3,841
Views
4
CrossRef citations to date
0
Altmetric
Review

Defibrotide: potential for treating endothelial dysfunction related to viral and post-infectious syndromes

, , , , , , , , , , , , & ORCID Icon show all
Pages 423-433 | Received 10 Jun 2021, Accepted 14 Jun 2021, Published online: 25 Jun 2021

References

  • Defitelio® (defibrotide sodium) [prescribing information]. Palo Alto, CA: Jazz Pharmaceuticals, Inc.; 2016.
  • Richardson PG, Carreras E, Iacobelli M, et al. The use of defibrotide in blood and marrow transplantation. Blood Adv. 2018;2(12):1495–1509.
  • Richardson PG, Grupp SA, Pagliuca A, et al. Defibrotide for the treatment of hepatic veno-occlusive disease/sinusoidal obstruction syndrome with multiorgan failure. Int J Hematol Oncol. 2017;6(3):75–93.
  • Richardson PG, Riches ML, Kernan NA, et al. Phase 3 trial of defibrotide for the treatment of severe veno-occlusive disease and multi-organ failure. Blood. 2016 Mar 31;127(13):1656–1665.
  • Richardson PG, Soiffer RJ, Antin JH, et al. Defibrotide for the treatment of severe hepatic veno-occlusive disease and multiorgan failure after stem cell transplantation: a multicenter, randomized, dose-finding trial. Biol Blood Marrow Transplant. 2010 Jul 16;16(7):1005–1017.
  • Baker DE, Demaris K. Defibrotide. Hosp Pharm. 2016 Nov;51(10):847–854.
  • Palomo M, Mir E, Rovira M, et al. What is going on between defibrotide and endothelial cells? Snapshots reveal the hot spots of their romance. Blood. 2016;127(13):1719–1727.
  • Martinez-Sanchez J, Hamelmann H, Palomo M, et al. Acute graft-vs.-host disease-associated endothelial activation in vitro is prevented by defibrotide. Front Immunol. 2019;10:2339.
  • García-Bernal D, Palomo M, Martínez CM, et al. Defibrotide inhibits donor leukocyte endothelial interactions and protects against acute graft-versus-host disease. J Cell Mol Med. 2020;24(14):8031–8044.
  • Mitsiades CS, Rouleau C, Echart C, et al. Preclinical studies in support of defibrotide for the treatment of multiple myeloma and other neoplasias. Clin Cancer Res. 2009;15(4):1210–1221.
  • Calbi V, Fumagalli F, Consiglieri G, et al. Use of Defibrotide to help prevent post-transplant endothelial injury in a genetically predisposed infant with metachromatic leukodystrophy undergoing hematopoietic stem cell gene therapy. Bone Marrow Transplant. 2018;53(7):913–917.
  • Lang P, Eichholz T, Bakchoul T, et al. Defibrotide for the treatment of COVID-19 related PIMS-TS in two pediatric patients. J Ped Infect Dis. 2020;9(5):622–625.
  • Kerr MC, Teasdale RD. Defining macropinocytosis. Traffic. 2009 Apr;10(4):364–371.
  • Palomo M, Vera M, Martin S, et al. Up-regulation of HDACs, a harbinger of uraemic endothelial dysfunction, is prevented by defibrotide. J Cell Mol Med. 2020 Jan;24(2):1713–1723. Epub 2019 Nov 28.
  • Koganti R, Suryawanshi R, Shukla D. Heparanase, cell signaling, and viral infections. Cell Mol Life Sci. 2020;77(24):5059–5077.
  • Berti F, Magni F, Rossoni G, et al. Production and biologic interactions of prostacyclin and platelet-activating factor in acute myocardial ischemia in the perfused rabbit heart. J Cardiovasc Pharmacol. 1990 Nov;16(5):727–732.
  • Pescador R, Capuzzi L, Mantovani M, et al. Defibrotide: properties and clinical use of an old/new drug. Vascul Pharmacol. 2013 Jul-Aug;59(1–2):1–10.
  • Falanga A, Vignoli A, Marchetti M, et al. Defibrotide reduces procoagulant activity and increases fibrinolytic properties of endothelial cells. Leukemia. 2003 Aug;17(8):1636–1642.
  • Fumagalli G, Angelaccio E, Lombardo N, et al. Morphometric and ultrastructural study of experimental venous thrombosis. Effects of defibrotide, an antithrombotic agent. Haemostasis. 1987;17(6):361–370.
  • Kourtzelis I, Markiewski MM, Doumas M, et al. Complement anaphylatoxin C5a contributes to hemodialysis-associated thrombosis. Blood. 2010 Jul 29;116(4):631–639.
  • Richardson P, Guinan E. Hepatic veno-occlusive disease following hematopoietic stem cell transplantation. Acta Haematol. 2001;106(1–2):57–68.
  • Corbacioglu S, Cesaro S, Faraci M, et al. Defibrotide for prophylaxis of hepatic veno-occlusive disease in paediatric haemopoietic stem-cell transplantation: an open-label, phase 3, randomised controlled trial. Lancet. 2012 Apr 7;379(9823):1301–1309.
  • Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Inf Dis. 2020;20(5):533–534.
  • Gibson PG, Qin L, Puah SH. COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID-19 ARDS. Med J Aust. 2020 Jul;213(2):54–56.e1.
  • Gattinoni L, Coppola S, Cressoni M, et al. COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;201(10):1299–1300.
  • Grasselli G, Tonetti T, Protti A, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020 Dec 8;8(12):1201–1208. Epub 2020 Aug 27.
  • Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418.
  • Nicolai L, Leunig A, Brambs S, et al. Vascular neutrophilic inflammation and immunothrombosis distinguish severe COVID-19 from influenza pneumonia. J Thromb Haemost. 2021 Feb;19(2):574–581. Epub 2020 Dec 20.
  • Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020 Nov 13;370(6518):856–860. Epub 2020 Oct 20.
  • Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 2020;126(10):1456–1474.
  • Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185–192.
  • Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–128.
  • Teuwen L, Geldhof V, Pasut A, et al. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;20(7):389–391.
  • Grimes JM, Grimes KV. p38/MAPK inhibition: a promising therapeutic approach for COVID-19. J Mol Cell Cardiol. 2020;144:63–65.
  • Akwii RG, Sajib MS, Zahra FT, et al. Role of angiopoietin-2 inVascular physiology and pathophysiology. Cells. 2019;8(5):471.
  • Miesbach W. Pathological role of angiotensin II in severe COVID-19. TH Open. 2020 Jun 26;4(2):e138–e144.
  • Merkler AE, Parikh NS, Mir S, et al. Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs patients with influenza. JAMA Neurol. 2020;77(11):1366–1372.
  • Fifi JT, Mocco J. COVID-19 related stroke in young individuals. Lancet Neurol. 2020 Sep;19(9):713–715.
  • Zhang P, Zhu L, Cai J, et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res. 2020 Jun 5;126(12):1671–1681. Epub 2020 Apr 17. Erratum in: Circ Res. 2020 Aug 28;127(6):e147.Rohit, Loomba [corrected to Loomba, Rohit].
  • Tong M, Jiang Y, Xia D, et al. Elevated expression of serum endothelial cell adhesion molecules in COVID-19 patients. J Infect Dis. 2020;222(6):894–898.
  • Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020 Aug;7(8):e575–e582.
  • Terpos E, Ntanasis-Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95(7):834–847.
  • Nazy I, Jevtic SD, Moore JC, et al. Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia. J Thromb Haemost. 2021 May;19(5):1342–1347. Epub 2021 Mar 14.
  • Althaus K, Marini I, Zlamal J, et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood. 2021 Feb 25;137(8):1061–1071.
  • Buijsers B, Yanginlar C, de Nooijer A, et al. Increased plasma heparanase activity in COVID-19 patients. Front Immunol. 2020;11:575047.
  • Buijsers B, Yanginlar C, Maciej-Hulme ML, et al. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. EBioMedicine. 2020 Aug 24;59:102969.
  • Vlodavsky I, Gross-Cohen M, Weissmann M, et al. Opposing functions of heparanase-1 and heparanase-2 in cancer progression. Trends Biochem Sci. 2018;43(1):18–31.
  • Stahl K, Gronski PA, Kiyan Y, et al. Injury to the endothelial glycocalyx in critically Ill COVID-19 patients. Am J Respir Crit Care Med. 2020;202(8):1178–1181.
  • Yu J, Yuan X, Chen H, et al. Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition. Blood. 2020;136(18):2080–2089.
  • Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1–13.
  • Shen B, Yi X, Sun Y, et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell. 2020;182(1):59–72.e15.
  • Twaddell SH, Baines KJ, Grainge C, et al. The emerging role of neutrophil extracellular traps in respiratory disease. Chest. 2019 Oct;156(4):774–782.
  • Porto BN, Stein RT. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing? Front Immunol. 2016 Aug 15;7: 311.
  • Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020 Jun 4;5(11):e138999.
  • DEFACOVID Study Group. Response to Maccio, Richardson E, Carlo-Stella C, Jara R, et al. Multifactorial pathogenesis of COVID-19-related coagulopathy: can defibrotide have a role in the early phases of coagulation disorders? J Thromb Haemost. 2020 Nov;18(11):3111–3113.
  • Hammer S, Häberle H, Schlensak C, et al. Severe SARS-CoV-2 infection inhibits fibrinolysis leading to changes in viscoelastic properties of blood clot: a descriptive study of fibrinolysis in COVID-19. Thromb Haemost. 2021 Feb 25. DOI:10.1055/a-1400-6034.
  • Shi H, Gandhi AA, Smith SA, et al. Endothelium-protective, histone-neutralizing properties of the polyanionic agent defibrotide. medRxiv [Preprint]; 2021 Feb 28: 2021.02.21.21252160. 10.1101/2021.02.21.21252160. PMID: 33655266; PMCID: PMC7924291.
  • Armstrong SM, Darwish I, Lee WL. Endothelial activation and dysfunction in the pathogenesis of influenza A virus infection. Virulence. 2013 Aug 15;4(6):537–542.
  • McGeer A, Green KA, Plevneshi A, et al. Toronto invasive bacterial diseases network. Antiviral therapy and outcomes of influenza requiring hospitalization in Ontario, Canada. Clin Infect Dis. 2007 Dec 15;45(12):1568–1575.
  • Paget J, Spreeuwenberg P, Charu V, et al. Global seasonal influenza-associated mortality collaborator network and GLaMOR collaborating teams*. Global mortality associated with seasonal influenza epidemics: new burden estimates and predictors from the GLaMOR Project. J Glob Health. 2019 Dec;9(2):020421.
  • Short KR, Kuiken T, Van Riel D. Role of endothelial cells in the pathogenesis of influenza in humans. J Infect Dis. 2019 Oct 22;220(11):1859–1860.
  • Paessler S, Walker DH. Pathogenesis of the viral hemorrhagic fevers. Annu Rev Pathol. 2013 Jan 24;8(1):411–440.
  • Nyakarahuka L, Kankya C, Krontveit R, et al. How severe and prevalent are Ebola and Marburg viruses? A systematic review and meta-analysis of the case fatality rates and seroprevalence. BMC Infect Dis. 2016;16(708). 10.1186/s12879-016-2045-6
  • Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013 Apr 25;496(7446):504–507.
  • Khaiboullina SF, Morzunov SP, St Jeor SC. Hantaviruses: molecular biology, evolution and pathogenesis. Curr Mol Med. 2005 Dec 5;5(8):773–790.
  • Schnittler HJ, Feldmann H. Viral hemorrhagic fever--a vascular disease? Thromb Haemost. 2003 Jun;89(6):967–972.
  • Dalrymple NA, Mackow ER. Virus interactions with endothelial cell receptors: implications for viral pathogenesis. Curr Opin Virol. 2014 Aug;7:134–140. Epub 2014 Jul 24.
  • Chen Y, Maguire T, Hileman RE, et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med. 1997 Aug 3;3(8):866–871.
  • Basler CF. Molecular pathogenesis of viral hemorrhagic fever. Semin Immunopathol. 2017 Jul;39(5):551–561. Epub 2017 May 29.
  • Mackow ER, Gorbunova EE, Gavrilovskaya IN. Endothelial cell dysfunction in viral hemorrhage and edema. Front Microbiol. 2015 Jan 5;5: 733.
  • Fedson DS. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. Ann Transl Med. 2016 Nov;4(21):421.
  • Diamond MS, Pierson TC. Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell. 2015 Jul 30;162(3):488–492.
  • Halstead SB. Controversies in dengue pathogenesis. Paediatr Int Child Health. 2012 May;32(s1):5–9.
  • Krüger DH, Schönrich G, Klempa B. Human pathogenic hantaviruses and prevention of infection. Hum Vaccin. 2011;7(6):685–693.
  • Li Y, Wang W, Wang JP, et al. Elevated vascular endothelial growth factor levels induce hyperpermeability of endothelial cells in hantavirus infection. J Int Med Res. 2012;40(5):1812–1821.
  • Laberko A, Aksenova M, Shipitsina I, et al. Serious hemorrhagic complications after successful treatment of hematopoietic stem cell transplantation-associated thrombotic microangiopathy with defibrotide in pediatric patient with myelodysplastic syndrome. Front Pediatr. 2020 May 5;8: 155.
  • Richardson PG, Murakami C, Jin Z, et al. Multi-institutional use of defibrotide in 88 patients after stem cell transplantation with severe veno-occlusive disease and multisystem organ failure: response without significant toxicity in a high-risk population and factors predictive of outcome. Blood. 2002 Dec 15;100(13):4337–4343. Epub 2002 Aug 1.
  • Shie JJ, Fang JM. Development of effective anti-influenza drugs: congeners and conjugates – a review. J Biomed Sci. 2019;26(1):84.
  • Zhou Y, Fu X, Liu X, et al. Use of corticosteroids in influenza-associated acute respiratory distress syndrome and severe pneumonia: a systematic review and meta-analysis. Sci Rep. 2020;10(1):3044.
  • Richardson PG, Triplett BM, Ho VT, et al. Defibrotide sodium for the treatment of hepatic veno-occlusive disease/sinusoidal obstruction syndrome. Expert Rev Clin Pharmacol. 2018 Feb;11(2):113–124.
  • Li H, Lockyer S, Concepcion A, et al. The Fab fragment of a novel anti-GPVI monoclonal antibody, OM4, reduces in vivo thrombosis without bleeding risk in rats. Arterioscler Thromb Vasc Biol. 2007;27(5):1199–1205.
  • Roh YY, Hahn SM, Kim HS, et al. Efficacy of low dose and short duration defibrotide prophylaxis for hepatic veno-occlusive disease after autologous haematopoietic stem cell transplantation. Bone Marrow Transplant. 2021; 56:411–418.
  • Bühler S, Laufer SA. p38/MAPK inhibitors: a patent review (2012-2013). Expert Opin Ther Pat. 2014 May;24(5):535–554. Epub 2014 Mar 10.
  • Luqmani RA. State of the art in the treatment of systemic vasculitides. Front Immunol. 2014 Oct 13;5: 471.
  • Chen M, Kallenberg C. ANCA-associated vasculitides—advances in pathogenesis and treatment. Nat Rev Rheumatol. 2010;6(11):653–664.
  • Jin N, Wang Q, Zhang X, et al. The selective p38 mitogen-activated protein kinase inhibitor, SB203580, improves renal disease in MRL/lpr mouse model of systemic lupus. Int Immunopharmacol. 2011 Sep;11(9):1319–1326. Epub 2011 May 5.
  • Ouldali N, Pouletty M, Mariani P, et al. Emergence of Kawasaki disease related to SARS-CoV-2 infection in an epicentre of the French COVID-19 epidemic: a time-series analysis. Lancet Child Adolesc Health. 2020;4(9):662–668.
  • Zhou C, Huang M, Xie L, et al. IVIG inhibits TNF-α-induced MMP9 expression and activity in monocytes by suppressing NF-κB and P38 MAPK activation. Int J Clin Exp Pathol. 2015 Dec 1;8(12):15879–15886.
  • Giudice V, Pagliano P, Vatrella A, et al. Combination of ruxolitinib and eculizumab for treatment of severe SARS-CoV-2-related acute respiratory distress syndrome: a controlled study. Front Pharmacol. 2020;11(857). 10.3389/fphar.2020.00857.
  • Chari A, Samur MK, Martinez-Lopez J, et al. Clinical features associated with COVID-19 outcome in multiple myeloma: first results from the International Myeloma Society data set. Blood. 2020 Dec 24;136(26):3033–3040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.