with RNAi-based therapy for hepatitis B virus infection. Viruses. 2020 Aug 4;12(8):e851.
  • Crooke ST. Progress in antisense technology. Annu Rev Med. 2004;55:61–95.
  • Bennett CF. Therapeutic antisense oligonucleotides are coming of age. Annu Rev Med. 2019 Jan;27(70):307–321.
  • Billioud G, Kruse RL, Carrillo M, et al. In vivo reduction of hepatitis B virus antigenemia and viremia by antisense oligonucleotides. J Hepatol. 2016 Apr;64(4):781–789.
  • Javanbakht H, Mueller H, Walther J, et al. Liver-targeted anti-HBV single-stranded oligonucleotides with locked nucleic acid potently reduce HBV gene expression in vivo. Mol Ther Nucleic Acids. 2018 Jun;1(11):441–454.
  • Xiao SR, Xu GD, Wei WJ, et al. Antiviral effects of hepatitis B virus S gene-specific anti-gene locked nucleic acid in transgenic mice. World J Clin Cases. 2018 Aug 16;6(8):183–191.
  • Yuen M-F, Heo J, Jang HW, et al. Hepatitis B virus (HBV) surface antigen (HBsAg) inhibition with isis 505358 in chronic hepatitis B (CHB) patients on stable nucleos(t)ide analogue (NA) regimen and inNA -naive CHB patients: phase 2a, randomized, double-blind, placebo-controlled study. The Digital International Liver Conference; 27-29 August 2020: Journal of Hepatology; 2020. p. S49–S50.
  • Han K, Cremer J, Elston R, et al. A randomized, double-blind, placebo-controlled, first-time-in-human study to assess the safety, tolerability, and pharmacokinetics of single and multiple ascending doses of GSK3389404 in Healthy Subjects. Clin Pharmacol Drug Dev. 2019 Aug;8(6):790–801.
  • Tan Z, Pionek K, Unchwaniwala N, et al. The interface between hepatitis B virus capsid proteins affects self-assembly, pregenomic RNA packaging, and reverse transcription. J Virol. 2015 Mar;89(6):3275–3284.
  • Luo J, Xi J, Gao L, et al. Role of Hepatitis B virus capsid phosphorylation in nucleocapsid disassembly and covalently closed circular DNA formation. PLoS Pathog. 2020 Mar;16(3):e1008459.
  • Guo F, Zhao Q, Sheraz M, et al. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways. PLoS Pathog. 2017 Sep;13(9):e1006658.
  • Bock CT, Schwinn S, Locarnini S, et al. Structural organization of the hepatitis B virus minichromosome. J Mol Biol. 2001 Mar 16;307(1):183–196.
  • Guo YH, Li YN, Zhao JR, et al. HBc binds to the CpG islands of HBV cccDNA and promotes an epigenetic permissive state. Epigenetics. 2011 6; Jun(6): 720–726.
  • Yi H, Zhang Y, Yang X, et al. Hepatitis B core antigen impairs the polarization while promoting the production of inflammatory cytokines of M2 macrophages via the TLR2 pathway. Front Immunol. 2020;11:535.
  • Li M, Sun R, Xu L, et al. Kupffer cells support hepatitis B virus-mediated CD8+ T cell exhaustion via hepatitis B core antigen-TLR2 interactions in mice. J Immunol. 2015 Oct 1;195(7):3100–3109.
  • Mohamadkhani A, Jazii FR, Poustchi H, et al. The role of mutations in core protein of hepatitis B virus in liver fibrosis. Virol J. 2009 Nov;26(6):209.
  • Sung FY, Jung CM, Wu CF, et al. Hepatitis B virus core variants modify natural course of viral infection and hepatocellular carcinoma progression. Gastroenterology. 2009 Nov;137(5):1687–1697.
  • Gai X, Zhao P, Pan Y, et al. Hepatitis B virus core protein enhances human telomerase reverse transcriptase expression and hepatocellular carcinoma cell proliferation in a c-Ets2-dependent manner. Int J Biochem Cell Biol. 2013 Jul;45(7):1174–1185.
  • Kim JH, Kang S, Kim J, et al. Hepatitis B virus core protein stimulates the proteasome-mediated degradation of viral X protein. J Virol. 2003 Jul;77(13):7166–7173.
  • Zhu Y, Jin Y, Cai X, et al. Hepatitis B virus core protein variations differ in tumor and adjacent nontumor tissues from patients with hepatocellular carcinoma. Intervirology. 2012;55(1):29–35.
  • Jo E, Ryu DK, Konig A, et al. Identification and characterization of a novel hepatitis B virus pregenomic RNA encapsidation inhibitor. Antiviral Res. 2020 Mar;175:104709.
  • Liu H, Okazaki S, Shinoda W. Heteroaryldihydropyrimidines alter capsid assembly by adjusting the binding affinity and pattern of the hepatitis B virus core protein. J Chem Inf Model. 2019 Dec 23;59(12):5104–5110.
  • Toyama M, Sakakibara N, Takeda M, et al. Pyrimidotriazine derivatives as selective inhibitors of HBV capsid assembly. Virus Res. 2019 Oct;2(271):197677.
  • Yuen MF, Gane EJ, Kim DJ, et al. Antiviral activity, safety, and pharmacokinetics of capsid assembly modulator NVR 3-778 in patients with chronic HBV infection. Gastroenterology. 2019 Apr;156(5):1392–1403 e7.
  • Ko C, Bester R, Zhou X, et al. A new role for capsid assembly modulators to target mature hepatitis b virus capsids and prevent virus infection. Antimicrob Agents Chemother. 2019 Dec 20;64(1):e01440–19.
  • Yuen MF, Agarwal K, Gane EJ, et al. Safety, pharmacokinetics, and antiviral effects of ABI-H0731, a hepatitis B virus core inhibitor: a randomised, placebo-controlled phase 1 trial. Lancet Gastroenterol Hepatol. 2020 Feb;5(2):152–166.
  • Berke JM, Dehertogh P, Vergauwen K, et al. Capsid assembly modulators have a dual mechanism of action in primary human hepatocytes infected with Hepatitis B Virus. Antimicrob Agents Chemother. 2017 Aug;61(8):e00560–17.
  • Huang Q, Cai D, Yan R, et al. Preclinical profile and characterization of the hepatitis B virus core protein inhibitor ABI-H0731. Antimicrob Agents Chemother. 2020 Oct 20;64(11):e01463–20.
  • Ren Y, Ma Y, Cherukupalli S, et al. Discovery and optimization of benzenesulfonamides-based hepatitis B virus capsid modulators via contemporary medicinal chemistry strategies. Eur J Med Chem. 2020 Nov;15(206):112714.
  • Nijampatnam B, Liotta DC. Recent advances in the development of HBV capsid assembly modulators. Curr Opin Chem Biol. 2019 Jun;50:73–79.
  • Verbinnen T, Tan Y, Wang G, et al. Anti-HBV activity of the HBV capsid assembly modulator JNJ-56136379 across full-length genotype A-H clinical isolates and core site-directed mutants in vitro. J Antimicrob Chemother. 2020 Sep 1;75(9):2526–2534.
  • Zoulim F, Lenz O, Vandenbossche JJ, et al. JNJ-56136379, an HBV capsid assembly modulator, is well-tolerated and has antiviral activity in a phase 1 study of patients with chronic infection. Gastroenterology. 2020 Aug;159(2):521–533 e9.
  • Sekiba K, Otsuka M, Ohno M, et al., Inhibition of HBV transcription from cccDNA with nitazoxanide by targeting the HBx-DDB1 interaction. Cell Mol Gastroenterol Hepatol. 2019;7(2): 297–312.
  • Tramontano E, Corona A, Menendez-Arias L. Ribonuclease H, an unexploited target for antiviral intervention against HIV and hepatitis B virus. Antiviral Res. 2019 Nov;171(104613):104613.
  • Bak E, Miller JT, Noronha A, et al. 3,7-dihydroxytropolones inhibit initiation of hepatitis B virus minus-strand DNA. Syn Mol. 2020 Sep 27;25(19):e4434.
  • Edwards TC, Mani N, Dorsey B, et al. Inhibition of HBV replication by N-hydroxyisoquinolinedione and N-hydroxypyridinedione ribonuclease H inhibitors. Antiviral Res. 2019 Apr;164:70–80.
  • Huber AD, Michailidis E, Tang J, et al. 3-Hydroxypyrimidine-2,4-Diones as novel hepatitis B virus antivirals targeting the viral ribonuclease H. Antimicrob Agents Chemother. 2017 Jun;61(6):e00245–17.
  • Li Q, Lomonosova E, Donlin MJ, et al. Amide-containing alpha-hydroxytropolones as inhibitors of hepatitis B virus replication. Antiviral Res. 2020 May;177(104777):104777.
  • Long KR, Lomonosova E, Li Q, et al. Efficacy of hepatitis B virus ribonuclease H inhibitors, a new class of replication antagonists, in FRG human liver chimeric mice. Antiviral Res. 2018 Jan;149:41–47.
  • Lomonosova E, Zlotnick A, Tavis JE. Synergistic interactions between hepatitis B virus rNase H antagonists and other inhibitors. Antimicrob Agents Chemother. 2017 Mar;61(3):e02441–16.
  • Taghiabadi M, Hosseini SY, Gorzin AA, et al. Comparison of pre-S1/S2 variations of hepatitis B virus between asymptomatic carriers and cirrhotic/hepatocellular carcinoma-affected individuals. Clin Exp Hepatol. 2019 May;5(2):161–168.
  • Jiang B, Wu Q, Kuhnhenn L, et al. Formation of semi-enveloped particles as a unique feature of a hepatitis B virus PreS1 deletion mutant. Aliment Pharmacol Ther. 2019 Oct;50(8):940–954.
  • Peiffer KH, Kuhnhenn L, Jiang B, et al. Divergent preS sequences in virion-associated hepatitis B virus genomes and subviral HBV surface antigen particles from HBV e antigen-negative patients. J Infect Dis. 2018 Jun 5;218(1):114–123.
  • Chen L, Zhang Y, Zhang S, et al. A novel T-cell epitope in the transmembrane region of the hepatitis B virus envelope protein responds upon dendritic cell expansion. Arch Virol. 2019 Feb;164(2):483–495.
  • Cao J, Zhang J, Lu Y, et al. Cryo-EM structure of native spherical subviral particles isolated from HBV carriers. Virus Res. 2019 Jan;2(259):90–96.
  • Rydell GE, Prakash K, Norder H, et al. Hepatitis B surface antigen on subviral particles reduces the neutralizing effect of anti-HBs antibodies on hepatitis B viral particles in vitro. Virology. 2017 Sep;509:67–70.
  • Jaoude GA, Sureau C. Role of the antigenic loop of the hepatitis B virus envelope proteins in infectivity of hepatitis delta virus. J Virol. 2005 Aug;79(16):10460–10466.
  • Le Duff Y, Blanchet M, Sureau C. The pre-S1 and antigenic loop infectivity determinants of the hepatitis B virus envelope proteins are functionally independent. J Virol. 2009 Dec;83(23):12443–12451.
  • Bogomolov P, Alexandrov A, Voronkova N, et al. Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: first results of a phase Ib/IIa study. J Hepatol. 2016 Sep;65(3):490–498.
  • Noordeen F, Vaillant A, Jilbert AR. Nucleic acid polymers inhibit duck hepatitis B virus infection in vitro. Antimicrob Agents Chemother. 2013 Nov;57(11):5291–5298.
  • Noordeen F, Vaillant A, Jilbert AR. Nucleic acid polymers prevent the establishment of duck hepatitis B virus infection in vivo. Antimicrob Agents Chemother. 2013 Nov;57(11):5299–5306.
  • Noordeen F, Scougall CA, Grosse A, et al. Therapeutic antiviral effect of the nucleic acid polymer REP 2055 against persistent duck hepatitis B virus infection. PLoS One. 2015;10(11):e0140909.
  • Guillot C, Martel N, Berby F, et al. Inhibition of hepatitis B viral entry by nucleic acid polymers in HepaRG cells and primary human hepatocytes. PLoS One. 2017;12(6):e0179697.
  • Schoneweis K, Motter N, Roppert PL, et al. Activity of nucleic acid polymers in rodent models of HBV infection. Antiviral Res. 2018 Jan;149:26–33.
  • Al-Mahtab M, Bazinet M, Vaillant A. Safety and efficacy of nucleic acid polymers in monotherapy and combined with immunotherapy in treatment-naive bangladeshi patients with HBeAg+ chronic hepatitis B infection. PLoS One. 2016;11(6):e0156667.
  • Bazinet M, Pantea V, Cebotarescu V, et al. Safety and efficacy of REP 2139 and pegylated interferon alfa-2a for treatment-naive patients with chronic hepatitis B virus and hepatitis D virus co-infection (REP 301 and REP 301-LTF): a non-randomised, open-label, phase 2 trial. Lancet Gastroenterol Hepatol. 2017 Dec;2(12):877–889.
  • Usman Z, Mijocevic H, Karimzadeh H, et al. Kinetics of hepatitis B surface antigen quasispecies during REP 2139-Ca therapy in HBeAg-positive chronic HBV infection. J Viral Hepat. 2019 Dec;26(12):1454–1464.
  • Bazinet M, Pantea V, Placinta G, et al. Safety and efficacy of 48 weeks REP 2139 or REP 2165, tenofovir disoproxil, and pegylated interferon Alfa-2a in patients with chronic HBV infection naive to nucleos(t)ide therapy. Gastroenterology. 2020 Jun;158(8):2180–2194.
  • Zhang Z, Wang C, Liu Z, et al. Host genetic determinants of hepatitis B virus infection. Front Genet. 2019;10:696.
  • Mohd-Ismail NK, Lim Z, Gunaratne J, et al. Mapping the Interactions of HBV cccDNA with host factors. Int J Mol Sci. 2019 Sep 1;20(17):e4276.
  • Turton KL, Meier-Stephenson V, Badmalia MD, et al. Host transcription factors in hepatitis B virus RNA synthesis. Viruses. 2020 Jan 30;12(2):e160.
  • Fukano K, Tsukuda S, Watashi K, et al. Concept of Viral Inhibitors via NTCP. Semin Liver Dis. 2019 Feb;39(1):78–85.
  • Gripon P, Cannie I, Urban S. Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J Virol. 2005 Feb;79(3):1613–1622.
  • Petersen J, Dandri M, Mier W, et al. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat Biotechnol. 2008 Mar;26(3):335–341.
  • Volz T, Allweiss L, Ben MM, et al. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J Hepatol. 2013 May;58(5):861–867.
  • Loglio A, Ferenci P, Uceda Renteria SC, et al. Excellent safety and effectiveness of high-dose myrcludex-B monotherapy administered for 48weeks in HDV-related compensated cirrhosis: a case report of 3 patients. J Hepatol. 2019 Oct;71(4):834–839.
  • Ochi M, Otsuka M, Maruyama R, et al. HBx increases EGFR expression by inhibiting miR129-5p function. Biochem Biophys Res Commun. 2020 Aug 20;529(2):198–203.
  • Blank A, Eidam A, Haag M, et al. The NTCP-inhibitor myrcludex B: effects on bile acid disposition and tenofovir pharmacokinetics. Clin Pharmacol Ther. 2018 Feb;103(2):341–348.
  • Schreiner S, Nassal MA. Role for the host DNA damage response in hepatitis B virus cccDNA formation-and beyond? Viruses. 2017 May 22;9(5):e125.
  • Xia Y, Hepatitis GH. B virus cccDNA: formation, regulation and therapeutic potential. Antiviral Res. 2020 Aug;180:104824.
  • Wei L, Ploss A. Core components of DNA lagging strand synthesis machinery are essential for hepatitis B virus cccDNA formation. Nat Microbiol. 2020 May;5(5):715–726.
  • Tang L, Sheraz M, McGrane M, et al. DNA Polymerase alpha is essential for intracellular amplification of hepatitis B virus covalently closed circular DNA. PLoS Pathog. 2019 Apr;15(4):e1007742.
  • Qi Y, Gao Z, Xu G, et al. DNA Polymerase Kappa Is A Key Cellular Factor For The Formation Of Covalently Closed Circular DNA of hepatitis B virus. PLoS Pathog. 2016 Oct;12(10):e1005893.
  • Long Q, Yan R, Hu J, et al. The role of host DNA ligases in hepadnavirus covalently closed circular DNA formation. PLoS Pathog. 2017 Dec;13(12):e1006784.
  • Kitamura K, Que L, Shimadu M, et al. Flap endonuclease 1 is involved in cccDNA formation in the hepatitis B virus. PLoS Pathog. 2018 Jun;14(6):e1007124.
  • Sheraz M, Cheng J, Tang L, et al. Cellular DNA topoisomerases are required for the synthesis of hepatitis B virus covalently closed circular DNA. J Virol. 2019 Jun 1;93(11):e02230–18.
  • Pa W, Davenne T, Wettengel J, et al. A dual role for SAMHD1 in regulating HBV cccDNA and RT-dependent particle genesis. Life Sci Alliance. 2019 Apr;2(2):e201900355.
  • Koniger C, Wingert I, Marsmann M, et al. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4244–53.
  • Zhao Q, Guo JT. Have the starting lineup of five for hepatitis B virus covalently closed circular DNA synthesis been identified? Hepatology. 2020 Sep;72(3):1142–1144.
  • Mitra B, Hepatitis GH. B virus X protein crosses out Smc5/6 complex to maintain covalently closed circular DNA transcription. Hepatology. 2016 Dec;64(6):2246–2249.
  • Murphy CM, Xu Y, Li F, et al. Hepatitis B virus x protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep. 2016 Sep 13;16(11):2846–2854.
  • Kim JW, Lee SH, Park YS, et al. Replicative activity of hepatitis B virus is negatively associated with methylation of covalently closed circular DNA in Advanced hepatitis B virus infection. Intervirology. 2011;54(6):316–325.
  • Guo Y, Li Y, Mu S, et al. Evidence that methylation of hepatitis B virus covalently closed circular DNA in liver tissues of patients with chronic hepatitis B modulates HBV replication. J Med Virol. 2009 Jul;81(7):1177–1183.
  • Zhang Y, Mao R, Yan R, et al. Transcription of hepatitis B virus covalently closed circular DNA is regulated by CpG methylation during chronic infection. PLoS One. 2014;9(10):e110442.
  • Pollicino T, Belloni L, Raffa G, et al. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology. 2006 Mar;130(3):823–837.
  • Bates SE. Epigenetic therapies for cancer. N Engl J Med. 2020 Aug 13;383(7):650–663.
  • Yu HB, Jiang H, Cheng ST, et al. AGK2, A SIRT2 inhibitor, inhibits hepatitis B virus replication in vitro and in vivo. Int J Med Sci. 2018;15(12):1356–1364.
  • Gilmore S, Tam D, Dick R, et al. SAT-160 - Antiviral activity of GS-5801, a liver-targeted prodrug of a lysine demethylase 5 inhibitor, in a hepatitis B virus primary human hepatocyte infection model. J Hepatol. 2017;66(1, Supplement):S690–S691. 2017/01/01/
  • Zhang W, Chen J, Wu M, et al. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation. Hepatology. 2017 Aug;66(2):398–415.
  • Alarcon V, Hernandez S, Rubio L, et al. The enzymes LSD1 and Set1A cooperate with the viral protein HBx to establish an active hepatitis B viral chromatin state. Sci Rep. 2016 May;13(6):25901.
  • Shim YH, Yoon GS, Choi HJ, et al. p16 Hypermethylation in the early stage of hepatitis B virus-associated hepatocarcinogenesis. Cancer Lett. 2003 Feb 20;190(2):213–219.
  • Hyrina A, Jones C, Chen D, et al. A genome-wide CRISPR screen identifies ZCCHC14 as a host factor required for hepatitis B surface antigen production. Cell Rep. 2019 Dec 3;29(10):2970–2978 e6.
  • Menne S, Wildum S, Steiner G, et al. Efficacy of an inhibitor of hepatitis B virus expression in combination with entecavir and interferon-alpha in woodchucks chronically infected with woodchuck hepatitis virus. Hepatol Commun. 2020 Jun;4(6):916–931.
  • Mueller H, Lopez A, Tropberger P, et al. PAPD5/7 are host factors that are required for hepatitis B virus RNA stabilization. Hepatology. 2019 Apr;69(4):1398–1411.
  • Sun L, Zhang F, Guo F, et al. The dihydroquinolizinone compound RG7834 inhibits the polyadenylase function of PAPD5/7 and accelerates the degradation of matured HBV surface protein mRNA. Antimicrob Agents Chemother. 2020 Oct 12;65(1):e00640–20.
  • Suslov A, Boldanova T, Wang X, et al. Hepatitis B virus does not interfere with innate immune responses in the human liver. Gastroenterology. 2018 May;154(6):1778–1790.
  • Ezzikouri S, Kayesh MEH, Benjelloun S, et al. Targeting host innate and adaptive immunity to achieve the functional cure of chronic hepatitis B. Vaccines (Basel). 2020 May 11;8(2):216.
  • Agarwal K, Ahn SH, Elkhashab M, et al. Safety and efficacy of vesatolimod (GS-9620) in patients with chronic hepatitis B who are not currently on antiviral treatment. J Viral Hepat. 2018 Nov;25(11):1331–1340.
  • Benechet AP, De Simone G, Di Lucia P, et al. Dynamics and genomic landscape of CD8(+) T cells undergoing hepatic priming. Nature. 2019 Oct;574(7777):200–205.
  • Fisicaro P, Barili V, Montanini B, et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat Med. 2017 Mar;23(3):327–336.
  • Kurktschiev PD, Raziorrouh B, Schraut W, et al. Dysfunctional CD8+ T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. J Exp Med. 2014 Sep 22;211(10):2047–2059.
  • Salimzadeh L, Le Bert N, Dutertre CA, et al. PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection. J Clin Invest. 2018 Oct 1;128(10):4573–4587.
  • Fisicaro P, Valdatta C, Massari M, et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology. 2010 Feb;138(2):682–93, 693 e1-4.
  • Gane E, Verdon DJ, Brooks AE, et al. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: a pilot study. J Hepatol. 2019 Nov;71(5):900–907.
  • Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018 Feb;18(2):91–104.
  • Lim SG, Agcaoili J, Nna DS, et al. Therapeutic vaccination for chronic hepatitis B: a systematic review and meta-analysis. J Viral Hepat. 2019 Jul;26(7):803–817.
  • Horng JH, Lin WH, Wu CR, et al. HBV X protein-based therapeutic vaccine accelerates viral antigen clearance by mobilizing monocyte infiltration into the liver in HBV carrier mice. J Biomed Sci. 2020 May 28;27(1):70.
  • Kosinska AD, Moeed A, Kallin N, et al. Synergy of therapeutic heterologous prime-boost hepatitis B vaccination with CpG-application to improve immune control of persistent HBV infection. Sci Rep. 2019 Jul 25;9(1):10808.
  • Wang W, Zhou X, Bian Y, et al. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nat Nanotechnol. 2020 May;15(5):406–416.
  • Ma A, Motyka B, Gutfreund K, et al. A dendritic cell receptor-targeted chimeric immunotherapeutic protein (C-HBV) for the treatment of chronic hepatitis B. Hum Vaccin Immunother. 2020 Apr 2;16(4):756–778.
  • George R, Ma A, Motyka B, et al. A dendritic cell-targeted chimeric hepatitis B virus immunotherapeutic vaccine induces both cellular and humoral immune responses in vivo. Hum Vaccin Immunother. 2020 Apr 2;16(4):779–792.
  • Wisskirchen K, Kah J, Malo A, et al. T cell receptor grafting allows virological control of Hepatitis B virus infection. J Clin Invest. 2019 Apr 30;129(7):2932–2945.
  • Krebs K, Bottinger N, Huang LR, et al. T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology. 2013 Aug;145(2):456–465.
  • Kruse RL, Shum T, Tashiro H, et al. HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice. Cytotherapy. 2018 May;20(5):697–705.
  • Kah J, Koh S, Volz T, et al. Lymphocytes transiently expressing virus-specific T cell receptors reduce hepatitis B virus infection. J Clin Invest. 2017 Aug 1;127(8):3177–3188.
  • Qasim W, Brunetto M, Gehring AJ, et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J Hepatol. 2015 Feb;62(2):486–491.
  • Graber-Stiehl I. The silent epidemic killing more people than HIV, malaria or TB. Nature. 2018 Dec;564(7734):24–26.
  • Zhang H, Wang F, Zhu X, et al. Antiviral activity and pharmacokinetics of the HBV capsid assembly modulator GLS4 in patients with chronic HBV infection. Clin Infect Dis. 2020 Jul;10(ciaa961):
  • Yuen MF, Schiefke I, Yoon JH, et al. RNA interference therapy with ARC-520 results in prolonged hepatitis B surface antigen response in patients with chronic hepatitis B infection. Hepatology. 2020 Jul;72(1):19–31.
  • Zhang J, Liu X, Zhou W, et al. A bioinformatics investigation into molecular mechanism of Yinzhihuang granules for treating hepatitis B by network pharmacology and molecular docking verification. Sci Rep. 2020 Jul 10;10(1):11448.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.