223
Views
0
CrossRef citations to date
0
Altmetric
Review

An appraisal of emerging therapeutic targets for multiple sclerosis derived from current preclinical models

, &
Pages 553-574 | Received 22 Feb 2023, Accepted 09 Jul 2023, Published online: 26 Jul 2023

References

  • McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of multiple sclerosis: a review. JAMA. 2021;325(8):765–779. doi: 10.1001/jama.2020.26858
  • The Multiple Sclerosis International Federation (MSIF) TMSIF. Atlas of MS, 3rd Edition. Part 1: Mapping multiple sclerosis around the world. Key epidemiology findings. The Multiple Sclerosis International Federation (MSIF), September 2020. 3rd ed. 2020. p. 24.
  • Cross AH, Naismith RT. MS can be considered a primary progressive disease in all cases, but some patients have superimposed relapses - No. Mult Scler. 2021 Jun;27(7):1004–1005. doi: 10.1177/13524585211001564
  • Scalfari A. MS can be considered a primary progressive disease in all cases, but some patients have superimposed relapses - Yes. Mult Scler. 2021 Jun;27(7):1002–1004. doi: 10.1177/13524585211001789
  • Greer JM, Pender MP. The presence of glutamic acid at positions 71 or 74 in pocket 4 of the HLA-DRbeta1 chain is associated with the clinical course of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2005 May;76(5):656–662. doi: 10.1136/jnnp.2004.042168
  • Rice CM, Cottrell D, Wilkins A, et al. Primary progressive multiple sclerosis: progress and challenges. J Neurol Neurosurg Psychiatry. 2013 Oct;84(10):1100–1106.
  • International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. Sep 27 2019;365(6460):eaav7188.
  • Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022 Jan 21;375(6578):296–301.
  • Breuer J, Loser K, Mykicki N, et al. Does the environment influence multiple sclerosis pathogenesis via UVB light and/or induction of vitamin D? J Neuroimmunol. 2019 [2019 Apr 15];329:1–8.
  • Lanz TV, Brewer RC, Ho PP, et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature. 2022 Mar;603(7900):321–327.
  • Tremlett H, Zhu F, Arnold D, et al. The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes. Ann Clin Transl Neurol. 2021 Dec;8(12):2252–2269.
  • Vandebergh M, Degryse N, Dubois B, et al. Environmental risk factors in multiple sclerosis: bridging Mendelian randomization and observational studies. J Neurol. 2022 [2022 Aug 1];269(8):4565–4574. doi: 10.1007/s00415-022-11072-4
  • Wang X, Liang Z, Wang S, et al. Role of gut microbiota in multiple sclerosis and potential therapeutic implications. Curr Neuropharmacol. 2022;20(7):1413–1426. doi: 10.2174/1570159X19666210629145351
  • Cloake NC, Yan J, Aminian A, et al. PLP1 Mutations in patients with multiple sclerosis: identification of a new mutation and potential pathogenicity of the mutations. J Clin Med. 2018 Oct 11;7(10):342.
  • Bjartmar C, Trapp BD. Axonal degeneration and progressive neurologic disability in multiple sclerosis.Neurotox Res. 2003 [2003 Jan 1];5(1):157–164. doi: 10.1007/BF03033380.
  • Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol. 2017 Feb;133(2):223–244. doi: 10.1007/s00401-016-1631-4
  • McCombe PA, Greer JM. Effects of biological sex and pregnancy in experimental autoimmune encephalomyelitis: It’s complicated. Front Immunol. 2022;13:1059833. doi: 10.3389/fimmu.2022.1059833
  • Greer JM, Csurhes PA, Muller DM, et al. Correlation of blood T cell and antibody reactivity to myelin proteins with HLA type and lesion localization in multiple sclerosis. J Immunol. 2008 May 1;180(9):6402–6410.
  • Bühler M, Runft S, Li D, et al. IFN-β deficiency results in fatal or demyelinating disease in C57BL/6 mice infected with Theiler’s Murine encephalomyelitis viruses. Front Immunol. 2022;13:786940. doi: 10.3389/fimmu.2022.786940
  • Zhan J, Mann T, Joost S, et al. The cuprizone model: dos and do nots. Cells. 2020 Mar 31;9(4):843.
  • Buschmann JP, Berger K, Awad H, et al. Inflammatory response and chemokine expression in the white matter corpus callosum and gray matter cortex region during cuprizone-induced demyelination. J Mol Neurosci. 2012 Sep;48(1):66–76.
  • Zirngibl M, Assinck P, Sizov A, et al. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener. 2022 May 7;17(1):34.
  • Gharagozloo M, Mace JW, Calabresi PA. Animal models to investigate the effects of inflammation on remyelination in multiple sclerosis. Front Mol Neurosci. 2022;15:995477. doi: 10.3389/fnmol.2022.995477
  • Hooijmans CR, Hlavica M, Schuler FAF, et al. Remyelination promoting therapies in multiple sclerosis animal models: a systematic review and meta-analysis. Sci Rep. 2019 Jan 29;9(1):822.
  • Martinez B, Peplow PV. Protective effects of pharmacological therapies in animal models of multiple sclerosis: a review of studies 2014–2019. Neural Regen Res. 2020;15(7):1220. doi: 10.4103/1673-5374.272572
  • Melchor GS, Khan T, Reger JF, et al. Remyelination pharmacotherapy investigations highlight diverse mechanisms underlying multiple sclerosis progression. ACS Pharmacol Transl Sci. 2019 [2019 Dec 13];2(6):372–386. doi: 10.1021/acsptsci.9b00068
  • Sutiwisesak R, Burns TC, Rodriguez M, et al. Remyelination therapies for multiple sclerosis: optimizing translation from animal models into clinical trials. Expert Opin Investig Drugs. 2021 Aug;30(8):857–876.
  • Bhargava P, Kim S, Reyes AA, et al. Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition. Brain. 2021 Jun 22;144(5):1396–1408.
  • Lang Y, Chu F, Liu L, et al. Potential role of BAY11-7082, a NF-κB blocker inhibiting experimental autoimmune encephalomyelitis in C57BL/6J mice via declining NLRP3 inflammasomes. Clin Exp Immunol. 2021 Nov 27;207(3):378–386.
  • Sánchez-Fernández A, Skouras DB, Dinarello CA, et al. OLT1177 (Dapansutrile), a selective NLRP3 inflammasome inhibitor, ameliorates experimental autoimmune encephalomyelitis pathogenesis. Front Immunol. 2019;10:2578. doi: 10.3389/fimmu.2019.02578
  • Lin H, Yang M, Li C, et al. An RRx-001 analogue with potent anti-NLRP3 inflammasome activity but without high-energy nitro functional groups. Front Pharmacol. 2022;13:822833. doi: 10.3389/fphar.2022.822833
  • Pan RY, Kong XX, Cheng Y, et al. 1,2,4-Trimethoxybenzeneselectively inhibits NLRP3 inflammasome activation and attenuates experimental autoimmune encephalomyelitis. Acta Pharmacol Sin. 2021 Nov;42(11):1769–1779.
  • Ren GM, Li J, Zhang XC, et al. Pharmacological targeting of NLRP3 deubiquitination for treatment of NLRP3-associated inflammatory diseases. Sci Immunol. 2021 Apr 30;6(58). doi: 10.1126/sciimmunol.abe2933
  • Cao R, Li Z, Wu C, et al. Identification of a small molecule with strong anti-inflammatory activity in experimental autoimmune encephalomyelitis and sepsis through blocking gasdermin D activation. J Immunol. 2022 Aug 15;209(4):820–828.
  • Alhazzani K, Ahmad SF, Al-Harbi NO, et al. Pharmacological inhibition of STAT3 by stattic ameliorates clinical symptoms and reduces autoinflammation in myeloid, lymphoid, and neuronal tissue compartments in relapsing–remitting model of experimental autoimmune encephalomyelitis in SJL/J mice. Pharmaceutics. 2021 Jun 22;13(7):925.
  • Hosseini A, Gharibi T, Mohammadzadeh A, et al. Ruxolitinib attenuates experimental autoimmune encephalomyelitis (EAE) development as animal models of multiple sclerosis (MS). Life Sci. 2021 Jul 1;276:119395.
  • Dang C, Lu Y, Chen X, et al. Baricitinib ameliorates experimental autoimmune encephalomyelitis by modulating the janus kinase/signal transducer and activator of transcription signaling pathway. Front Immunol. 2021;12:650708. doi: 10.3389/fimmu.2021.650708
  • Zhu H, Li G, Yin J, et al. Anlotinib attenuates experimental autoimmune encephalomyelitis mice model of multiple sclerosis via modulating the differentiation of Th17 and Treg cells. Immunopharmacol Immunotoxicol. 2022 Aug;44(4):594–602.
  • Park J, Choi SW, Cha BG, et al. Alternative activation of macrophages through interleukin-13-loaded extra-large-pore mesoporous silica nanoparticles suppresses experimental autoimmune encephalomyelitis. ACS Biomater Sci Eng. 2021 Sep 13;7(9):4446–4453.
  • Sánchez-Fernández A, Zandee S, Mastrogiovanni M, et al. Administration of Maresin-1 ameliorates the physiopathology of experimental autoimmune encephalomyelitis. J Neuroinflammation. 2022 Feb 2;19(1):27.
  • Bae D, Lee JY, Ha N, et al. CKD-506: A novel HDAC6-selective inhibitor that exerts therapeutic effects in a rodent model of multiple sclerosis. Sci Rep. 2021 Jul 14;11(1):14466.
  • Rodríguez-Pascau L, Vilalta A, Cerrada M, et al. The brain penetrant PPARγ agonist leriglitazone restores multiple altered pathways in models of X-linked adrenoleukodystrophy. Sci Transl Med. 2021 Jun 2;13(596). doi: 10.1126/scitranslmed.abc0555
  • Zahoor I, Suhail H, Datta I, et al. Blood-based untargeted metabolomics in relapsing-remitting multiple sclerosis revealed the testable therapeutic target. Proc Natl Acad Sci U S A. 2022 Jun 21;119(25):e2123265119.
  • Che J, Li D, Hong W, et al. Discovery of new macrophage M2 polarization modulators as multiple sclerosis treatment agents that enable the inflammation microenvironment remodeling. Eur J Med Chem. 2022 Sep 2;243:114732.
  • Cai F, Liu S, Lei Y, et al. Epigallocatechin-3 gallate regulates macrophage subtypes and immunometabolism to ameliorate experimental autoimmune encephalomyelitis. Cell Immunol. 2021 Oct;368:104421.
  • Karsten S, Fiskesund R, Zhang XM, et al. MTH1 as a target to alleviate T cell driven diseases by selective suppression of activated T cells. Cell Death Differ. 2022 Jan;29(1):246–261.
  • Kim K, Pröbstel AK, Baumann R, et al. Cell type-specific transcriptomics identifies neddylation as a novel therapeutic target in multiple sclerosis. Brain. 2021 Mar 3;144(2):450–461.
  • Li H, Liu S, Han J, et al. Role of toll-like receptors in neuroimmune diseases: therapeutic targets and problems. Front Immunol. 2021;12:777606. doi: 10.3389/fimmu.2021.777606
  • Dresselhaus EC, Meffert MK. Cellular specificity of NF-kappaB function in the nervous system. Front Immunol. 2019;10:1043. doi: 10.3389/fimmu.2019.01043
  • Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015 Jul;21(7):677–687. doi: 10.1038/nm.3893
  • Chen Y, He H, Lin B, et al. Rrx-001 ameliorates inflammatory diseases by acting as a potent covalent NLRP3 inhibitor. Cell Mol Immunol. 2021 Jun;18(6):1425–1436.
  • Biname F, Pham-Van LD, Spenle C, et al. Disruption of Sema3A/Plexin-A1 inhibitory signalling in oligodendrocytes as a therapeutic strategy to promote remyelination. EMBO Mol Med. 2019 Nov 7;11(11):e10378.
  • Suzuki K, Kumanogoh A, Kikutani H. Semaphorins and their receptors in immune cell interactions. Nat Immunol. 2008 Jan;9(1):17–23. doi: 10.1038/ni1553
  • Liu Y, Gibson SA, Benveniste EN, et al. Opportunities for Translation from the Bench: Therapeutic Intervention of the JAK/STAT Pathway in neuroinflammatory diseases. Crit Rev Immunol. 2015;35(6):505–527. doi: 10.1615/CritRevImmunol.2016015517
  • Hu X, Li J, Fu M, et al. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021 Nov 26;6(1):402.
  • Liu D, Zhao Z, She Y, et al. TRIM14 inhibits OPTN-mediated autophagic degradation of KDM4D to epigenetically regulate inflammation. Proc Natl Acad Sci U S A. 2022 Feb 15;119(7). doi: 10.1073/pnas.2113454119
  • Mills EL, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol. 2017 Apr 18;18(5):488–498.
  • Buck MD, O’Sullivan D, Pearce EL. T cell metabolism drives immunity. J Exp Med. 2015 Aug 24;212(9):1345–1360.
  • Linke M, Fritsch SD, Sukhbaatar N, et al. mTORC1 and mTORC2 as regulators of cell metabolism in immunity. FEBS Lett. 2017 Oct;591(19):3089–3103.
  • Hernandez-Quiles M, Broekema MF, Kalkhoven E. Ppargamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action. Front Endocrinol. 2021;12:624112. doi: 10.3389/fendo.2021.624112
  • Varga T, Czimmerer Z, Nagy L. Ppars are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta. 2011 Aug;1812(8):1007–1022. doi: 10.1016/j.bbadis.2011.02.014
  • Everts HB, Berdanier CD. Regulation of mitochondrial gene expression by retinoids. IUBMB Life. 2002 Aug;54(2):45–49. doi: 10.1080/15216540214316
  • Grzywa TM, Sosnowska A, Matryba P, et al. Myeloid cell-derived arginase in cancer immune response. Front Immunol. 2020;11:938. doi: 10.3389/fimmu.2020.00938
  • Morita M, Gravel SP, Hulea L, et al. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle. 2015;14(4):473–480. doi: 10.4161/15384101.2014.991572
  • Kim TW, Kim Y, Jung W, et al. Bilirubin nanomedicine ameliorates the progression of experimental autoimmune encephalomyelitis by modulating dendritic cells. J Control Release. 2021 Mar 10;331:74–84. doi: 10.1016/j.jconrel.2021.01.019
  • Zha Z, Liu S, Liu Y, et al. Potential utility of natural products against oxidative stress in animal models of multiple sclerosis. Antioxid (Basel). 2022 Jul 29;11(8):1495.
  • Rutsch A, Kantsjö JB, Ronchi F. The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front Immunol. 2020;11:604179. doi: 10.3389/fimmu.2020.604179
  • Baecher-Allan CM, Costantino CM, Cvetanovich GL, et al. CD2 costimulation reveals defective activity by human CD4+CD25(hi) regulatory cells in patients with multiple sclerosis. J Immunol. 2011 Mar 15;186(6):3317–3326.
  • Axisa PP, Yoshida TM, Lucca LE, et al. A multiple sclerosis-protective coding variant reveals an essential role for HDAC7 in regulatory T cells. Sci Transl Med. 2022 Dec 14;14(675):eabl3651.
  • Yshii L, Pasciuto E, Bielefeld P, et al. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat Immunol. 2022 Jun;23(6):878–891. doi: 10.1038/s41590-022-01208-z
  • Kenison JE, Jhaveri A, Li Z, et al. Tolerogenic nanoparticles suppress central nervous system inflammation. Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):32017–32028.
  • Krienke C, Kolb L, Diken E, et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science. 2021;371(6525):145–153. doi: 10.1126/science.aay3638
  • Zhou H, Lou F, Bai J, et al. A peptide encoded by pri-miRNA-31 represses autoimmunity by promoting T(reg) differentiation. EMBO Rep. 2022 May 4;23(5):e53475.
  • Feng C, Li L, Li Q, et al. Docosahexaenoic acid ameliorates autoimmune inflammation by activating GPR120 signaling pathway in dendritic cells. Int Immunopharmacol. 2021 Aug;97:107698.
  • Hou H, Sun Y, Miao J, et al. Ponesimod modulates the Th1/Th17/Treg cell balance and ameliorates disease in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2021 [2021 Jul 15];356:577583.
  • Fujiwara M, Raheja R, Garo LP, et al. MicroRNA-92a promotes CNS autoimmunity by modulating the regulatory and inflammatory T cell balance. J Clin Invest. 2022 May 16;132(10). doi: 10.1172/JCI155693
  • Hwang D, Boehm A, Rostami A, et al. Oral D-mannose treatment suppresses experimental autoimmune encephalomyelitis via induction of regulatory T cells. J Neuroimmunol. 2022 Jan 15;362:577778.
  • Shepard ER, Wegner A, Hill EV, et al. The mechanism of action of antigen processing independent T cell epitopes designed for immunotherapy of autoimmune diseases. Front Immunol. 2021;12:654201. doi: 10.3389/fimmu.2021.654201
  • Korn T, Muschaweckh A. Stability and maintenance of foxp3(+) treg cells in non-lymphoid microenvironments. Front Immunol. 2019;10:2634. doi: 10.3389/fimmu.2019.02634
  • Pohar J, O’Connor R, Manfroi B, et al. Antigen receptor-engineered Tregs inhibit CNS autoimmunity in cell therapy using nonredundant immune mechanisms in mice. Eur J Immunol. 2022 Aug;52(8):1335–1349.
  • Sauer EL, Cloake NC, Greer JM. Taming the TCR: antigen-specific immunotherapeutic agents for autoimmune diseases. Int Rev Immunol. 2015;34(6):460–485. doi: 10.3109/08830185.2015.1027822
  • Pfeil J, Simonetti M, Lauer U, et al. Prevention of EAE by tolerogenic vaccination with PEGylated antigenic peptides. Ther Adv Chronic Dis. 2021;12:20406223211037830. doi: 10.1177/20406223211037830
  • Wang H, Shang J, He Z, et al. Dual peptide nanoparticle platform for enhanced antigen-specific immune tolerance for the treatment of experimental autoimmune encephalomyelitis. Biomater Sci. 2022 Jul 12;10(14):3878–3891.
  • Shimizu K, Agata K, Takasugi S, et al. New strategy for MS treatment with autoantigen-modified liposomes and their therapeutic effect. J Control Release. 2021 Jul 10;335:389–397.
  • Ceylan U, Haupeltshofer S, Kämper L, et al. Clozapine regulates microglia and is effective in chronic experimental autoimmune encephalomyelitis. Front Immunol. 2021;12:656941. doi: 10.3389/fimmu.2021.656941
  • Duan W, Sun Y, Wu M, et al. Carbon-silicon switch led to the discovery of novel synthetic cannabinoids with therapeutic effects in a mouse model of multiple sclerosis. Eur J Med Chem. 2021 Dec 15;226:113878.
  • Gonçalves ECD, Lieberknecht V, Horewicz VV, et al. Dopaminergic receptors as neuroimmune mediators in experimental autoimmune encephalomyelitis. Mol Neurobiol. 2021 Nov;58(11):5971–5985.
  • Melnikov M, Pashenkov M, Boyko A. Dopaminergic receptor targeting in multiple sclerosis: is there therapeutic potential? Int J Mol Sci. 2021 May 18;22(10):5313.
  • Parastouei K, Aarabi MH, Hamidi GA, et al. A CB2 receptor agonist reduces the production of inflammatory mediators and improves locomotor activity in experimental autoimmune encephalomyelitis. Rep Biochem Mol Biol. 2022 Apr;11(1):1–9.
  • Reynoso-Moreno I, Tietz S, Vallini E, et al. Selective endocannabinoid reuptake inhibitor WOBE437 reduces disease progression in a mouse model of multiple sclerosis. ACS Pharmacol Transl Sci. 2021 Apr 9;4(2):765–779.
  • Tiberi M, Evron T, Saracini S, et al. Potent T cell-mediated anti-inflammatory role of the selective CB2 agonist lenabasum in multiple sclerosis. Neuropathol Appl Neurobiol. 2022 Feb;48(2):e12768.
  • Bhat R, Axtell R, Mitra A, et al. Inhibitory role for GABA in autoimmune inflammation. Proc Nat Acad Sci. 2010;107(6):2580–2585. doi: 10.1073/pnas.0915139107
  • Parodi B, Kerlero de Rosbo N. The gut-brain axis in multiple sclerosis. is its dysfunction a pathological trigger or a consequence of the disease? Front Immunol. 2021;12:718220. doi: 10.3389/fimmu.2021.718220
  • Rebeaud J, Peter B, Pot C. How microbiota-derived metabolites link the gut to the brain during neuroinflammation. Int J Mol Sci. 2022 Sep 4;23(17):10128.
  • Heng AHS, Han CW, Abbott C, et al. Chemokine-driven migration of pro-inflammatory CD4(+) T cells in CNS autoimmune disease. Front Immunol. 2022;13:817473. doi: 10.3389/fimmu.2022.817473
  • Al-Mazroua HA, Nadeem A, Ansari MA, et al. CCR1 antagonist ameliorates experimental autoimmune encephalomyelitis by inhibition of Th9/Th22-related markers in the brain and periphery. Mol Immunol. 2022 Apr;144:127–137.
  • Ahmad SF, Nadeem A, Ansari MA, et al. CC chemokine receptor 5 antagonist alleviates inflammation by regulating IFN-γ/IL-10 and STAT4/Smad3 signaling in a mouse model of autoimmune encephalomyelitis. Cell Immunol. 2022 Sep;379:104580.
  • Karampoor S, Zahednasab H, Amini R, et al. Maraviroc attenuates the pathogenesis of experimental autoimmune encephalitis. Int Immunopharmacol. 2020 Mar;80:106138.
  • Shi X, Wan Y, Wang N, et al. Selection of a picomolar antibody that targets CXCR2-mediated neutrophil activation and alleviates EAE symptoms. Nat Commun. 2021 May 5;12(1):2547.
  • Duan SZ, Usher MG, Mortensen RM. Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circ Res. 2008 Feb 15;102(3):283–294.
  • Bogie JFJ, Grajchen E, Wouters E, et al. Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia in the brain. J Exp Med. 2020 May 4;217(5). doi: 10.1084/jem.20191660
  • Narine M, Colognato H. Current Insights into oligodendrocyte metabolism and its power to sculpt the myelin landscape. Front Cell Neurosci. 2022;16:892968. doi: 10.3389/fncel.2022.892968
  • Yang H, Andersson U, Brines M. Neurons are a primary driver of inflammation via release of HMGB1. Cells. 2021 Oct 18;10(10):2791.
  • Steudler J, Ecott T, Ivan DC, et al. Autoimmune neuroinflammation triggers mitochondrial oxidation in oligodendrocytes. Glia. 2022 Nov;70(11):2045–2061.
  • Yang G, Van Kaer L. Therapeutic targeting of immune cell autophagy in multiple sclerosis: russian roulette or silver bullet? [Review]. Front Immunol. 2021 [2021 Aug 31];12:12. doi: 10.3389/fimmu.2021.724108
  • Yu H, Bai S, Hao Y, et al. Fatty acids role in multiple sclerosis as “metabokines”. J Neuroinflammation. 2022 Jun 17;19(1):157.
  • Islam SMT, Won J, Kim J, et al. Detoxification of reactive aldehydes by alda-1 treatment ameliorates experimental autoimmune encephalomyelitis in mice. Neuroscience. 2021 Mar 15;458:31–42.
  • Cheng A, Jia W, Kawahata I, et al. A novel fatty acid-binding protein 5 and 7 inhibitor ameliorates oligodendrocyte injury in multiple sclerosis mouse models. EBioMedicine. 2021 Oct;72:103582.
  • Chen Y, Kunjamma RB, Weiner M, et al. Prolonging the integrated stress response enhances CNS remyelination in an inflammatory environment. Elife. 2021 Mar 23;10. doi:10.7554/eLife.65469
  • Uyeda A, Quan L, Kato Y, et al. Dimethylarginine dimethylaminohydrolase 1 as a novel regulator of oligodendrocyte differentiation in the central nervous system remyelination. Glia. 2021 Nov;69(11):2591–2604.
  • Langley MR, Choi CI, Peclat TR, et al. Critical role of astrocyte NAD(+) glycohydrolase in myelin injury and regeneration. J Neurosci. 2021 Oct 13;41(41):8644–8667.
  • Rothammer N, Woo MS, Bauer S, et al. G9a dictates neuronal vulnerability to inflammatory stress via transcriptional control of ferroptosis. Sci Adv. 2022 Aug 5;8(31):eabm5500.
  • Michaličková D, Kübra Öztürk H, Hroudová J, et al. Edaravone attenuates disease severity of experimental auto-immune encephalomyelitis and increases gene expression of Nrf2 and HO-1. Physiol Res. 2022 Mar 25;71(1):147–157.
  • Li QY, Miao Q, Sui RX, et al. Ginkgolide K supports remyelination via induction of astrocytic IGF/PI3K/Nrf2 axis. Int Immunopharmacol. 2019 Oct;75:105819.
  • Xiao Y, Tian J, Wu WC, et al. Targeting central nervous system extracellular vesicles enhanced triiodothyronine remyelination effect on experimental autoimmune encephalomyelitis. Bioact Mater. 2022 Mar;9:373–384.
  • Sy M, Brandt AU, Lee SU, et al. N-acetylglucosamine drives myelination by triggering oligodendrocyte precursor cell differentiation. J Biol Chem. 2020 Dec 18;295(51):17413–17424. doi: 10.1074/jbc.RA120.015595
  • Zhang H, Wang D, Sun J, et al. Huperzine—A improved animal behavior in cuprizone-induced mouse model by alleviating demyelination and neuroinflammation. IJMS. 2022 Dec 19;23(24):16182.
  • Shao Q, Zhao M, Pei W, et al. Pinocembrin promotes OPC differentiation and remyelination via the mTOR signaling pathway. Neurosci Bull. 2021 Sep;37(9):1314–1324.
  • Serrano-Regal MP, Bayón-Cordero L, Chara Ventura JC, et al. GABAB receptor agonist baclofen promotes central nervous system remyelination. Glia. 2022;70(12):2426–2440. doi: 10.1002/glia.24262
  • Titus HE, Xu H, Robinson AP, et al. Repurposing the cardiac glycoside digoxin to stimulate myelin regeneration in chemically-induced and immune-mediated mouse models of multiple sclerosis. Glia. 2022 Oct;70(10):1950–1970.
  • Paton KF, Robichon K, Templeton N, et al. The salvinorin analogue, ethoxymethyl ether salvinorin b, promotes remyelination in preclinical models of multiple sclerosis. Front Neurol. 2021;12:782190. doi: 10.3389/fneur.2021.782190
  • Mausner-Fainberg K, Benhamou M, Golan M, et al. Specific blockade of bone morphogenetic protein-2/4 induces oligodendrogenesis and remyelination in demyelinating disorders. Neurotherapeutics. 2021 Jul;18(3):1798–1814.
  • Cignarella F, Filipello F, Bollman B, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020 [2020 Oct 1];140(4):513–534. doi: 10.1007/s00401-020-02193-z
  • Jing Y, Ma R, Chu Y, et al. Matrine treatment induced an A2 astrocyte phenotype and protected the blood-brain barrier in CNS autoimmunity. J Chem Neuroanat. 2021 Nov;117:102004.
  • Zamora NN, Cheli VT, Santiago González DA, et al. Deletion of voltage-gated calcium channels in astrocytes during demyelination reduces brain inflammation and promotes myelin regeneration in mice. J Neurosci. 2020 Apr 22;40(17):3332–3347.
  • Linnerbauer M, Lößlein L, Farrenkopf D, et al. Astrocyte-derived pleiotrophin mitigates late-stage autoimmune CNS inflammation. Front Immunol. 2021;12:800128. doi: 10.3389/fimmu.2021.800128
  • Deerhake ME, Danzaki K, Inoue M, et al. Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Card9-independent expression of Oncostatin M. Immunity. 2021 Mar 9;54(3):484–498.e8.
  • Huang L, Fung E, Bose S, et al. Elezanumab, a clinical stage human monoclonal antibody that selectively targets repulsive guidance molecule a to promote neuroregeneration and neuroprotection in neuronal injury and demyelination models. Neurobiol Dis. 2021 Nov;159:105492. doi: 10.1016/j.nbd.2021.105492
  • Bernardo A, De Simone R, De Nuccio C, et al. The nuclear receptor peroxisome proliferator-activated receptor-γ promotes oligodendrocyte differentiation through mechanisms involving mitochondria and oscillatory Ca2+ waves. Biol Chem. 2013 Dec;394(12):1607–1614.
  • Jeffries MA, McLane LE, Khandker L, et al. mTOR Signaling regulates metabolic function in oligodendrocyte precursor cells and promotes efficient brain remyelination in the cuprizone model. J Neurosci. 2021 Oct 6;41(40):8321–8337.
  • Ornelas IM, Khandker L, Wahl SE, et al. The mechanistic target of rapamycin pathway downregulates bone morphogenetic protein signaling to promote oligodendrocyte differentiation. Glia. 2020 Jun;68(6):1274–1290.
  • Cherchi F, Bulli I, Venturini M, et al. Ion Channels as new attractive targets to improve re-myelination processes in the brain. Int J Mol Sci. 2021 Jul 6;22(14):7277.
  • Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021 Mar;24(3):312–325.
  • Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017 Jan 26;541(7638):481–487.
  • Gorter RP, Baron W. Recent insights into astrocytes as therapeutic targets for demyelinating diseases. Curr Opin Pharmacol. 2022 Aug;65:102261. doi: 10.1016/j.coph.2022.102261
  • Vergara RC, Jaramillo-Riveri S, Luarte A, et al. The energy homeostasis principle: neuronal energy regulation drives local network dynamics generating behavior. Front Comput Neurosci. 2019;13:49. doi: 10.3389/fncom.2019.00049
  • Rose J, Brian C, Pappa A, et al. Mitochondrial metabolism in astrocytes regulates brain bioenergetics, neurotransmission and redox balance. Front Neurosci. 2020;14:536682. doi: 10.3389/fnins.2020.536682
  • Poplawski GHD, Kawaguchi R, Van Niekerk E, et al. Injured adult neurons regress to an embryonic transcriptional growth state. Nature. 2020 2020 Mar 1;581(7806):77–82. doi: 10.1038/s41586-020-2200-5
  • Renthal W, Tochitsky I, Yang L, et al. Transcriptional reprogramming of distinct peripheral sensory neuron subtypes after axonal injury. Neuron. 2020 Oct 14;108(1):128–144 e9.
  • Ludwin SK, Rao VT, Moore CS, et al. Astrocytes in multiple sclerosis. Mult Scler J. 2016;22(9):1114–1124. doi: 10.1177/1352458516643396
  • Carulli D, de Winter F, Verhaagen J. Semaphorins in adult nervous system plasticity and disease. Front Synaptic Neurosci. 2021;13:672891. doi: 10.3389/fnsyn.2021.672891
  • Geoffroy CC, Zheng B. Chapter 9 - myelin-associated inhibitors in axonal growth after central nervous system injury. In: So K-F, and Xu X-M, editors. Neural Regeneration. Oxford: Academic Press; 2015. p. 153–170. doi: 10.1016/B978-0-12-801732-6.00009-4
  • Uyeda A, Muramatsu R. Molecular mechanisms of central nervous system axonal regeneration and remyelination: a review. Int J Mol Sci. 2020 Oct 30;21(21):8116.
  • Cooke P, Janowitz H, Dougherty SE. Neuronal redevelopment and the regeneration of neuromodulatory axons in the adult mammalian central nervous system. Front Cell Neurosci. 2022;16:872501. doi: 10.3389/fncel.2022.872501
  • Kwiecien JM. Barriers to axonal regeneration after spinal cord injury: a current perspective. Neural Regen Res. 2022 Jan;17(1):85–86. doi: 10.4103/1673-5374.314299
  • Hawthorne AL, Hu H, Kundu B, et al. The unusual response of serotonergic neurons after CNS Injury: lack of axonal dieback and enhanced sprouting within the inhibitory environment of the glial scar. J Neurosci. 2011 Apr 13;31(15):5605–5616.
  • Dougherty SE, Kajstura TJ, Jin Y, et al. Catecholaminergic axons in the neocortex of adult mice regrow following brain injury. Exp Neurol. 2020 Jan;323:113089.
  • Ledeen R, Wu G. Gangliosides of the Nervous System. In: Sonnino S Prinetti A, editors Gangliosides: methods and Protocols. (NY) NY: Springer New York; 2018. p. 19–55.
  • Mita S, de Monasterio-Schrader P, Funfschilling U, et al. Transcallosal projections require glycoprotein m6-dependent neurite growth and guidance. Cereb Cortex. 2015 Nov;25(11):4111–4125.
  • Leon A, Aparicio GI, Scorticati C. Neuronal glycoprotein m6a: an emerging molecule in chemical synapse formation and dysfunction. Front Synaptic Neurosci. 2021;13:661681. doi: 10.3389/fnsyn.2021.661681
  • Greer JM, Trifilieff E, Pender MP. Correlation between anti-myelin Proteolipid Protein (PLP) antibodies and disease severity in multiple sclerosis patients with plp response-permissive HLA types. Front Immunol. 2020;11:1891. doi: 10.3389/fimmu.2020.01891
  • Sobel RA, Eaton MJ, Jaju PD, et al. Anti-myelin proteolipid protein peptide monoclonal antibodies recognize cell surface proteins on developing neurons and inhibit their differentiation. J Neuropathol Exp Neurol. 2019 Sep 1;78(9):819–843. doi: 10.1093/jnen/nlz058

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.