428
Views
2
CrossRef citations to date
0
Altmetric
Review

Targeting fetal hemoglobin expression to treat β hemoglobinopathies

Pages 347-359 | Received 30 Dec 2021, Accepted 12 Apr 2022, Published online: 26 Apr 2022

References

  • Steinberg MH, Forget BG, Higgs DR, et al., (editors). Disorders of hemoglobin: genetics, pathophysiology, clinical management.2nd. Cambridge University Press: Cambridge; 2009. p. 826.
  • Gladwin MT, Kato GJ, Novelli EM, editor. Sickle cell disease. McGraw Hill. 2021. p.692
  • Weatherall DJ, Clegg JB, eds. The thalassaemia syndromes. 4th ed. Wiley-Blackwell; 2008. p. 864.
  • Leonova JY, Kazanetz EG, Smetanina NS, et al. Variability in the fetal hemoglobin level of the normal adult. Am J Hematol. 1996;53(2):59–65.
  • Lin J, Ye Y, Shang X, et al. TEA domain transcription factor 4 modulates repression of fetal haemoglobin by direct binding to the γ-globin gene promoters. Br J Haematol. 2021;195(5):764–769.
  • Steinberg MH. Fetal hemoglobin in sickle cell anemia. Blood. 2020 Nov 19;136(21):2392–2400.
  • Akinsheye I, Alsultan A, Solovieff N, et al., Fetal hemoglobin in sickle cell anemia. Blood. 2011;118(1):19–27.
  • Steinberg MH. Fetal hemoglobin in sickle hemoglobinopathies: high HbF genotypes and phenotypes. J Clin Med. 2020;9(11):3782.
  • Wienert B, Martyn GE, Funnell APW, et al. Wake-up sleepy gene: reactivating fetal globin for beta-hemoglobinopathies. Trends Genet. 2018;34(12):927–940.
  • Yu L, Myers G, Engel JD. Small molecule therapeutics to treat the β-globinopathies. Curr Opin Hematol. 2020;27(3):129–140.
  • Shen Y, Verboon JM, Zhang Y, et al. A unified model of human hemoglobin switching through single-cell genome editing. Nat Commun. 2021;12(1):4991.
  • Xu J, Bauer DR, Kerenyi MA, et al. Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc Natl Acad Sci USA. 2013;110(16):6518–6523.
  • Orkin SH. Molecular Medicine: found in translation. Med (NY). 2021;2:122–136.
  • Liu N, Hargreaves VV, Zhu Q, et al. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell. 2018;173(2):430–442.
  • Sankaran VG, Xu J, Byron R, et al. A functional element necessary for fetal hemoglobin silencing. N Engl J Med. 2011;365(9):807–814.
  • Menzel S, Garner C, Gut I, et al., A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet. 2007;39(10):1197–1199.
  • Sedgewick A, Timofeev N, Sebastiani P, et al. BCL11A (2p16) is a major HbF quantitative trait locus in three different populations. Blood Cells Mol Dis. 2008;41(3):255–258.
  • Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proc Natl Acad Sci USA. 2008;105(5):1620–1625.
  • Lettre G, Sankaran VG, Bezerra MA, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and β- globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci USA. 2008;105(33):11869–11874.
  • Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322(5909):1839–1842.
  • Xu J, Peng C, Sankaran VG, et al. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science. 2011;334(6058):993–996.
  • Masuda T, Wang X, Maeda M, et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science. 2016;351(6270):285–289.
  • Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013;342(6155):253–257.
  • Canver MC, Smith EC, Sher F, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527(7577):192–197.
  • Liu N, Xu S, Yao Q, et al. Transcription factor competition at the γ-globin promoters controls hemoglobin switching. Nat Genet. 2021;53(4):511–520.
  • Traxler EA, Yao Y, Wang, et al. Editing a 13 bp sequence in the HBG promoters. a genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. 2016;22(9):987–990.
  • Frangoul H, Altshuler D, Cappellini MD, et al., CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252–260.
  • Esrick EB, Lehmann LE, Biffi A, et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med. 2021;384(3):205–215.
  • Hofrichter J, Ross PD, Eaton WA. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc Natl Acad Sci USA. 1974;71(12):4864–4868.
  • Schechter AN, Noguchi CT. Sickle hemoglobin polymerization: structure-function correlates, in, sickle cell disease: basic principles and clinical practice. Embury SH, Hebbel RP, Mohandas N, et al., eds. Raven: NY; 1994. p. 902.
  • Nagel RL, Bookchin RM, Johnson J, et al. Structural bases of the inhibitory effects of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S. Proc Natl Acad Sci USA. 1979;76(2):670–672.
  • Bookchin RM, Balazs T, Nagel RL, et al. Polymerisation of haemoglobin SA hybrid tetramers. Nature. 1977;269(5628):526–527.
  • Khandros E, Blobel GA. Heterogeneity of fetal hemoglobin production in adult red blood cells. Curr Opin Hematol. 2021;28(3):164–170.
  • Khandros E, Huang P, Peslak SA, et al. Isolated changes in chromatin accessibility and enhancer-promoter contacts at the β-globin locus distinguish fetal hemoglobin producing F-cells from A-cells. Blood. 2021;138(Supplement 1):855. https://ash.confex.com/ash/2021/webprogram/Paper149877.html,855
  • Dover GJ, Boyer SH. Fetal hemoglobin-containing cells have the same mean corpuscular hemoglobin as cells without fetal hemoglobin: a reciprocal relationship between gamma- and beta-globin gene expression in normal subjects and in those with high fetal hemoglobin production. Blood. 1987;69(4):1109–1113.
  • Dover GJ, Boyer SH, Charache S, et al. Individual variation in the production and survival of F cells in sickle-cell disease. N Engl J Med. 1978;299(26):1428–1435.
  • Boyer S, Belding T, Margolet L, et al. Fetal hemoglobin restriction to a few erythrocytes (F cells) in normal human adults. Science. 1975;188(4186):361–363.
  • Steinberg MH, Chui DH, Dover GJ, et al. Fetal hemoglobin in sickle cell anemia: a glass half full? Blood. 2014 23; 123(4):481–485. and references therein.
  • Hebert N, Rakotoson MG, Bodivit G, et al. Individual red blood cell fetal hemoglobin quantification allows to determine protective thresholds in sickle cell disease. Am J Hematol. 2020;95(11):1235–1245.
  • Franco RS, Yasin Z, Palascak MB, et al. The effect of fetal hemoglobin on the survival characteristics of sickle cells. Blood. 2006;108(3):1073–1076.
  • Prus E, Fibach E. Heterogeneity of F-cells in β-thalassemia. Transfusion. 2013;53(3):499–504.
  • Vathipadiekal V, Alsultan A, Baltrusaitis K, et al. Homozygosity for a haplotype in the HBG2-OR51B4 region is exclusive to Arab-Indian haplotype sickle cell anemia. Am J Hematol. 2016;9(6):E308–E311.
  • Al-Ali AK, Alsulaiman A, Alzahrani AJ, et al. Prevalence and diversity of haplotypes of sickle cell disease in the Eastern province of Saudi Arabia. Hemoglobin. 2020;44(2):78–81.
  • Shaikho EM, Farrell JJ, Alsultan A, et al. Genetic determinants of HbF in Saudi Arabian and African Benin haplotype sickle cell anemia. Am J Hematol. 2017;92(9):E555–E557.
  • Vathipadiekal V, Farrell JJ, Wang S, et al. A candidate transacting modulator of fetal hemoglobin gene expression in the Arab-Indian haplotype of sickle cell anemia. Am J Hematol. 2016;91(11):1118–1122.
  • Steinberg MH, Lu ZH, Barton FB, et al. Fetal hemoglobin in sickle cell anemia: determinants of response to hydroxyurea. Multicenter Study of Hydroxyurea. Blood. 1997;89(3):1078–1088.
  • https://imagebank.hematology.org/image/3061/hemoglobin-shpfh.
  • Hoyer JD, Penz CS, Fairbanks VF, et al. Flow cytometric measurement of hemoglobin F in RBCs: diagnostic usefulness in the distinction of hereditary persistence of fetal hemoglobin (HPFH) and hemoglobin S-HPFH from other conditions with elevated levels of hemoglobin F. Am J Clin Pathol. 2002;117(6):857–863.
  • Ngo DA, Aygun B, Akinsheye I, et al. Fetal haemoglobin levels and haematological characteristics of compound heterozygotes for haemoglobin S and deletional hereditary persistence of fetal haemoglobin. Br J Haematol. 2012;156(2):259–264.
  • Alsultan A, Alabdulaali MK, Griffin PJ, et al. Sickle cell disease in Saudi Arabia: the phenotype in adults with the Arab-Indian haplotype is not benign. Br J Haematol. 2014;164(4):597–604.
  • Akinsheye I, Solovieff N, Ngo D, et al. Fetal hemoglobin in sickle cell anemia: molecular characterization of the unusually high fetal hemoglobin phenotype in African Americans. Am J Hematol. 2012;87(2):217–219.
  • Hariharan P, Kishnani P, Sawant P, et al. Genotypic-phenotypic heterogeneity of delta beta-thalassemia and hereditary persistence of fetal hemoglobin (HPFH) in India. Ann Hematol. 2020;99(7):1475–1483.
  • Perrine RP, Pembrey ME, John P, et al. Natural history of sickle cell anemia in Saudi Arabs. A study of 270 subjects. Ann Intern Med. 1978;88(1):1–6.
  • Perrine RP, John P, Pembrey M, et al. Sickle cell disease in Saudi Arabs in early childhood. Arch Dis Child. 1981;56(3):187–192.
  • Henry ER, Cellmer T, Dunkelberger EB, et al. Allosteric control of hemoglobin S fiber formation by oxygen and its relation to the pathophysiology of sickle cell disease. Proc Natl Acad Sci USA. 2020;117(26):15018–15027.
  • Maier-Redelsperger M, Noguchi CT, de Montalembert M, et al. Variation in fetal hemoglobin parameters and predicted hemoglobin S polymerization in sickle cell children in the first two years of life: Parisian prospective study on sickle cell disease. Blood. 1994;84(9):3182–3188.
  • Horiuchi K, Osterhout ML, Kamma H, et al. Estimation of fetal hemoglobin levels in individual red cells via fluorescence image cytometry. Cytometry1995. 1995;20(3):261–267.
  • McGann PT, Ware RE. Hydroxyurea therapy for sickle cell anemia. Expert Opin Drug Saf. 2015;14(11):1749–1758.
  • Charache S, Terrin ML, Moore RD, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the multicenter study of hydroxyurea in sickle cell anemia. N Engl J Med. 1995;332(20):1317–1322.
  • Charache S, Barton FB, Moore RD, et al. Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive “switching” agent. The multicenter study of hydroxyurea in sickle cell anemia. Medicine (Baltimore). 1996;75(6):300–326.
  • Wang WC, Ware RE, Miller ST, et al. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet. 2011;377(9778):1663–1672.
  • McGann PT, Niss O, Dong M, et al. Robust clinical and laboratory response to hydroxyurea using pharmacokinetically guided dosing for young children with sickle cell anemia. Am J Hematol. 2019;94(8):871–879.
  • Khandros E, Huang P, Peslak SA, et al. Understanding heterogeneity of fetal hemoglobin induction through comparative analysis of F and A erythroblasts. Blood. 2020;135(22):1957–1968.
  • Dulmovits BM, Appiah-Kubi AO, Papoin J, et al. Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors. Blood. 2016;127(11):1481–1492.
  • Le CQ, Myers G, Habara A, et al. Inhibition of LSD1 by small molecule inhibitors stimulates fetal hemoglobin synthesis. Blood. 2019;133(22):2455–2459.
  • Sun Y, Habara A, Le CQ, et al. Pharmacologic induction of PGC −1α stimulates fetal haemoglobin gene expression. Br J Haematol. 2022;197(1):97–109.
  • Molokie R, Lavelle D, Gowhari M, et al. Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: a randomized phase 1 study. PLoS Med. 2017;14(9):e1002382.
  • Renneville A, Van Galen P, Canver MC. Canver MC, et al.EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood. 2015;126(16):1930–1939.
  • Charnigo RJ, Beidler D, Rybin D, et al. PF −04447943, a Phosphodiesterase 9A inhibitor, in stable sickle cell disease patients: a phase ib randomized, placebo-controlled study. Clin Transl Sci. 2019;12(2):180–188.
  • Krishnamoorthy S, Pace B, Gupta D, et al. Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease. JCI Insight. 2017;2(20). pii: 96409. https://doi.org/10.1172/jci.insight.96409.
  • Dai Y, Shaikho EM, Perez J, et al. BCL2L1 is associated with γ-globin gene expression. Blood Adv. 2019;3(20):2995–3001.
  • Dai Y, Chen T, Ijaz H, et al. SIRT1 activates the expression of fetal hemoglobin genes. Am J Hematol. 2017;92(11):1177–1186.
  • Yu X, Azzo A, Bilinovich SM, et al. Disruption of the MBD2-NuRD complex but not MBD3-NuRD induces high level HbF expression in human adult erythroid cells. Haematologica. 2019;104(12):2361–2371.
  • Peslak SA, Khandros E, Huang P, et al. Protein phosphatase 6c (PPP6C) loss significantly raises fetal hemoglobin levels and reduces cell sickling. Blood. 2021;138(Supplement 1):2031.
  • Nataraja S, Singh M, Demes S, et al. A Novel BACH1 inhibitor that Induces fetal hemoglobin in treatment of sickle cell disease. Blood. 2021;138(Supplement 1):854.
  • Li X, Chen M, Liu B, et al. Transcriptional silencing of fetal hemoglobin expression by NonO. Nucl Acids Res. 2021;49(17):9711–9723.
  • Grevet JD, Lan X, Hamagami N, et al. Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Science. 2018;36(6399):285–290.
  • Huang P, Peslak SA, Lan X, et al. The HRI-regulated transcription factor ATF4 activates BCL11A transcription to silence fetal hemoglobin expression. Blood. 2020;135(24):2121–2132.
  • Lan X, Ren R, Feng R, et al. ZNF410 uniquely activates the NuRD component CHD4 to silence fetal hemoglobin expression. Mol Cell. 2021;81(2):1032–1033.
  • Vinjamur DS, Yao Q, Cole MA, et al. ZNF410 represses fetal globin by singular control of CHD4. Nat Genet. 2021;53:719–728.
  • Matson D, Xie K, Roth M, et al. Ftx-6058 induces fetal hemoglobin production and ameliorates disease pathology in sickle mice. Blood. 2021;138(Supplement 1):2018.
  • Lan X, Khandros E, Huang P, et al. The E3 ligase adaptor molecule SPOP regulates fetal hemoglobin levels in adult erythroid cells. Blood Adv. 2019;3(10):1586–1597.
  • Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion Independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature. 2010;467(7313):318–322.
  • Thompson AA, Walters MC, Kwiatkowski J, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2018;378(16):1479–1493.
  • Ribeil JA, Hacein-Bey-Abina S, Payen E, et al. Gene therapy in a patient with sickle cell disease. N Engl J Med. 2017;376(9):848–855.
  • Yannaki E, Locatelli F, Kwiatkowski JL, et al. Betibeglogene autotemcel gene therapy for the treatment of transfusion-dependent β-thalassemia: updated long-term efficacy and safety results/. HemaSphere. 2021;5(S2). https://doi.org/10.1097/HS9.0000000000000487.
  • Locatelli F, Thompson AA, Kwiatkowski JL, et al. Betibeglogene autotemcel gene therapy for non-β0/β0 genotype β-thalassemia. N Engl J Med.2021 Dec 11. https://doi.org/10.1056/NEJMoa2113206. *Longer. *Longerterm effects of additive gene therapy in β thalassemia.
  • Kanter J, Walters MC, Krishnamurti L, et al., Biologic and clinical efficacy of LentiGlobin for sickle cell disease. N Engl J Med. 2022;386(7):617–628.
  • Tisdale JF, Thompson AA, Mapara MY, et al. Polyclonality strongly correlates with biological outcomes and is significantly increased following improvements to the phase 1/2 Hgb-206 protocol and. manufacturing of lentiglobin for sickle cell disease (SCD: bb1111) gene therapy (GT). Blood. 2021;138(Supplement 1):561.
  • Hsieh MM, Bonner M, Pierciey FJ, et al. Myelodysplastic syndrome unrelated to lentiviral vector in a patient treated with gene therapy for sickle cell disease. Blood Adv. 2020;4:2058–2063.
  • Goyal S, Tisdale J, Schmidt M, et al. Acute myeloid leukemia case after gene therapy for sickle cell disease. N Engl Med. 2021. https://doi.org/10.1056/NEJMoa2109167.
  • Grimley G, Asnani M, Shrestha A, et al. Safety and efficacy of Aru-1801 in patients with sickle cell disease: early results from the phase 1/2 momentum study of a modified gamma globin gene therapy and reduced intensity conditioning. Blood. 2021;138(Supplement 1).
  • Brendel C, Guda S, Renella R, et al. Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. J Clin Invest. 2016;126(10):3868–3878.
  • Di Caprio G, Schonbrun E, Gonçalves BP, et al. High-throughput assessment of hemoglobin polymer in single red blood cells from sickle cell patients under controlled oxygen tension. Proc Natl Acad Sci USA. 2019;116(50):25236–25242.
  • De Souza DC, Esrick EB, Hebert N, et al. Effects of BCL11A shmir-induced post-transcriptional silencing on hemoglobin polymer inhibition in single red blood cells at physiologic oxygen tension. Blood. 2021;138(Supplement 1):964.
  • Grupp S, Bloberger N, Campbell G, et al. CTX001 for sickle cell disease: safety and efficacy results from the ongoing Climb SCD-121 study of autologous CRISPR-Cas9-modified CD34+ hematopoietic stem and progenitor cells. HemaSphere. 2021;5:S2 365.
  • Locatelli F, Ailinca-Lucher S, Bobruf Y, et al. CTX001 for transfusion-dependent β thalassemia: safety and efficacy results from the ongoing Climb thal-111 study of autologous CRISPR-Cas9-modified CD34+ hematopoietic stem and progenitor cells. HemaSphere. 2021;5(S2):335.
  • Alavi A, Krishnamurti L, Abedi M, et al. Preliminary safety and efficacy results from precizn-1: an ongoing phase 1/2 study on zinc finger nuclease-modified autologous CD34+ hspcs for sickle cell disease (scd). Blood. 2021;138(Supplement 1):2930.
  • Cheng L, Li Y, Qi Q, et al. Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglobin expression. Nat Genet. 2021;63(6):869–880.
  • Antoniou P, Hardouin G, Matinucci P. Base editing-mediated dissection of the −200 region of the γ-globin promoters to induce fetal hemoglobin and rescue sickle cell disease and β-thalassemia. Blood. 2021;138(Supplement 1):562.
  • Topfer SK, Feng R, Huang P, et al. Disrupting the adult-globin promoter alleviates promoter competition and reactivates fetal-globin gene expression. Blood. 2022;2021014205. Jan 28;blood. https://doi.org/10.1182/blood.2021014205.
  • Han Y, Tan X, Jin T, et al. CRISPR/Cas9-based multiplex genome editing of BCL11A and HBG efficiently induces fetal hemoglobin expression. Eur J Pharmacol. 2022;918:174788.
  • Cull A, Chapman MS, Cuculescu M, et al. Clonal tracking by whole genome sequencing permits comprehensive mapping of the genome landscape in pre- and post-gene therapy sickle cell patients. Blood. 2021;138(Supplement 1):559.
  • Reiter CD, Wang X, Tanus-Santos JE, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med. 2002;8(12):1383–1389.
  • Charache S, Conley CL. Conley CL Hereditary persistence of fetal hemoglobin. Ann NY Acad Sci. 1969;165(1 Second Confer):37–41.
  • Maeda JS, Prasad K, Howard RJ, et al. Management of pregnancy when maternal blood has a very high level of fetal haemoglobin. Br J Haematol. 1994;88(2):432–434.
  • Ortner A, Zech H, Humpeler E, et al. May high oxygen affinity of maternal hemoglobin cause fetal growth retardation? Arch Gynecol. 1983;234:79–85.
  • Brown EG, Mendoza GJ, Chervenak FA, et al. The relationship of maternal erythrocyte oxygen transport parameters to intrauterine growth retardation. Am J Obstet Gynecol. 1990;162(1):223–229.
  • Mendoza GJ, Brown EG, Calem-Grunat J, et al. Intrauterine growth retardation related to maternal erythrocyte oxygen transport Adv Exp Med Biol. 1989;(248):377–386.
  • Henry ER, Metaferia B, Li Q, et al. Treatment of sickle cell disease by increasing oxygen affinity of hemoglobin. Blood. 2021;138(13):1172–1181.
  • Rangat N, Oliveira JL, Hoyer JD, et al. High-oxygen-affinity hemoglobinopathy-associated erythrocytosis: clinical outcomes and impact of therapy in 41 cases. Am J Hematol. 2021;96(12):1647–1654.
  • Charache S, Catalano P, Burns S, et al. Pregnancy in carriers of high-affinity hemoglobins. Blood. 1985;65:713–718.
  • Hebbel RP, Eaton JW, Kronenberg RS, et al. Human llamas: adaptation to altitude in subjects with high hemoglobin oxygen affinity. J Clin Invest. 1978;62(3):593–600.
  • Steinberg MH, Sebastiani P. Genetic modifiers of sickle cell disease. Am J Hematol. 2012;87(8):795–803.
  • Kato GJ, Gladwin MT, Steinberg MH. Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev. 2007;21(1):37–47.
  • Kato GJ, Steinberg MH, Gladwin MT. Intravascular hemolysis and the pathophysiology of sickle cell disease. J Clin Invest. 2017;127(3):750–760.
  • Lattanzi A, Camarena J, Lahiri P, et al. Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Sci Trans Med. 2021;13(598):eabf2444.
  • Eapen M, Brazauskas R, Walters MC, et al. Effect of donor type and conditioning regimen intensity on allogeneic transplantation outcomes in patients with sickle cell disease: a retrospective multicentre, cohort study. Lancet Haematol. 2019;6(11):e585–e596.
  • Piel FB, Patil AP, Howes RE, et al. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet. 2013;381(9861):142–151.
  • Porcu S, Simbula M, Marongiu MF, et al. Delta-globin gene expression improves sickle cell disease in a humanized mouse model. Br J Haematol. 2021;193(6):1228–1237.
  • Steinberg MH. HbA 2 induction: the merit of pancellularity in sickle cell disease. Br J Haematol. 2021;193(6):1032–1033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.