300
Views
0
CrossRef citations to date
0
Altmetric
Review

The adenosine A2A receptor is a therapeutic target in neurological, heart and oncogenic diseases

, , &
Pages 791-800 | Received 30 May 2022, Accepted 12 Oct 2022, Published online: 26 Oct 2022

References

  • Nelson D, Cox M.Lehninger principles of biochemistry. New York, NY, USA: W H Freeman & Co. 2017.
  • Burnstock G, Verkhratsky A. Evolutionary origins of the purinergic signalling system. Acta Physiol. 2009;195:415–447.
  • Verkhratsky A. Early evolutionary history (from bacteria to hemichordata) of the omnipresent purinergic signalling: a tribute to Geoff Burnstock inquisitive mind. Biochem Pharmacol. 2021;187:114261.
  • Centelles JJ, Cascante M, Canela EI, et al. A model for adenosine transport and metabolism. Biochem J. 1992;287(2):461–472.
  • Vinten-Johansen J, Zhao ZQ, Sato H. Reduction in surgical ischemic-reperfusion injury with adenosine and nitric oxide therapy. Ann Thorac Surg. 1995;60(3):852–857.
  • Llach A, Molina CE, Prat-Vidal C, et al. Abnormal calcium handling in atrial fibrillation is linked to up-regulation of adenosine A 2A receptors. Eur Heart J. 2011;32(6):721–729.
  • Hove-Madsen L, Prat-Vidal C, Llach A, et al. Adenosine A2A receptors are expressed in human atrial myocytes and modulate spontaneous sarcoplasmic reticulum calcium release. Cardiovasc Res. 2006;72(2):292–302 .
  • Baltos JA, Vecchio EA, Harris MA, et al. Capadenoson, a clinically trialed partial adenosine A1 receptor agonist, can stimulate adenosine A2B receptor biased agonism. Biochem Pharmacol. 2017;135:79–89.
  • Molina CE, Llach A, Herraiz-Martínez A, et al. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes. Basic Research in Cardiology. 2016;111(1):1–15.
  • Wolf MM, Berne RM. Coronary vasodilator properties of purine and pyrimidine derivatives. Circulation Research. 1956;4(3):343–348.
  • Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res. 1980;47(6):807–813.
  • Ayala A, Chaudry IH. Immune dysfunction in murine polymicrobial sepsis: mediators, macrophages, lymphocytes and apoptosis. Shock. 1996;6(Suppl 1):S27–S38.
  • Sitkovsky MV, Hatfield S, Abbott R, et al. Hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. Cancer Immunol Res. 2014;2(7):598–605.
  • Hatfield SM, Sitkovsky M. A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1α driven immunosuppression and improve immunotherapies of cancer. Current Opinion in Pharmacology. 2016;29:90–96.
  • Sitkovsky MV. Lessons from the A2A adenosine receptor antagonist– enabled tumor regression and survival in patients with treatment-refractory renal cell cancer. Cancer Discov. 2020;10(1):16–19.
  • Franco R, Valenzuela A, Lluis C, et al. Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunol Rev. 1998;161(1):27–42.
  • Valenzuela A, Blanco J, Callebaut C, et al. Adenosine deaminase binding to human CD26 Is inhibited by HIV-1 envelope glycoprotein gp120 and viral particles. J Immunol. 1997;158(8):3721–9.
  • Alexander SP, Christopoulos A, Davenport AP, et al. The concise guide to pharmacology 2021/22: g protein-coupled receptors. BrJ Pharmacol. 2021;178:S27–S156.
  • Rorke S, Holgate ST. Targeting adenosine receptors: novel therapeutic targets in asthma and chronic obstructive pulmonary disease. Am J Respir Med. 2002;1(2):99–105.
  • Ledent C, Vaugeoist JM, Schiffmann SN, et al. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature. 1997;388(6643):674–678.
  • Ochoa-Cortes F, Liñán-Rico A, Jacobson KA, et al. Potential for developing purinergic drugs for gastrointestinal diseases. Inflamm Bowel Dis. 2014;20(7):1259–1287.
  • Jung SM, Peyton L, Essa H, et al. Adenosine receptors: emerging non-opioids targets for pain medications. Neurobiol Pain (Cambridge, Mass). 2022;11. DOI:10.1016/J.YNPAI.2022.100087.
  • Pasquini S, Contri C, Merighi S, et al. Adenosine receptors in neuropsychiatric disorders: fine regulators of neurotransmission and potential therapeutic targets. International Journal of Molecular Sciences. 2022;23(3):1219.
  • Beaudoin MS, Graham TE. Methylxanthines and human health: epidemiological and experimental evidence. Handb Exp Pharmacol. 2011;200:509–548.
  • Longhi MS, Moss A, Jiang ZG, et al. Purinergic signaling during intestinal inflammation. J Mol Med. 2017;95(9):915–925.
  • Yan L, Burbiel JC, Maaß A, et al. Adenosine receptor agonists: from basic medicinal chemistry to clinical development. Expert Opin Emerg Drugs. 2003;8(2):537–576.
  • DiMarco JP, Miles W, Akhtar M, et al. Adenosine for paroxysmal supraventricular tachycardia: dose ranging and comparison with verapamil. Assessment in placebo-controlled, multicenter trials. Ann Int Med. 1990;113(2):104–110.
  • Mori A, Chen J-F, Uchida S, et al. The pharmacological potential of adenosine A 2A receptor antagonists for treating parkinson’s disease. Molecules. 2022;27(7):2366.
  • Berger AA, Winnick A, Welschmeyer A, et al. Istradefylline to treat patients with Parkinson’s disease experiencing “off” episodes: a comprehensive review. Neurol Int. 2020;12(3):109–129.
  • Chen JF, Cunha RA. The belated US FDA approval of the adenosine A 2A receptor antagonist istradefylline for treatment of Parkinson’s disease. Purinergic Signal. 2020;16(2):167–174.
  • Suzuki K, Miyamoto M, Miyamoto T, et al. Istradefylline improves daytime sleepiness in patients with Parkinson’s disease: an open-label, 3-month study. J Neurol Sci. 2017;380:230–233.
  • Franco R, Rivas-Santisteban R, Navarro G, et al. Adenosine receptor antagonists to combat cancer and to boost anti-cancer chemotherapy and immunotherapy. Cells. 2021;10(11):2831.
  • Fuxe K, Canals M, Torvinen M, et al. Intramembrane receptor-receptor interactions: a novel principle in molecular medicine. J Neural Transm. 2007;114(1):49–75.
  • Guidolin D, Agnati LF, Marcoli M, et al. G-protein-coupled receptor type A heteromers as an emerging therapeutic target. Expert Opin Ther Targets. 2015;19(2):265–283.
  • Fuxe K, Marcellino D, Borroto-Escuela DO, et al. The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor receptor interactions. J Recept Signal Transduct. 2010;30(5):272–283.
  • Fuxe K, Ögren SO, Agnati LF, et al. Long-term treatment with zimelidine leads to a reduction in 5-hydroxytryptamine neurotransmission within the central nervous system of the mouse and rat. Neurosci Lett. 1981;21(1):57–62.
  • Agnati LF, Fuxe K, Zoli M, et al. New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram. Medical Biology. 1982;60(4):183–190.
  • Fuxe K, Agnati LF, Benfenati F, et al. Evidence for the existence of receptor–receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J Neural Transm Suppl. 1983;18:165–179.
  • Lopes L, Ribeiro JA, Sebastião AM, et al. Adenosine and related drugs in brain diseases: present and future in clinical trials. Curr Top Med Chem. 2011;11(8):1087–1101.
  • Pierri M, Vaudano E, Sager T, et al. KW-6002 protects from MPTP induced dopaminergic toxicity in the mouse. Neuropharmacology. 2005;48(4):517–524.
  • Blum D, Hourez R, Galas MC, et al. Adenosine receptors and Huntington’s disease: implications for pathogenesis and therapeutics. Lancet Neurol. 2003;2(6):366–374.
  • Strömberg I, Popoli P, Müller CE, et al. Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum. Eur J Neurosci. 2000;12(11):4033–4037.
  • Schwarzschild MA, Chen J-F, Ascherio A. Caffeinated clues and the promise of adenosine A2A antagonists in PD. Neurology. 2002;58(8):1154–1160.
  • Simola N, Morelli M, Pinna A. Adenosine A2A receptor antagonists and Parkinson’s disease: state of the art and future directions. Curr Pharm Des. 2008;14(15):1475–1489.
  • Bibbiani F, Oh JD, Petzer JP, et al. A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson’s disease. Exp Neurol. 2003;184(1):285–294.
  • Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18(7):435–450.
  • Fiebich BL, Biber K, Lieb K, et al. Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia. 1996;18(2):152–180.
  • Jenner P, Mori A, Kanda T. Can adenosine A 2A receptor antagonists be used to treat cognitive impairment, depression or excessive sleepiness in Parkinson’s disease? Parkinsonism Relat Disord. 2020;80(Suppl 1):S28–S36.
  • Domenici MR, Ferrante A, Martire A, et al. Adenosine A 2A receptor as potential therapeutic target in neuropsychiatric disorders. Pharmacol Res. 2019;147. DOI:10.1016/J.PHRS.2019.104338.
  • Shen H-Y, Chen J-F. Adenosine A(2A) receptors in psychopharmacology: modulators of behavior, mood and cognition. Curr Neuropharmacol. 2009;7(3):195–206.
  • Smith AP, Lindeque JZ, van der Walt MM. Untargeted metabolomics reveals the potential antidepressant activity of a novel adenosine receptor antagonist. Molecules. 2022;27(7):2094.
  • Franco R. Café y salud mental. Aten Primaria. 2009;41(10):578–581.
  • Oñatibia-Astibia A, Franco R, Martínez-Pinilla E. Health benefits of methylxanthines in neurodegenerative diseases. Molecular Nutrition & Food Research. 2017;61(6):1600670.
  • Hellenbrand W, Seidler A, Boeing H, et al. Diet and Parkinson’s disease I: a possible role for the past intake of specific foods and food groups. Results from a self-administered food- frequency questionnaire in a case-control study. Neurology. 1996;47(3):636–643.
  • Ragonese P, Salemi G, Morgante L, et al. A case-control study on cigarette, alcohol, and coffee consumption preceding Parkinson’s disease. Neuroepidemiology. 2003;22(5):297–304.
  • Liu R, Guo X, Park Y, et al. Caffeine intake, smoking, and risk of Parkinson disease in men and women. American Journal of Epidemiology. 2012;175(11):1200–1207.
  • Bronstein J, Carvey P, Chen H, et al. Meeting report: consensus statement - Parkinson’s disease and the environment: collaborative on health and the environment and Parkinson’s action network (CHE PAN) conference 26-28 June 2007. In Proceedings of the Environmental Health Perspectives, Sunnyvale, California, USA; 2009; 117, p. 117–121.
  • Baumann RJ, Jameson HD, McKean HE, et al. Cigarette smoking and Parkinson disease: 1. A comparison of cases with matched neighbors. Neurology. 1980;30(8):839–843.
  • Chen JF, Xu K, Petzer JP, et al. Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci. 2001;21(10):RC143.
  • Noyce AJ, Bestwick JP, Silveira-Moriyama L, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Annals of Neurology. 2012;72(6):893–901.
  • Ross GW, Abbott RD, Petrovitch H, et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA. 2000;283(20):2674–2679.
  • Qi H, Li S. Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr Gerontol Int. 2014;14(2):430–439.
  • Armentero MT, Pinna A, Ferré S, et al. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease. Pharmacol Ther. 2011;132(3):280–299.
  • Agnati LFLF, Leo G, Vergoni A-V-VA-V, et al. Neuroprotective effect of L-DOPA co-administered with the adenosine A2A receptor agonist CGS 21680 in an animal model of Parkinson’s disease. Brain Res Bull. 2004;64(2):155–164.
  • Cerri S, Levandis G, Ambrosi G, et al. Neuroprotective potential of adenosine A2A and cannabinoid CB1 receptor antagonists in an animal model of Parkinson disease. J Neuropathol Exp Neurol. 2014;73(5):414–424.
  • Mari Z, Mestre TA. The disease modification conundrum in parkinson’s disease: failures and hopes. Front Aging Neurosci. 2022;14. DOI:10.3389/FNAGI.2022.810860.
  • Eskelinen MH, Ngandu T, Tuomilehto J, et al. Midlife healthy-diet index and late-life dementia and Alzheimer’s disease. Dement Geriatr Cogn Dis Extra. 2011;1(1):103–112.
  • Eskelinen MH, Ngandu T, Tuomilehto J, et al. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimer’s Dis. 2009;16(1):85–91.
  • Sindi S, Kåreholt I, Eskelinen M, et al. Healthy dietary changes in midlife are associated with reduced dementia risk later in life. Nutrients. 2018;10(11):1649.
  • Dall’lgna OP, Porciúncula LO, Souza DO, et al. Neuroprotection by caffeine and adenosine A2A receptor blockade of β-amyloid neurotoxicity. BrJ Pharmacol. 2003;138(7):1207–1209.
  • Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? Journal of Neurochemistry. 2016;139(6):1019–1055.
  • Arosio B, Viazzoli C, Mastronardi L, et al. Adenosine A {2A} receptor expression in peripheral blood mononuclear cells of patients with mild cognitive impairment. J Alzheimer’s Dis. 2010;20(4):991–996.
  • Franco R, Rivas-Santisteban R, Casanovas M, et al. Adenosine A2A receptor antagonists affects NMDA glutamate receptor function. potential to address neurodegeneration in alzheimer’s disease. Cells. 2020;9(5):1075.
  • Horgusluoglu-Moloch E, Nho K, Risacher SL, et al. Targeted neurogenesis pathway-based gene analysis identifies ADORA2A associated with hippocampal volume in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2017;60:92–103.
  • Gussago C, Arosio B, Casati M, et al. Different adenosine A2A receptor expression in peripheral cells from elderly patients with vascular dementia and Alzheimer’s disease. J Alzheimer’s Dis. 2014;40(1):45–49.
  • Angulo E, Casadó V, Mallol J, et al. A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol. 2003;13(4):440–451.
  • Chiu F-L-L, Lin J-T-T, Chuang C-Y-Y, et al. Elucidating the role of the A2A adenosine receptor in neurodegeneration using neurons derived from Huntington’s disease iPSCs. Hum Mol Genet. 2015;24(21):6066–6079.
  • Li P, Rial D, Canas PM, et al. Optogenetic activation of intracellular adenosine A2Areceptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory. Molecular Psychiatry. 2015;20(11):1339–1349.
  • Chen J-F. Adenosine receptor control of cognition in normal and disease. Int Rev Neurobiol. 2014;119:257–307.
  • Merighi S, Poloni TE, Pelloni L, et al. An open question: is the A 2A adenosine receptor a novel target for alzheimer’s disease treatment? Front Pharmacol. 2021;12. DOI:10.3389/FPHAR.2021.652455.
  • Santiago AR, Baptista FI, Santos PF, et al. Role of microglia adenosine A2A receptors in retinal and brain neurodegenerative diseases. Mediators Inflamm. 2014;465694:1–13.
  • Canas PM, Porciuncula LO, Cunha GMA, et al. Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by -amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci. 2009;29(47):14741–14751.
  • Gonçalves FQ, Lopes JP, Silva HB, et al. Synaptic and memory dysfunction in a β-amyloid model of early Alzheimer’s disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiol Dis. 2019;132:104570.
  • Cunha RA. Cafeína, receptores de adenosina, memoria y enfermedad de Alzheimer. Medicina Clínica. 2008;131(20):790–795.
  • Silva AC, Lemos C, Gonçalves FQ, et al. Blockade of adenosine A2A receptors recovers early deficits of memory and plasticity in the triple transgenic mouse model of Alzheimer’s disease. Neurobiol Dis. 2018;117:72–81.
  • Da Silva SV, Haberl MG, Zhang P, et al. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer’s disease involve neuronal adenosine A2A receptors. Nature Communications. 2016;7(1):11915.
  • Leiva A, Guzmán-Gutiérrez E, Contreras-Duarte S, et al. Adenosine receptors: modulators of lipid availability that are controlled by lipid levels. Mol Aspects Med. 2017;55:26–44.
  • Stone TW. Adenosine, neurodegeneration and neuroprotection. Neurol Res. 2005;27(2):161–168.
  • Varani K, Portaluppi F, Gessi S, et al. Dose and time effects of caffeine intake on human platelet adenosine A2A receptors. Circulation. 2000;102(3):285–289.
  • Varani K, Laghi-Pasini F, Camurri A, et al. Changes of peripheral A2A adenosine receptors in chronic heart failure and cardiac transplantation. FASEB J. 2003;17(2):280–282.
  • Varani K, Manfredini R, Iannotta V, et al. Effects of doxazosin and propranolol on A2A adenosine receptors in essential Hypertens. (Dallas, Tex. 1979). Hypertens (Dallas, Tex 1979). 2002;40(6):909–913.
  • Vincenzi F, Corciulo C, Targa M, et al. A2A adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(5–6):406–413.
  • Vincenzi F, Corciulo C, Targa M, et al. Multiple sclerosis lymphocytes upregulate A2A adenosine receptors that are antiinflammatory when stimulated. Eur J Immunol. 2013;43(8):2206–2216.
  • Pasquini S, Vincenzi F, Casetta I, et al. Adenosinergic system involvement in ischemic stroke patients’ lymphocytes. Cells. 2020;9(5):1072.
  • Berk M, Plein H, Ferreira D, et al. Blunted adenosine A2a receptor function in platelets in patients with major depression. European Neuropsychopharmacology. 2001;11(2):183–186.
  • Merighi S, Battistello E, Casetta I, et al. Upregulation of cortical A2A adenosine receptors is reflected in platelets of patients with alzheimer’s disease. Journal of Alzheimer’s Disease. 2021;80(3):1105–1117.
  • Moreira-de-Sá A, Lourenço VS, Canas PM, et al. Adenosine A 2A receptors as biomarkers of brain diseases. Front Neurosci. 2021;15. DOI:10.3389/FNINS.2021.702581.
  • Gessi S, Poloni TE, Negro G, et al. 2A adenosine receptor as a potential biomarker and a possible therapeutic target in alzheimer’s disease. Cells. 2021;10(9):2344.
  • Evens N, Bormans GM. Non-invasive imaging of the type 2 cannabinoid receptor, focus on positron emission tomography. Curr Top Med Chem. 2010;10(15):1527–1543.
  • Ni R, Mu L, Ametamey S. Positron emission tomography of type 2 cannabinoid receptors for detecting inflammation in the central nervous system. Acta pharmacologica Sinica. 2018;40(3):351–357.
  • Janssen B, Vugts DJ, Funke U, et al. Imaging of neuroinflammation in Alzheimer’s disease, multiple sclerosis and stroke: recent developments in positron emission tomography. Biochim Biophys Acta - Mol Basis Dis. 2016;1862(3):425–441.
  • Savonenko AV, Melnikova T, Wang Y, et al. Cannabinoid CB2 receptors in a mouse model of Aβ amyloidosis: immunohistochemical analysis and suitability as a PET biomarker of neuroinflammation. PLoS One. 2015;10(6):e0129618.
  • Kallinen A, Boyd R, Lane S, et al. Synthesis and in vitro evaluation of fluorine-18 benzimidazole sulfones as CB2 PET-radioligands. Organic & Biomolecular Chemistry. 2019;17(20):5086–5098.
  • Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358(9280):461–467.
  • Janssen B, Vugts D, Windhorst A, et al. PET imaging of microglial activation—beyond targeting TSPO. Molecules. 2018;23(3):607.
  • Schuitemaker A, van der Doef TF, Boellaard R, et al. Microglial activation in healthy aging. Neurobiology of Aging. 2012;33(6):1067–1072.
  • Skoch J, Dunn A, Hyman BT, et al. Development of an optical approach for noninvasive imaging of Alzheimer’s disease pathology. J Biomed Opt. 2005;10(1):11007.
  • Gerhard A, Banati RB, Goerres GB, et al. [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology. 2003;61(5):686–689.
  • Eskelinen MH, Kivipelto M, Cunha RA. Caffeine as a protective factor in dementia and Alzheimer’s disease. J Alzheimer’s Dis. 2010;20(s1):S167–S174.
  • Gelber RP, Petrovitch H, Masaki KH, et al. Coffee intake in midlife and risk of dementia and its neuropathologic correlates. J Alzheimers Dis. 2011;23(4):607–615.
  • Espinosa J, Rocha A, Nunes F, et al. Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia. Journal of Alzheimer’s Disease. 2013;34(2):509–518.
  • Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Progress in Neurobiology. 2015;131:65–86.
  • Franco R, Reyes-Resina I, Aguinaga D, et al. Potentiation of cannabinoid signaling in microglia by adenosine A<inf>2Areceptor antagonists. Glia. 2019;67(12):2410–2423.
  • Saura J, Angulo E, Ejarque A, et al. Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. Journal of Neurochemistry. 2005;95(4):919–929.
  • Franco R, Navarro G. Adenosine A2A receptor antagonists in neurodegenerative diseases: huge potential and huge challenges. Frontiers in Psychiatry. 2018;9:1–5.
  • Gyoneva S, Davalos D, Biswas D, et al. Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia. 2014;62(8):1345–1360.
  • Meng F, Guo Z, Hu Y, et al. CD73-derived adenosine controls inflammation and neurodegeneration by modulating dopamine signalling. Brain. 2019;142(3):700–718.
  • Illes P, Rubini P, Ulrich H, et al. Regulation of microglial functions by purinergic mechanisms in the healthy and diseased CNS. Cells. 2020;9(5):1108.
  • Minghetti L, Greco A, Potenza RL, et al. Effects of the adenosine A2A receptor antagonist SCH 58621 on cyclooxygenase-2 expression, glial activation, and brain-derived neurotrophic factor availability in a rat model of striatal neurodegeneration. J Neuropathol Exp Neurol. 2007;66(5):363–371.
  • Madeira MH, Boia R, Elvas F, et al. Selective A2A receptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure-induced transient ischemic injury. Transl Res. 2016;169:112–128.
  • Drury AN, Szent-Györgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. The Journal of Physiology. 1929;68(3):213–237.
  • Mainwaring RD, Mentzer RM, Ely SW, et al. The role of adenosine in the regulation of coronary blood flow in newborn lambs. Surgery. 1985;98(3):540–546.
  • Boknik P, Drzewiecki K, Eskandar J, et al. Phenotyping of mice with heart specific overexpression of A2A-adenosine receptors: evidence for cardioprotective effects of A2A-adenosine receptors. Front Pharmacol. 2018;9:13.
  • Dobson JG, Fenton RA. Adenosine A2 receptor function in rat ventricular myocytes. Cardiovasc Res. 1997;34(2):337–347.
  • Maille B, Marlinge M, Vairo D, et al. Adenosine plasma level in patients with paroxysmal or persistent atrial fibrillation and normal heart during ablation procedure and/or cardioversion. Purinergic Signal. 2018;15(1):45–52.
  • Woodiwiss AJ, Honeyman TW, Fenton RA, et al. Adenosine A2a-receptor activation enhances cardiomyocyte shortening via Ca2+-independent and -dependent mechanisms. Am J Physiol. 1999;276. DOI:10.1152/AJPHEART.1999.276.5.H1434.
  • Hove-Madsen L, Llach A, Bayes-Genís A, et al. Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation. 2004;110(11):1358–1363.
  • Herraiz-Martínez A, Tarifa C, Jiménez-Sábado V, et al. Influence of sex on intracellular calcium homoeostasis in patients with atrial fibrillation. Cardiovascular Research. 2022;118(4):1033–1045.
  • Hove-Madsen L, Prat-Vidal C, Llach A, et al. Reply: does the adenosine A2Areceptor stimulate the ryanodine receptor? Cardiovascular Research. 2007;73(1):249–250.
  • Maille B, Fromonot J, Guiol C, et al. A2 adenosine receptor subtypes overproduction in atria of perioperative atrial fibrillation patients undergoing cardiac surgery: a pilot study. Front Cardiovasc Med. 2021;8:761164.
  • Hirschhorn R. Adenosine deaminase deficiency and immunodeficiencies. Federation Proceedings. 1977;36(8):2166–2170.
  • Polmar SH, Stern RC, Schwartz AL, et al. Enzyme replacement therapy for adenosine deaminase deficiency and severe combined immunodeficiency. New England Journal of Medicine. 1976;295(24):1337–1343.
  • Rieger CHL, Lustig JV, Hirschhorn R, et al. Reconstitution of T-cell function in severe combined immunodeficiency disease following transplantation of early embryonic liver cells. The Journal of Pediatrics. 1977;90(5):707–712.
  • Polmar SH, Wetzler EM, Stern RC, et al. Restoration of in-vitro lymphocyte responses with exogenous adenosine deaminase in a patient with severe combined immunodeficiency. Lancet. 1975;306(7938):743–746.
  • Knudsen BB, Dissing J. Adenosine deaminase deficiency in a child with severe combined immunodeficiency. Clin Genet. 1973;4(4):344–347.
  • Hershfield MS, Kurtzberg J, Aiyar VN, et al. Abnormalities in S‐adenosylhomocysteine hydrolysis, ATP catabolism, and lymphoid differentiation in adenosine deaminase deficiency. Annals of the New York Academy of Sciences. 1985;451(1):78–86.
  • Hershfield MS, Buckley RH, Greenberg ML, et al. Treatment of adenosine deaminase deficiency with polyethylene glycol–modified adenosine deaminase. N Engl J Med. 1987;316(10):589–596.
  • Blaese RM, Culver KW, Miller AD, et al. T lymphocyte-directed gene therapy for ADA−SCID: initial trial results after 4 years. Science. 1995;270(5235):475–480.
  • Hirschhorn R, Beratis N, Rosen FS. Characterization of residual enzyme activity in fibroblasts from patients with adenosine deaminase deficiency and combined immunodeficiency: evidence for a mutant enzyme. Proc Natl Acad Sci U S A. 1976;73(1):213–217.
  • Hirschhorn R. Therapy of genetic disorders. New England Journal of Medicine. 1987;316(10):623–624.
  • Hirschhorn K, Hirschhorn R, Hirschhorn JN. A conversation with kurt and rochelle hirschhorn. Annual Review of Genomics and Human Genetics. 2017;18(1):31–44.
  • Pacheco R, Lluis C, Franco R. Role of CD26-adenosine deaminase interaction in T cell-mediated immunity^iEn. Inmunol. 2005;24:235–245.
  • Zavialov AV, Gracia E, Glaichenhaus N, et al. Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. Journal of Leukocyte Biology. 2010;88(2):279–290.
  • Zavialov AV, Engström Å. Human ADA2 belongs to a new family of growth factors with adenosine deaminase activity. Biochemical Journal. 2005;391(1):51–57.
  • Caorsi R, Penco F, Schena F, et al. Monogenic polyarteritis: the lesson of ADA2 deficiency. Pediatr Rheumatol. 2016;14(1):1–16.
  • Zhou Q, Yang D, Ombrello AK, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med. 2014;370(10):911–920.
  • Navon Elkan P, Pierce SB, Segel R, et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med. 2014;370(10):921–931.
  • Hashem H, Kelly SJ, Ganson NJ, et al. Deficiency of adenosine deaminase 2 (DADA2), an inherited cause of polyarteritis nodosa and a mimic of other systemic rheumatologic disorders. Curr Rheumatol Reports 2017 1911. 2017;19:1–9.
  • Schnappauf O, Zhou Q, Moura NS, et al. Deficiency of adenosine deaminase 2 (DADA2): hidden variants, reduced penetrance, and unusual inheritance. J Clin Immunol. 2020;40(6):917–926.
  • Hashem H, Egler R, Dalal J. Refractory pure red cell aplasia manifesting as deficiency of adenosine deaminase 2. J Pediatr Hematol Oncol. 2017;39(5):e293–e296.
  • Kaljas Y, Liu C, Skaldin M, et al. Human adenosine deaminases ADA1 and ADA2 bind to different subsets of immune cells. Cell Mol Life Sci. 2017;74(3):555–570.
  • Franco R, Ciruela F, Casadó V, et al. Partners for adenosine A1 receptors. J Mol Neurosci. 2005;26(2–3):221–231.
  • Gracia E, Cortés A, Meana JJ, et al. Human adenosine deaminase as an allosteric modulator of human A1 adenosine receptor: abolishment of negative cooperativity for [3H](R)-pia binding to the caudate nucleus. J Neurochem. 2008;107(1):161–170.
  • Gracia E, Pérez-Capote K, Moreno E, et al. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase. Biochemical Journal. 2011;435(3):701–709.
  • Pacheco R, Martinez-Navio JMM, Lejeune M, et al. CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc Natl Acad Sci U S A. 2005;102(27):9583–9588.
  • Wilson DK, Rudolph FB, Quiocho FA. Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. Science. 1991;252(5010):1278–1284.
  • Zavialov AV, Yu X, Spillmann D, et al. Structural basis for the growth factor activity of human adenosine deaminase ADA2. J Biol Chem. 2010;285(16):12367–12377.
  • Kjaergaard J, Hatfield S, Jones G, et al. A2A adenosine receptor gene deletion or synthetic A2A antagonist liberate tumor-reactive CD8+T cells from tumor-induced immunosuppression. J Immunol. 2018;201(2):782–791.
  • Willingham SB, Hotson AN, Miller RA. Targeting the A2AR in cancer; early lessons from the clinic. Current Opinion in Pharmacology. 2020;53:126–133.
  • Fredholm BB, Chern Y, Franco R, et al. Aspects of the general biology of adenosine A2A signaling. Prog Neurobiol. 2007;83(5):263–276.
  • Ohta A, Kini R, Ohta A, et al. The development and immunosuppressive functions of CD4+ CD25+ FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol. 2012;3(190). DOI:10.3389/fimmu.2012.00190.
  • Fong L, Hotson A, Powderly JD, et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov. 2020;10(1):40–53.
  • Mediavilla-Varela M, Castro J, Chiappori A, et al. A novel antagonist of the immune checkpoint protein adenosine A2a receptor restores tumor-infiltrating lymphocyte activity in the context of the tumor microenvironment. Neoplasia (United States). 2017;19(7):530–536.
  • Harjunpää H, Guillerey C. TIGIT as an emerging immune checkpoint. Clin Exp Immunol. 2020;200(2):108–119.
  • Seitz L, Jin L, Leleti M, et al. Safety, tolerability, and pharmacology of AB928, a novel dual adenosine receptor antagonist, in a randomized, phase 1 study in healthy volunteers. Invest New Drugs. 2019;37(4):711–721.
  • Becker AB, Simons KJ, Gillespie CA, et al. The bronchodilator effects and pharmacokinetics of caffeine in asthma. N Engl J Med. 1984;310(12):743–746.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.