344
Views
6
CrossRef citations to date
0
Altmetric
Perspective

The α9α10 nicotinic acetylcholine receptor: a compelling drug target for hearing loss?

Pages 291-302 | Received 03 Nov 2021, Accepted 24 Feb 2022, Published online: 07 Mar 2022

References

  • Olusanya BO, Neumann KJ, Saunders JE. The global burden of disabling hearing impairment: a call to action. Bull World Health Organ. 2014 May 1; 92(5):367–373.
  • Nordvik Ø, Laugen Heggdal PO, and Brännström J, et al. Generic quality of life in persons with hearing loss: a systematic literature review. BMC ear, nose, and throat disorders. 2018;18:1.
  • Deal JA, Goman AM, Albert MS, et al. Hearing treatment for reducing cognitive decline: design and methods of the Aging and Cognitive Health Evaluation in Elders randomized controlled trial. Alzheimers Dement. 2018;4:499–507.
  • Loughrey DG, Kelly ME, and Kelley GA, et al. Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia: a systematic review and meta-analysis. JAMA otolaryngology– head & neck surgery.2018 Feb 1;144(2):115–126.
  • Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet. [2017 Dec 16];390(10113):2673–2734.
  • Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. [2020 Aug 8];396(10248):413–446.
  • WHO. World report on hearing.https://www.who.int/publications/i/item/world-report-on-hearing. accessed3 March 2021.
  • Haile LM, Collaborators GHL. Hearing loss prevalence and years lived with disability, 1990-2019: findings from the global burden of disease study 2019. Lancet. 2021 Mar 13;397(10278):996–1009.
  • McCormack A, Edmondson-Jones M, Somerset S, et al. A systematic review of the reporting of tinnitus prevalence and severity. Hear Res. 2016 Jul;337:70–79.
  • Buonfiglio P, Bruque CD, and Luce L, et al. GJB2 and GJB6 genetic variant curation in an Argentinean non-syndromic hearing-impaired cohort. Genes (Basel). 2020 Oct 21;11(10):1233.
  • Korver AM, Smith RJ, Van Camp G, et al. Congenital hearing loss. Nat Rev Dis Primers. 2017 Jan 12;3:16094.
  • Van Camp G, and Smith R Hereditary hearing loss homepage. Available from: https://hereditaryhearingloss.org. Accessed 2022 January 15.
  • Zhan W, Cruickshanks KJ, Klein BE, et al. Modifiable determinants of hearing impairment in adults. Prev Med. 2011 Oct;53(4–5):338–342.
  • Concha-Barrientos M, Campbell-Lendrum D, Steenland K. Occupational noise: assessing the burden of disease from work-related hearing impairment at national and local levels. Geneva: World Health Organization (WHO Environmental Burden of Disease Series, No 9); 2004.
  • Lie A, Skogstad M, Johannessen HA, et al. Occupational noise exposure and hearing: a systematic review. Int Arch Occup Environ Health. 2016 Apr;89(3):351–372.
  • Śliwińska-Kowalska M, and Zaborowski K. WHO environmental noise guidelines for the European region: a systematic review on environmental noise and permanent hearing loss and tinnitus. Int J Environ Res Public Health. 2017 Sep 27;14(10):519.
  • Ivory R, Kane R, Diaz RC. Noise-induced hearing loss: a recreational noise perspective. Curr Opin Otolaryngol Head Neck Surg. 2014 Oct;22(5):394–398.
  • Neitzel RL, Fligor BJ. Risk of noise-induced hearing loss due to recreational sound: review and recommendations. J Acoust Soc Am. 2019 Nov;146(5):3911.
  • Pienkowski M. Loud music and leisure noise is a common cause of chronic hearing loss, tinnitus and hyperacusis. Int J Environ Res Public Health. 2021 Apr 16;18(8):4236.
  • Elgoyhen AB, Langguth B, De Ridder D, et al. Tinnitus: perspectives from human neuroimaging. Nat Rev Neurosci. 2015 Oct;16(10):632–642.
  • Langguth B, Elgoyhen AB, Cederroth CR. Therapeutic Approaches to the Treatment of Tinnitus. Annu Rev Pharmacol Toxicol. 2019 Jan 6;59:291–313.
  • De Ridder D, Schlee W, Vanneste S, et al. Tinnitus and tinnitus disorder: theoretical and operational definitions (an international multidisciplinary proposal). Prog Brain Res. 2021;260:1–25.
  • De Ridder D, Elgoyhen AB, Romo R, et al. Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8075–8080.
  • De Ridder D, Vanneste S, Weisz N, et al. An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks. Neurosci Biobehav Rev. 2014;44:16–32.
  • Elgoyhen AB, Langguth B. Pharmacological approaches to the treatment of tinnitus. Drug Discov Today. 2010 Apr;15(7–8):300–305.
  • Elgoyhen AB, Langguth B, Nowak W, et al. Identifying tinnitus-related genes based on a side-effect network analysis. CPT Pharmacometrics Syst Pharmacol. 2014 Jan 29;3(1):e97.
  • Langguth B, Salvi R, Elgoyhen AB. Emerging pharmacotherapy of tinnitus. Expert Opin Emerg Drugs. 2009 Dec;14(4):687–702.
  • Sheppard A, Ralli M, and Gilardi A, et al. Occupational noise: auditory and non-auditory consequences. Int J Environ Res Public Health. 2020 Dec 2. 17;(23):8963.
  • Bohne BA, Harding GW. Degeneration in the cochlea after noise damage: primary versus secondary events. The American J Otolaryngol. 2000 Jul;21(4):505–509.
  • Wang Y, Hirose K, Liberman MC. Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol. 2002 Sep;3(3):248–268.
  • Liberman MC, Kiang NY. Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Otolaryngol Suppl. 1978;358:1–63.
  • Kujawa SG, and Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009 Nov 11;29(45):14077–14085.
  • Liberman MC, Epstein MJ, and Cleveland SS, et al. Toward a differential diagnosis of hidden hearing loss in humans. PLoS One. 2016;11(9):e0162726.
  • Gordon-Salant S. Hearing loss and aging: new research findings and clinical implications. J Rehabil Res Dev. 2005 Jul-Aug;42(4 Suppl 2):9–24.
  • Sergeyenko Y, Lall K, Liberman MC, et al. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci. 2013 Aug 21;33(34):13686–13694.
  • Viana LM, O’Malley JT, and Burgess BJ, et al. Cochlear neuropathy in human presbycusis: confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res. 2015;327:78–88.
  • Neufeld A, Westerberg BD, Nabi S, et al. Prospective, randomized controlled assessment of the short- and long-term efficacy of a hearing conservation education program in Canadian elementary school children. Laryngoscope. 2011 Jan;121(1):176–181.
  • Verbeek JH, Kateman E, Morata TC, et al. Interventions to prevent occupational noise-induced hearing loss: a Cochrane systematic review. Int J Audiol. 2014 Mar;53(2):S84–96.
  • Arenas JP, Suter AH. Comparison of occupational noise legislation in the Americas: an overview and analysis. Noise Health. 2014 Sep-Oct;16(72):306–319.
  • Hecht QA, Hammill TL, Calamia PT, et al. Characterization of acute hearing changes in United States military populations. J Acoust Soc Am. 2019 Nov;146(5):3839.
  • Wells TS, Seelig AD, Ryan MA, et al. Hearing loss associated with US military combat deployment. Noise Health. 2015 Jan-Feb;17(74):34–42.
  • Ahmed MM, Allard RJ, Esquivel CR Noise-Induced hearing loss treatment: systematic review and meta-analysis. Mil Med. 2021 Jan 11.
  • Yamashita D, Jiang HY, Schacht J, et al. Delayed production of free radicals following noise exposure. Brain Res. 2004 Sep 3;1019(1–2):201–209.
  • Ohlemiller KK, Wright JS, Dugan LL. Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol. 1999 Sep-Oct;4(5):229–236.
  • Sha SH, Schacht J. Emerging therapeutic interventions against noise-induced hearing loss. Expert Opin Investig Drugs. 2017 Jan;26(1):85–96.
  • Wang J, Ruel J, Ladrech S, et al. Inhibition of the c-Jun N-terminal kinase-mediated mitochondrial cell death pathway restores auditory function in sound-exposed animals. Mol Pharmacol. 2007 Mar;71(3):654–666.
  • Karlin A. Ion channel structure: emerging structure of the nicotinic acetylcholine receptors. Nature Reviews Neurosc. 2002;3:102–114.
  • Corringer PJ, Poitevin F, and Prevost MS. Structure and pharmacology of pentameric receptor channels: from bacteria to brain . Structure.2021 Jun;20(6):941–956.
  • Marcovich I, Moglie MJ, Carpaneto Freixas AE, et al. Distinct evolutionary trajectories of neuronal and hair cell nicotinic acetylcholine receptors. Mol Biol Evol. [2020 Apr 1];37(4):1070–1089.
  • Zoli M, Pistillo F, Gotti C. Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology. 2015 Sep;96(Pt B):302–311.
  • Zoli M, Pucci S, Vilella A, et al. Neuronal and extraneuronal nicotinic acetylcholine receptors. Curr Neuropharmacol. 2018;16(4):338–349.
  • Gotti C, Clementi F, Fornari A, et al. Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol. [2009 Oct 1];78(7):703–711.
  • Nelson ME, Kuryatov A, Choi CH, et al. Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. Mol Pharmacol. 2003 Feb;63(2):332–341.
  • Benallegue N, Mazzaferro S, Alcaino C, et al. The additional ACh binding site at the α4(+)/α4(-) interface of the (α4β2)2α4 nicotinic ACh receptor contributes to desensitization. Br J Pharmacol. 2013 Sep;170(2):304–316.
  • Mazzaferro S, Bermudez I, Sine SM. α4β2 Nicotinic Acetylcholine Receptors: RELATIONSHIPS BETWEEN SUBUNIT STOICHIOMETRY AND FUNCTION AT THE SINGLE CHANNEL LEVEL. J Biol Chem. 2017 Feb 17;292(7):2729–2740.
  • Moroni M, Bermudez I. Stoichiometry and pharmacology of two human alpha4beta2 nicotinic receptor types. J Mol Neurosci. 2006;30(1–2):95–96.
  • Moroni M, Zwart R, Sher E, et al. alpha4beta2 nicotinic receptors with high and low acetylcholine sensitivity: pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine. Mol Pharmacol. 2006 Aug;70(2):755–768.
  • Krashia P, Moroni M, Broadbent S, et al. Human α3β4 neuronal nicotinic receptors show different stoichiometry if they are expressed in Xenopus oocytes or mammalian HEK293 cells. PLoS One. [2010 Oct 26];5(10):e13611.
  • Mishina M, Takai T, Imoto K, et al. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature. [1986 May 22-28];321(6068):406–411.
  • Cetin H, Beeson D, Vincent A, et al. The structure, function, and physiology of the fetal and adult acetylcholine receptor in muscle. Front Mol Neurosci. 2020;13:581097.
  • Sgard F, Charpentier E, Bertrand S, et al. A novel human nicotinic receptor subunit, α10, that confers functionality to the α9-subunit. Molec Pharmacol. 2002;61:150–159.
  • Elgoyhen AB, Johnson DS, Boulter J, et al. Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell. 1994 Nov 18;79(4):705–715.
  • Elgoyhen AB, Vetter DE, Katz E, et al. alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3501–3506.
  • Elgoyhen AB, Johnson DS, Boulter J, et al. a9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell. 1994;79:705–715.
  • Plazas PV, Katz E, Gomez-Casati ME, et al. Stoichiometry of the alpha9alpha10 nicotinic cholinergic receptor. J Neurosci. 2005 Nov 23;25(47):10905–10912.
  • Indurthi DC, Pera E, Kim HL, et al. Presence of multiple binding sites on α9α10 nAChR receptors alludes to stoichiometric-dependent action of the α-conotoxin, Vc1.1. Biochem Pharmacol. [2014 May 1];89(1):131–140.
  • Boffi JC, Marcovich I, Gill-Thind JK, et al. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function. Mol Pharmacol. 2017 Mar;91(3):250–262.
  • Zouridakis M, Giastas P, Zarkadas E, et al. Crystal structures of free and antagonist-bound states of human α9 nicotinic receptor extracellular domain. Nat Struct Mol Biol. 2014 Nov;21(11):976–980.
  • Zouridakis M, Papakyriakou A, Ivanov IA, et al. Crystal structure of the monomeric extracellular domain of α9 nicotinic receptor subunit in complex with α-conotoxin rgia: molecular dynamics insights into rgia binding to α9α10 nicotinic receptors. Front Pharmacol. 2019;10:474.
  • Lipovsek M, Im GJ, Franchini LF, et al. Phylogenetic differences in calcium permeability of the auditory hair cell cholinergic nicotinic receptor. Proc Natl Acad Sci U S A. [2012 Mar 13];109(11):4308–4313.
  • Rothlin CV, Katz E, Verbitsky M, et al. The alpha9 nicotinic acetylcholine receptor shares pharmacological properties with type A gamma-aminobutyric acid, glycine, and type 3 serotonin receptors. Mol Pharmacol. 1999 Feb;55(2):248–254.
  • Gomez-Casati ME, Fuchs PA, Elgoyhen AB, et al. Biophysical and pharmacological characterization of nicotinic cholinergic receptors in rat cochlear inner hair cells. J Physiol. 2005 Jul 1;566(Pt 1):103–118.
  • Rothlin CV, Lioudyno MI, Silbering AF, et al. Direct interaction of serotonin type 3 receptor ligands with recombinant and native alpha 9 alpha 10-containing nicotinic cholinergic receptors. Mol Pharmacol. 2003 May;63(5):1067–1074.
  • Verbitsky M, Rothlin C, Katz E, et al. Mixed nicotinic-muscarinic properties of the a9 nicotinic cholinergic receptor. Neuropharmacology. 2000;39:2515–2524.
  • Lipovsek M, Marcovich I, and Elgoyhen A. The hair cell α9α10 nicotinic acetylcholine receptor: odd cousin in an old family. Front Cell Neurosci. in press. 2021Nov 15 ;785265.
  • Fuchs PA, Murrow BW. A novel cholinergic receptor mediates inhibition of chick cochlear hair cells. Proc Biol Sci. 1992 [Apr 22];248:35–40.
  • Franchini LF, Elgoyhen AB. Adaptive evolution in mammalian proteins involved in cochlear outer hair cell electromotility. Mol Phylogenet Evol. 2006 Dec;41(3):622–635.
  • Vetter DE, Katz E, Maison SF, et al. The alpha10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocochlear system. Proc Natl Acad Sci U S A. [2007 Dec 18];104(51):20594–20599.
  • Katz E, Elgoyhen AB, Gomez-Casati ME, et al. Developmental regulation of nicotinic synapses on cochlear inner hair cells. J Neurosci. [2004 Sep 8];24(36):7814–7820.
  • Morley B, Li H, Hiel H, et al. Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization. Molec Brain Res. 1998;53:78–87.
  • Vetter DE, Liberman MC, Mann J, et al. Role of alpha9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation. Neuron. 1999 May;23(1):93–103.
  • Elgoyhen AB, Katz E, Fuchs PA. The nicotinic receptor of cochlear hair cells: a possible pharmacotherapeutic target? Biochem Pharmacol. 2009 Oct 1;78(7):712–719.
  • Fuchs PA, Murrow BW. Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci. 1992 Mar;12(3):800–809.
  • Glowatzki E, Fuchs PA. Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science. 2000 Jun 30;288(5475):2366–2368.
  • Oliver D, Klocker N, Schuck J, et al. Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron. 2000;26:595–601.
  • Dulon D, Lenoir M. Cholinergic responses in developing outer hair cells of the rat cochlea. European J Neurosci. 1996;8:1945–1952.
  • Dulon D, Luo L, Zhang C, et al. Expression of small-conductance calcium-activated potassium channels (SK) in outer hair cells of the rat cochlea. Eur J Neurosci. 1998;10:907–915.
  • Moglie MJ, Fuchs PA, Elgoyhen AB, et al. Compartmentalization of antagonistic Ca(2+) signals in developing cochlear hair cells. Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E2095–e104.
  • Moglie MJ, Wengier DL, and Elgoyhen AB, et al. Synaptic contributions to cochlear outer hair cell Ca(2+) dynamics. J Neurosci. 2021 Aug 11;41(32):6812–6821.
  • Dallos P Cochlear amplification, outer hair cells and prestin. Curr Opin Neurobiol . 2008 Aug;18(4):370376.
  • Zheng J, Shen W, He DZ, et al. Prestin is the motor protein of cochlear outer hair cells. Nature. 2000 May 11;405(6783):149–155.
  • Liberman MC, Brown MC. Physiology and anatomy of single olivocochlear neurons in the cat. Hear Res. 1986;24(1):17–36.
  • Wiederhold ML, Kiang NY. Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am. 1970 Oct;48(4):950–965.
  • Gifford ML, Guinan JJ Jr. Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear Res. 1987;29(2–3):179–194.
  • Galambos R. Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J Neurophysiol. 1956 Sep;19(5):424–437.
  • Guinan JJ. Physiology of the Medial and Lateral Olivocochlear Systems. In: Ryugo DK, Fay RR, Popper AN, editors. Auditory and Vestibular Efferents. New York: Springer; 2011. p. 39–81.
  • Maison SF, Luebke AE, Liberman MC, et al. Efferent protection from acoustic injury is mediated via α9 nicotinic acetylcholine receptors on outer hair cells. J Neurosci. 2002 Dec 15; 22(24):10838–10846.
  • Taranda J, Maison SF, and Ballestero JA, et al. A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection. PLoS Biol. 2009 Jan 20 7(1):e18.
  • Liberman MC. The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury. J Neurophysiol. 1991 Jan;65(1):123–132.
  • Maison SF, Liberman MC. Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J Neurosci. 2000 Jun 15; 20(12):4701–4707.
  • Kujawa SG, Liberman MC. Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery. J Neurophysiol. 1997 Dec;78(6):3095–3106.
  • Handrock M, Zeisberg J. The influence of the efferent system on adaptation, temporary and permanent threshold shift. archives of Oto-Rhino-Laryngology. 1982;234(2):191–195.
  • Liberman MC, Gao W-Y. Chronic cochlear de-efferentation and susceptibility to permanent acoustic injury. Hear Res. 1995 Oct;90(1–2):158–168.
  • Rajan R. Centrifugal pathways protect hearing sensitivity at the cochlea in noisy environments that exacerbate the damage induced by loud sound. J Neurosci. 2000 Sep 01; 20(17):6684–6693.
  • Rajan R. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters. J Neurophysiol. 1988;60:549–568.
  • Rajan R. Functions of the efferent pathways to the mammalian cochleaIn: Mark Rowe,Lindsay Aitkin.Information Processing in Mammalian Auditory and Tactile Systems. Wiley-Liss, New York: Alan R. Liss, Inc; 1990. p. 81–96.
  • Reiter ER, Liberman MC. Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation. J Neurophysiol. 1995 Feb;73(2):506–514.
  • Maison SF, Usubuchi H, Liberman MC. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci. 2013 Mar 27; 33(13):5542–5552.
  • Ballestero J, Zorrilla de San Martin J, Goutman J, et al. Short-term synaptic plasticity regulates the level of olivocochlear inhibition to auditory hair cells. J Neurosci. 2011 Oct 12; 31(41):14763–14774.
  • Wedemeyer C, Vattino LG, Moglie MJ, et al. A gain-of-function mutation in the α9 nicotinic acetylcholine receptor alters medial olivocochlear efferent short-term synaptic plasticity. J Neurosci. 2018 Apr 18 38(16):3939–3954.
  • Plazas PV, De Rosa MJ, Gomez-Casati ME, et al. Key roles of hydrophobic rings of TM2 in gating of the α 9 α 10 nicotinic cholinergic receptor. Br J Pharmacol. 2005 Aug;145(7):963–974.
  • Boero LE, Castagna VC, and Di Guilmi MN, et al. Enhancement of the medial olivocochlear system prevents hidden hearing loss. J Neurosci. 2018 Aug 22; 38(34):7440–7451.
  • Guinan JJ Jr., Stankovic KM. Medial efferent inhibition produces the largest equivalent attenuations at moderate to high sound levels in cat auditory-nerve fibers. J Acoust Soc Am. 1996 Sep;100(3):1680–1690.
  • Maison SF, Parker LL, Young L, et al. Overexpression of SK2 channels enhances efferent suppression of cochlear responses without enhancing noise resistance. J Neurophysiol. 2007 Apr;97(4):2930–2936.
  • Weisstaub N, Vetter DE, Elgoyhen AB, et al. The α9α10 nicotinic acetylcholine receptor is permeable to and is modulated by divalent cations. Hear Res. 2002 May;167(1–2):122–135.
  • Zhang M, Kalinec GM, Urrutia R, et al. ROCK-dependent and ROCK-independent control of cochlear outer hair cell electromotility. J Biol Chem. 2003 Sep 12; 278(37):35644–35650.
  • Sziklai I. Phosphorylation mediates the influence of acetylcholine upon outer hair cell electromotility. Acta Otolaryngol. 2001 Jan;121(2):153–156.
  • Cerella C, Diederich M, Ghibelli L. The dual role of calcium as messenger and stressor in cell damage, death, and survival. Int J Cell Biol. 2010;2010:546163.
  • Kurabi A, Keithley EM, Housley GD, et al. Cellular mechanisms of noise-induced hearing loss. Hear Res. 2017 Jun;349:129–137.
  • Henderson D, Bielefeld EC, Harris KC, et al. The role of oxidative stress in noise-induced hearing loss. Ear & Hearing. 2006 Feb;27(1):1–19.
  • Miningou N, Blackwell KT. The road to ERK activation: do neurons take alternate routes? Cell Signal. 2020 Apr;68:109541.
  • Chen J, Yuan H, Talaska AE, et al. Increased sensitivity to noise-induced hearing loss by blockade of endogenous pi3k/akt signaling. J Assoc Res Otolaryngol. 2015 Jun;16(3):347–356.
  • Fuchs PA, Lehar M, and Hiel H. Ultrastructure of cisternal synapses on outer hair cells of the mouse cochlea. J Comp Neurol. 2014 Feb 15;522(3):717–29.
  • Saito K. Fine structure of the sensory epithelium of guinea-pig organ of Corti: subsurface cisternae and lamellar bodies in the outer hair cells. Cell Tissue Res. 1983;229(3):467–81.
  • Evans MG, Lagostena L, Darbon P, and Mammano F. Cholinergic control of membrane conductance and intracellular free Ca2+ in outer hair cells of the guinea pig cochlea. Cell Calcium. 2000 Sep;28(3):195–203.
  • Lioudyno M, Hiel H, Kong JH, Katz E, Waldman E, and Parameshwaran-Iyer Set al, A ”synaptoplasmic cistern” mediates rapid inhibition of cochlear hair cells. J Neurosci 2004 Dec 08;24(49):11160–4.
  • Sridhar TS, Brown MC, and Sewell WF. Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales. J Neurosci 1997 Jan 01;17(1):428–37.
  • Liberman MC, Liberman LD, Maison SF. Efferent feedback slows cochlear aging. J Neurosci. 2014 Mar 26;34(13):4599–4607.
  • Zhu X, Vasilyeva ON, Kim S, et al. Auditory efferent feedback system deficits precede age-related hearing loss: contralateral suppression of otoacoustic emissions in mice. J Comp Neurol. [2007 Aug 10];503(5):593–604.
  • Fu B, Le Prell C, Simmons D, et al. Age-related synaptic loss of the medial olivocochlear efferent innervation. Mol Neurodegener. 2010 Nov 26;5:53.
  • Liberman LD, Liberman MC. Cochlear efferent innervation is sparse in humans and decreases with age. J Neurosci. 2019 Nov 27;39(48):9560–9569.
  • Zettel ML, Zhu X, O’Neill WE, et al. Age-related decline in Kv3.1b expression in the mouse auditory brainstem correlates with functional deficits in the medial olivocochlear efferent system. J Assoc Res Otolaryngol. 2007 Jun;8(2):280–293.
  • Boero LE, Castagna VC, and Terreros G, et al. Preventing presbycusis in mice with enhanced medial olivocochlear feedback. Proc Natl Acad Sci U S A. [2020 May 26];117(21):11811–11819.
  • Wang J, and Lindstrom J. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors. Br J Pharmacol. 2018 Jun;175(11):1805–1821.
  • Jain A, Kuryatov A, Wang J, et al. Unorthodox acetylcholine binding sites formed by α5 and β3 accessory subunits in α4β2* nicotinic acetylcholine receptors. J Biol Chem. 2016 Nov 4;291(45):23452–23463.
  • Mazzaferro S, Bermudez I, Sine SM. Potentiation of a neuronal nicotinic receptor via pseudo-agonist site. Cell Mol Life Sci. 2019 Mar;76(6):1151–1167.
  • Mazzaferro S, Benallegue N, Carbone A, et al. Additional acetylcholine (ACh) binding site at alpha4/alpha4 interface of (alpha4beta2)2alpha4 nicotinic receptor influences agonist sensitivity. J Biol Chem. [2011 Sep 2];286(35):31043–31054.
  • Harpsøe K, Ahring PK, Christensen JK, et al. Unraveling the high- and low-sensitivity agonist responses of nicotinic acetylcholine receptors. J Neurosci. 2011 Jul 27;31(30):10759–10766.
  • Wang J, Kuryatov A, Sriram A, et al. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors. J Biol Chem. [2015 May 29];290(22):13907–13918.
  • Williams DK, Wang J, Papke RL. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem Pharmacol. 2011 Oct 15;82(8):915–930.
  • Chatzidaki A, Millar NS. Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol. 2015 Oct 15;97(4):408–417.
  • Grupe M, Grunnet M, Bastlund JF, et al. Targeting α4β2 nicotinic acetylcholine receptors in central nervous system disorders: perspectives on positive allosteric modulation as a therapeutic approach. Basic Clin Pharmacol Toxicol. 2015 Mar;116(3):187–200.
  • Grønlien JH, Håkerud M, Ween H, et al. Distinct profiles of alpha7 nAChR positive allosteric modulation revealed by structurally diverse chemotypes. Mol Pharmacol. 2007 Sep;72(3):715–724.
  • Collins T, Young GT, Millar NS. Competitive binding at a nicotinic receptor transmembrane site of two α7-selective positive allosteric modulators with differing effects on agonist-evoked desensitization. Neuropharmacology. 2011 Dec;61(8):1306–1313.
  • Nielsen BE, Stabile S, Vitale C, et al. Synthesis, and Functional Evaluation of a Novel Series of Phosphonate-Functionalized 1,2,3-Triazoles as Positive Allosteric Modulators of α7 Nicotinic Acetylcholine Receptors. ACS Chem Neurosci. 2020 Sep 2;11(17):2688–2704.
  • Wang J, Kuryatov A, Jin Z, et al. A Novel α2/α4 Subtype-selective Positive Allosteric Modulator of Nicotinic Acetylcholine Receptors Acting from the C-tail of an α Subunit. J Biol Chem. [2015 Nov 27];290(48):28834–28846.
  • Gill JK, Savolainen M, Young GT, et al. Agonist activation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5867–5872.
  • Horenstein NA, Papke RL, Kulkarni AR, et al. Critical Molecular Determinants of α7 Nicotinic Acetylcholine Receptor Allosteric Activation: SEPARATION OF DIRECT ALLOSTERIC ACTIVATION AND POSITIVE ALLOSTERIC MODULATION. J Biol Chem. [2016 Mar 4];291(10):5049–5067.
  • Gotti C, Riganti L, Vailati S, et al. Brain neuronal nicotinic receptors as new targets for drug discovery. Curr Pharm Des. 2006;12(4):407–428.
  • Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. 2013 Jan;137(1):22–54.
  • Morley BJ, Whiteaker P, Elgoyhen AB. Commentary: nicotinic Acetylcholine Receptor α9 and α10 Subunits Are Expressed in the Brain of Mice. Front Cell Neurosci. 2018;12:104.
  • Zuo J, Treadaway J, Buckner TW, et al. Visualization of alpha9 acetylcholine receptor expression in hair cells of transgenic mice containing a modified bacterial artificial chromosome. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14100–14105.
  • Allen Institute for Brain Science. Allen Brain Atlas API 2015 . Available from: https://mouse.brain-map.org. Accessed 2021 November 15.
  • Hone AJ, Servent D, McIntosh JM. α9-containing nicotinic acetylcholine receptors and the modulation of pain. Br J Pharmacol. 2018 Jun;175(11):1915–1927.
  • Romero HK, Christensen SB, Di Cesare Mannelli L, et al. Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain. Proc Natl Acad Sci U S A. [2017 Mar 7];114(10):E1825–e32.
  • Hone AJ, McIntosh JM. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain. FEBS Lett. 2018 Apr;592(7):1045–1062.
  • Christensen SB, Hone AJ, Roux I, et al. RgIA4 Potently Blocks Mouse α9α10 nAChRs and Provides Long Lasting Protection against Oxaliplatin-Induced Cold Allodynia. Front Cell Neurosci. 2017;11:219.
  • Liu Q, Li M, and Whiteaker P, et al. Attenuation in Nicotinic Acetylcholine Receptor α9 and α10 Subunit Double Knock-Out Mice of Experimental Autoimmune Encephalomyelitis. Biomolecules. 2019 Dec 4;9(12):827.
  • Simard AR, Gan Y, St-Pierre S, et al. Differential modulation of EAE by α9*- and β2*-nicotinic acetylcholine receptors. Immunol Cell Biol. 2013 Mar;91(3):195–200.
  • Plazas PV, Savino J, Kracun S, et al. Inhibition of the alpha9alpha10 nicotinic cholinergic receptor by neramexane, an open channel blocker of N-methyl-D-aspartate receptors. Eur J Pharmacol. [2007 Jul 2];566(1–3):11–19.
  • Rammes G. Neramexane: a moderate-affinity NMDA receptor channel blocker: new prospects and indications. Expert Rev Clin Pharmacol. 2009 May;2(3):231–238.
  • Sun Z, Zhangsun M, and Dong S, et al. Differential expression of nicotine acetylcholine receptors associates with human breast cancer and mediates antitumor activity of αO-conotoxin GeXIVA. Mar Drugs. 2020 Jan 17;18:(1):195.
  • Luo S, Zhangsun D, Harvey PJ, et al. Cloning, synthesis, and characterization of αO-conotoxin GeXIVA, a potent α9α10 nicotinic acetylcholine receptor antagonist. Proc Natl Acad Sci U S A. [2015 Jul 28];112(30):E4026–35.
  • Boffi JC, Wedemeyer C, Lipovsek M, et al. Positive modulation of the alpha9alpha10 nicotinic cholinergic receptor by ascorbic acid. Br J Pharmacol. 2013 Feb;168(4):954–965.
  • Gu S, Knowland D, and Matta JA, et al. Hair cell α9α10 nicotinic acetylcholine receptor functional expression regulated by ligand binding and deafness gene products. Proc Natl Acad Sci U S A. [2020 Sep 29];117(39):24534–24544.
  • Kryukova EV, Ivanov IA, and Lebedev DS, et al. Orthosteric and/or Allosteric Binding of α-Conotoxins to Nicotinic Acetylcholine Receptors and Their Models. Mar Drugs. 2018 Nov 22;16:(12):460.
  • Giastas P, Zouridakis M, Tzartos SJ. Understanding structure-function relationships of the human neuronal acetylcholine receptor: insights from the first crystal structures of neuronal subunits. Br J Pharmacol. 2018 Jun;175(11):1880–1891.
  • Moglie MJ, Marcovich I, Corradi J, et al. Loss of Choline Agonism in the Inner Ear Hair Cell Nicotinic Acetylcholine Receptor Linked to the α10 Subunit. Front Mol Neurosci. 2021;14:639720.
  • Papke RL, Andleeb H, and Stokes C, et al. Selective Agonists and Antagonists of α9 Versus α7 Nicotinic Acetylcholine Receptors. ACS Chem Neurosci . 2022 15 FebFeb 15;13(5):624–637.
  • Sigel E, Ernst M. The Benzodiazepine Binding Sites of GABA(A) Receptors. Trends Pharmacol Sci. 2018 Jul;39(7):659–671.
  • Smelt CLC, Sanders VR, Newcombe J, et al. Identification by virtual screening and functional characterisation of novel positive and negative allosteric modulators of the α7 nicotinic acetylcholine receptor. Neuropharmacology. 2018 Sep 1;139:194–204.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.