352
Views
2
CrossRef citations to date
0
Altmetric
Review

Dyskinesia and Parkinson’s disease: animal model, drug targets, and agents in preclinical testing

, &
Pages 837-851 | Received 02 Jun 2022, Accepted 25 Nov 2022, Published online: 13 Dec 2022

References

  • Mayeux R. E pidemiology of N eurodegeneration. Annu Rev Neurosci. 2003;26(1):81–104.
  • Castela I, Hernandez LF. Shedding light on dyskinesias. Eur J Neurosci. 2020;53(7):2398–2413.
  • Cerri S, Mus L, Blandini F. Parkinson ’ s disease in women and men : what ’ s the difference ? J Parkinsons Dis. 2019;9:501–515.
  • Blandini F, Nappi G, Tassorelli C, et al. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol. 2000;62(1):63–88.
  • Jellinger KA. Pathology of Parkinson’s disease - changes other than the nigrostriatal pathway. Mol Chem Neuropathol. 1991;14(3):153–197.
  • Kalia LV, Kalia SK, Lang AE. Disease-modifying strategies for Parkinson’s disease. Mov Disord. 2015;30(11):1442–1450.
  • Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Prim. 2017;3:1–21.
  • Gallagher DA, Lees AJ, Schrag A. What are the most important nonmotor symptoms in patients with Parkinson’s disease and are we missing them? Mov Disord. 2010;25(15):2493–2500.
  • Bargiotas P, Konitsiotis S. Levodopa-induced dyskinesias in Parkinson’s disease: emerging treatments. Neuropsychiatr Dis Treat. 2013;9:1605–1617.
  • Brotchie JM. Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord. 2005;20(8):919–931.
  • Prashanth LK, Fox S, Meissner WG. L-dopa-induced dyskinesia-clinical presentation, genetics, and treatment [Internet]. Int Rev Neurobiol Elsevier Inc. 2011
  • Falla M, Di A, Anthony A, et al. Parkinsonism and related disorders genetic variants in levodopa-induced dyskinesia (LID): a systematic review and meta-analysis. Park Relat Disord [Internet]. 2021;84:52–60.
  • Zappia M, et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease. Arch Neurol. 2005;62(4):601–605.
  • Russillo MC, Andreozzi V, Erro R, et al. brain sciences sex differences in Parkinson ’ s disease : from bench to bedside. 2022;12(7):917.
  • Angela Cenci M, Avila J. Presynaptic mechanisms of L-DOPA-induced dyskinesia: the findings, the debate, the therapeutic implications. Front Neurol. 2014;5:1–15.
  • Sancesario G, Antonio L, Angelo VD, et al. Neurochemistry international levodopa-induced dyskinesias are associated with transient down- regulation of cAMP and cGMP in the caudate-putamen of hemiparkinsonian rats : reduced synthesis or increased catabolism ? Neurochem Int. 2014;79:44–56. Internet
  • Spigolon G, Fisone G. Signal transduction in l ‑ DOPA ‑ induced dyskinesia : from receptor sensitization to abnormal gene expression. J Neural Transm. 2018;125(8):1171–1186.Internet
  • Picconi B, De Leonibus E, Calabresi P. Synaptic plasticity and levodopa-induced dyskinesia: electrophysiological and structural abnormalities. J Neural Transm. 2018;125:1263–1271. Internet
  • Sebastianutto I, Goyet E, Andreoli L, et al. D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson’s disease. J Clin Invest. 2020;130(3):1168–1184.
  • Nishijima H, Ueno T, Funamizu Y. Levodopa treatment and dendritic spine pathology spiny projection neurons in the caudate-putamen. Mov Disord Off J Mov Disord Soc. 2018;33(6):877–888.
  • Wang Q, Zhang W. Maladaptive synaptic plasticity in L-DOPA-induced dyskinesia. Front Neural Circuits. 2016;10:1–8.
  • Matthias L, Mangone G, Hermann W, et al. Functional MAOB gene intron 13 polymorphism predicts dyskinesia in Parkinson ’ s disease. J Neural Transm (Vienna). 2022;2022:1–6.
  • Elabi O, Gaceb A, Carlsson R, et al. Human α ‑ synuclein overexpression in a mouse model of Parkinson ’ s disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci Rep. 2021;11(1):1–14.Internet
  • Paul G, Elabi OF. Microvascular changes in Parkinson ’ s disease- focus on the neurovascular unit. Front Aging Neurosci. 2022;14.
  • Blosser JA, Podolsky E, Lee D. L-DOPA-induced dyskinesia in a genetic drosophila model of Parkinson ’ s disease. Exp Neurobiol. 2020;29:273–284.
  • Morin N, Jourdain VA, Di Paolo T. Modeling dyskinesia in animal models of Parkinson disease. Exp Neurol. 2014;256:105–116. Internet
  • Jagmag SA, Tripathi N, Shukla SD, et al. Evaluation of models of Parkinson’s disease. Front Neurosci. 2016;9.
  • Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson’s disease.Stem Cell Res.2016;17(2):352–366;Internet
  • Morissette M, Di Paolo T. Non-human primate models of PD to test novel therapies. J Neural Transm. 2018;125(3):291–324.
  • Simola N, Morelli M, Carta AR. The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res. 2007;11(3–4):151–167.
  • Lundblad M, Andersson M, Winkler C, et al. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci. 2002;15(1):120–132.
  • Iderberg H, Francardo V, Pioli EY. Animal models of l-DOPA-induced dyskinesia: an update on the current options. Neuroscience. 2012;211:13–27. Internet
  • Chen X, Wang Y, Wu H, et al. Research advances on L-DOPA-induced dyskinesia: from animal models to human disease. Neurol Sci. 2020;41(8):2055–2065.
  • Morin N, Di Paolo T. Pharmacological treatments inhibiting levodopa-induced dyskinesias in MPTP-lesioned monkeys: brain glutamate biochemical correlates. Front Neurol. 2014 AUG;5:1–8.
  • Tronci E, Fidalgo C, Stancampiano R, et al. Effect of selective and non-selective serotonin receptor activation on l-DOPA-induced therapeutic efficacy and dyskinesia in parkinsonian rats. Behav Brain Res. 2015;292:300–304. Internet
  • Francardo V, Recchia A, Popovic N, et al. Impact of the lesion procedure on the profiles of motor impairment and molecular responsiveness to L-DOPA in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neurobiol Dis. 2011;42(3):327–340.Internet
  • Fuzzati-Armentero MT, Cerri S, Levandis G, et al. Dual target strategy: combining distinct non-dopaminergic treatments reduces neuronal cell loss and synergistically modulates l -DOPA-induced rotational behavior in a rodent model of ParkinsonParkinson’s disease. J Neurochem. 2015;134(4):740–747.
  • Ghiglieri V, Mineo D, Vannelli A, et al. Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: behavioral, molecular, and synaptic mechanisms. Neurobiol Dis. 2016;86:140–153. Internet
  • Cenci MA, Lee CS, Björklund A. L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci. 1998;10(8):2694–2706.
  • Steece-Collier K, Collier TJ, Danielson PD, et al. Embryonic mesencephalic grafts increase levodopa-induced forelimb hyperkinesia in Parkinsonian rats. Mov Disord. 2003;18(12):1442–1454.
  • Loiodice S, Denibaud AS, Deffains W, et al. Validation of a new scoring scale for behavioral assessment of L-dopa-induced dyskinesia in the rat: a new tool for early decision-making in drug development. ACS Chem Neurosci. 2018;9(4):762–772.
  • Lundblad M, Picconi B, Lindgren H, et al. A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis. 2004;16(1):110–123.
  • Cenci MA, Crossman AR. Animal models of l -dopa-induced dyskinesia in ParkinsonParkinson’s disease. Mov Disord. 2018;33(6):889–899.
  • Cenci MA. L-DOPA-induced dyskinesia: cellular mechanisms and approaches to treatment. Park Relat Disord. 2007;13:263–267.
  • Alcacer C, Andreoli L, Sebastianutto I, et al. Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson’s disease therapy. J Clin Invest. 2017;127(2):720–734.
  • Eslamboli A, Georgievska B, Ridley RM, et al. Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci. 2005;25(4):769–777.
  • Eslamboli A, Baker HF, Ridley RM, et al. Sensorimotor deficits in a unilateral intrastriatal 6-OHDA partial lesion model of Parkinson’s disease in marmoset monkeys. Exp Neurol. 2003;183(2):418–429.
  • Lane E, Dunnett S. Animal models of Parkinson’s disease and L-dopa induced dyskinesia: how close are we to the clinic? Psychopharmacology (Berl). 2008;199(3):303–312.
  • Potts LF, Wu H, Singh A, et al. Modeling Parkinson’s disease in monkeys for translational studies, a critical analysis. Exp Neurol. 2014;256:133–143.
  • Yun J-W, Ahn J-B, Kang B-C. Modeling ParkinsonParkinson’s disease in the common marmoset (Callithrix jacchus): overview of models, methods, and animal care. Lab Anim Res. 2015;31(4):155.
  • Fox SH, Brotchie JM. The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. Prog Brain Res Elsevier B V. 2010;Internet
  • Pottsl LF, Subramaniam U, Grevenl ACM, et al., SMP. A new, quantitative rating scale for dyskinesia in non-human primates. Behav Pharmacol. 2015;26(1 and 2):109–116.
  • Sgambato-Faure V, Cenci MA. Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog Neurobiol. 2012;96:69–86.
  • Cenci MA, Skovgård K, Odin P. Non-dopaminergic approaches to the treatment of motor complications in Parkinson’s disease. Neuropharmacology. 2022;210:109027. Internet
  • Brigham EF, Johnston TH, Brown C, et al. Pharmacokinetic/Pharmacodynamic correlation analysis of amantadine for levodopa-induced dyskinesia. J Pharmacol Exp Ther. 2018;367(2):373–381.
  • Shen W, Ren W, Zhai S, et al. Striatal Kir2 K+ channel inhibition mediates the antidyskinetic effects of amantadine. J Clin Invest. 2020;130(5):2593–2601.
  • Zheng C, Xu Y, Chen G, et al. Distinct anti-dyskinetic effects of amantadine and group II metabotropic glutamate receptor agonist LY354740 in a rodent model: an electrophysiological perspective. Neurobiol Dis. 2020;139:104807. Internet
  • Stankova I, Lazarova M, Chayrov R, et al. Newly synthesized amantаdine derivative: safety and neuropharmacological activity. Farmacia. 2021;69(6):1112–1119.
  • Bortolanza M, Bariotto-dos-Santos KD, dos-Santos-Pereira M, et al. Antidyskinetic effect of 7-nitroindazole and sodium nitroprusside associated with amantadine in a rat model of Parkinson’s disease. Neurotox Res. 2016;30(1):88–100.
  • Stanic J, Mellone M, Napolitano F, et al. Rabphilin 3A: a novel target for the treatment of levodopa-induced dyskinesias. Neurobiol Dis. 2017;108:54–64. Internet
  • Nutt JG, Gunzler SA, Kirchhoff T, et al. Effects of a NR2B selective NMDA glutamate antagonist,CP-101,606, on dyskinesia and parkinsonism. Mov Disord. 2008;23(13):1860–1866.
  • Kong M, Ba M, Liu C, et al. NR2B antagonist CP-101,606 inhibits NR2B phosphorylation at tyrosine-1472 and its interactions with Fyn in levodopa-induced dyskinesia rat model. Behav Brain Res. 2015;282:46–53. Internet
  • Kobylecki C, Hill MP, Crossman AR, et al. Synergistic antidyskinetic effects of topiramate and amantadine in animal models of Parkinson ’ s disease. Mov Disord. 2011;26:2354–2363.
  • Conn PJ, Battaglia G, Marino MJ, et al. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci. 2005;6(10):787–798.
  • Charvin D, Di Paolo T, Bezard E, et al. An mGlu4-positive allosteric modulator alleviates parkinsonism in primates. Mov Disord. 2018;33(10):1619–1631.
  • Bezard E, Pioli EY, Li Q, et al. The mGluR5 negative allosteric modulator dipraglurant reduces dyskinesia in the MPTP macaque model. Mov Disord. 2014;29(8):1074–1079.
  • Pourmirbabaei S, Dolatshahi M, Rahmani F. Pathophysiological clues to therapeutic applications of glutamate mGlu5 receptor antagonists in levodopa-induced dyskinesia. Eur J Pharmacol. 2019;855:149–159. Internet
  • Huang Y, Shu H, Li L, et al. L-DOPA-induced motor impairment and overexpression of corticostriatal synaptic components are improved by the mGluR5 antagonist MPEP in 6-OHDA-lesioned rats. ASN Neuro. 2018;10:175909141881102.
  • Morissette M, Bourque M, Tremblay MÈ, et al. Prevention of L-dopa-induced dyskinesias by MPEP blockade of metabotropic glutamate receptor 5 is associated with reduced inflammation in the brain of parkinsonian monkeys. Cells. 2022;11(4):691.
  • Lin JY, Liu ZG, Xie CL, et al. Antidyskinetic treatment with MTEP affects multiple molecular pathways in the parkinsonian striatum. Parkinsons Dis. 2017;2017:8–10.
  • Thomsen C, Mathiesen JM, Svendsen N, et al. Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP. Br J Pharmacol. 2003;2000:1026–1030.
  • Rylander D, Parent M, Sullivan SSO, et al. Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Annals of Neurology. 2010;68(5):619–628.
  • Pinna A, WKD K, Costa G, et al. Antidyskinetic effect of A 2A and 5HT 1A/1B receptor ligands in two animal models of ParkinsonParkinson’s disease. Mov Disord. 2016;31(4):501–511.
  • Pinna A, Costa G, Serra M, et al. Neuroinflammation and L-dopa-induced abnormal involuntary movements in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease are counteracted by combined administration of a 5-HT1A/1B receptor agonist and A2A receptor antagonist. Neuropharmacology. 2021;196:108693. Internet
  • Vegas-Suárez S, Pisanò CA, Requejo C, et al. 6-Hydroxydopamine lesion and levodopa treatment modify the effect of buspirone in the substantia nigra pars reticulata. Br J Pharmacol. 2020;177(17):3957–3974.
  • Wang Q, Chen J, Li M, et al. Eltoprazine prevents levodopa-induced dyskinesias by reducing causal interactions for theta oscillations in the dorsolateral striatum and substantia nigra pars reticulate. Neuropharmacology. 2019;148:1–10. Internet
  • WKD K, Li Q, Cheng LY, et al. A preclinical study on the combined effects of repeated eltoprazine and preladenant treatment for alleviating L-DOPA-induced dyskinesia in Parkinson’s disease. Eur J Pharmacol. 2017;813:10–16. Internet
  • Iderberg H, McCreary AC, Varney MA, et al. NLX-112, a novel 5-HT1A receptor agonist for the treatment of l-DOPA-induced dyskinesia: behavioral and neurochemical profile in rat. Exp Neurol. 2015;271:335–350. Internet
  • McCreary AC, Varney MA, Newman-Tancredi A. The novel 5-HT1A receptor agonist, NLX-112 reduces l-DOPA-induced abnormal involuntary movements in rat: a chronic administration study with microdialysis measurements. Neuropharmacology. 2016;105:651–660. Internet
  • Fisher R, Hikima A, Morris R, et al. The selective 5-HT1A receptor agonist, NLX-112, exerts anti-dyskinetic and anti-parkinsonian-like effects in MPTP-treated marmosets. Neuropharmacology. 2020;167:107997. Internet
  • Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacologic studies: a comparison between the macaque, marmoset, and squirrel monkey. J Pharmacol Exp Ther. 2018;365(2):379–397.
  • Meadows SM, Chambers NE, Conti MM, et al. Characterizing the differential roles of striatal 5-HT1A auto- and hetero-receptors in the reduction of L-DOPA-induced dyskinesia. Exp Neurol. 2017;292:168–178. Internet
  • Newman-Tancredi A, Varney MA, McCreary AC. Effects of the serotonin 5-HT1A receptor biased agonists, F13714 and F15599, on striatal neurotransmitter levels following l-DOPA administration in hemi-parkinsonian rats.Neurochem Res.2018;43(5):1035–1046;Internet
  • Meadows SM, Conti MM, Gross L, et al. Diverse serotonin actions of vilazodone reduce l-3,4-dihidroxyphenylalanine–induced dyskinesia in hemi-parkinsonian rats. Mov Disord. 2018;33(11):1740–1749.
  • Altwal F, Moon C, West AR, et al. The multimodal serotonergic agent vilazodone inhibits L-DOPA-induced gene regulation in striatal projection neurons and associated dyskinesia in an animal model of Parkinson’s disease. Cells. 2020;9(10):2265.
  • Altwal F, Padovan-Neto FE, Ritger A, et al. Role of 5-ht1a receptor in vilazodone-mediated suppression of l-dopa-induced dyskinesia and increased responsiveness to cortical input in striatal medium spiny neurons in an animal model of Parkinson’s disease. Molecules. 2021;26(19):1–17.
  • Cohen SR, Terry ML, Coyle M, et al. Pharmacology, biochemistry and behavior the multimodal serotonin compound vilazodone alone, but not combined with the glutamate antagonist amantadine, reduces L -DOPA-induced dyskinesia in hemiparkinsonian rats. Pharmacol Biochem Behav. 2022;217:173393. Internet
  • Smith S, Sergio J, Coyle M, et al. The effects of vilazodone, YL-0919 and vortioxetine in hemiparkinsonian rats. Psychopharmacology (Berl). 2022;239(7):2119–2132. Internet
  • Sano H, Nambu A. The effects of zonisamide on L-DOPA–induced dyskinesia in Parkinson’s disease model mice. Neurochem Int. 2019;124:171–180. Internet
  • Hamadjida A, Nuara SG, Gourdon JC, et al. The effect of mianserin on the severity of psychosis and dyskinesia in the parkinsonian marmoset. Prog Neuro Psychopharmacol Biol Psychiatry. 2018;81:367–371. Internet
  • Hamadjida A, Nuara SG, Veyres N, et al. The effect of mirtazapine on dopaminergic psychosis and dyskinesia in the parkinsonian marmoset. Psychopharmacology (Berl). 2017;234(6):905–911.
  • Kwan C, Frouni I, Bédard D, et al. Ondansetron, a highly selective 5-HT 3 receptor antagonist, reduces L-DOPA- induced dyskinesia in the 6-OHDA-lesioned rat model of Parkinson ’ s disease. Eur J Pharmacol. 2020;871:172914. Internet
  • Potts LF, Park ES, Woo J, et al. Dual κ-agonist/μ-antagonist opioid receptor modulation reduces L-dopa induced dyskinesia and corrects dysregulated striatal changes in the non-human primate model of Parkinson’s disease. Annals of Neurology. 2015;77(6):930–941.
  • Bezard E, Li Q, Hulme H, et al. μ opioid receptor agonism for L-DOPA-induced dyskinesia in Parkinson’s disease. J Neurosci. 2020;40(35):6812–6819.
  • Vaz RL, Chapela D, Coelho JE, et al. Tapentadol prevents motor impairments in a mouse model of Dyskinesia. Neuroscience. 2020;424:58–71.
  • Bartlett MJ, So LY, Szabò L, et al. Highly-selective μ-opioid receptor antagonism does not block L-DOPA-induced dyskinesia in a rodent model. BMC Res Notes. 2020;13(1):1–6. Internet
  • Flores AJ, Bartlett MJ, Root BK, et al. The combination of the opioid glycopeptide MMP-2200 and a NMDA receptor antagonist reduced l-DOPA-induced dyskinesia and MMP-2200 by itself reduced dopamine receptor 2-like agonist-induced dyskinesia. Neuropharmacology. 2019;141:260–271.
  • Johnston TH, Fox SH, Piggott MJ, et al. The a 2 adrenergic antagonist fipamezole improves quality of levodopa action in parkinsonian primates. Mov Disord Off J Mov Disord Soc. 2010;25(13):2084–2093.
  • Uchida SI, Soshiroda K, Okita E, et al. The adenosine A2A receptor antagonist, istradefylline enhances the anti-parkinsonian activity of low doses of dopamine agonists in MPTP-treated common marmosets. Eur J Pharmacol. 2015;747:160–165. Internet
  • Núñez F, Taura J, Camacho J, et al. PBF509, an adenosine A2A receptor antagonist with efficacy in rodent models of movement disorders. Front Pharmacol. 2018;9:1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.