86
Views
0
CrossRef citations to date
0
Altmetric
Review

Is chymase 1 a therapeutic target in cardiovascular disease?

, , &
Pages 645-656 | Received 13 Mar 2023, Accepted 09 Aug 2023, Published online: 21 Aug 2023

References

  • Zhou B, Carrillo-Larco RM, Danaei G, et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398(10304):957–980. 2021/09/11/. doi: 10.1016/S0140-6736(21)01330-1
  • Khalil H, Zeltser R. Antihypertensive Medications. StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
  • Coca A, Kreutz R, Manolis AJ, et al. A practical approach to switch from a multiple pill therapeutic strategy to a polypill-based strategy for cardiovascular prevention in patients with hypertension. J Hypertens. 2020 Oct;38(10):1890–1898. doi: 10.1097/HJH.0000000000002464
  • Joseph P, Roshandel G, Gao P, et al. Fixed-dose combination therapies with and without aspirin for primary prevention of cardiovascular disease: an individual participant data meta-analysis. Lancet. 2021 Sep 25;398(10306):1133–1146. doi: 10.1016/S0140-6736(21)01827-4
  • Aitken M, Kleinrock M, Pritchett J. The use of medicines in the U.S.: usage and spending trends and outlook to 2026. IQVIA Institute for Human Data Science; 2022. p. 64. https://www.iqvia.com/insights/the-iqvia-institute/reports/the-use-of-medicines-in-the-us
  • Williams B, Mancia G. Ten Commandments of the 2018 ESC/ESH HTN guidelines on hypertension in adults. Eur Heart J. 2018 Sep 1;39(33):3007–3008. doi: 10.1093/eurheartj/ehy439
  • Matchar DB, McCrory DC, Orlando LA, et al. Systematic review: comparative effectiveness of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers for treating essential hypertension. Ann Intern Med. 2008 Jan 1;148(1):16–29. doi: 10.7326/0003-4819-148-1-200801010-00189
  • Sanders GD, Powers B, Crowley M, et al. Future research needs for angiotensin converting enzyme inhibitors or angiotensin II receptor blockers added to standard medical therapy for treating stable ischemic heart disease. In: Identification of future research need. agency for healthcare research and quality. U.S. Department of Health and Human Services, 2010. AHRQ; 2010.
  • Ferrario CM, Saha A, VonCannon JL, et al. Does the naked emperor parable apply to current perceptions of the Contribution of renin angiotensin system inhibition in hypertension? Curr Hypertens Rep. 2022 Dec;24(12):709–721. doi: 10.1007/s11906-022-01229-x
  • Chen R, Suchard MA, Krumholz HM, et al. Comparative first-line effectiveness and safety of ACE (angiotensin-converting enzyme) inhibitors and angiotensin receptor blockers: a multinational cohort study. Hypertension. 2021 Sep;78(3):591–603. doi: 10.1161/HYPERTENSIONAHA.120.16667
  • Reyes S, Varagic J, Ahmad S, et al. Novel cardiac intracrine mechanisms based on Ang-(1-12)/Chymase axis require a revision of therapeutic approaches in human heart disease. Curr Hypertens Rep. 2017 Feb;19(2):16. doi: 10.1007/s11906-017-0708-3
  • Vanuzzo D. The epidemiological concept of residual risk. Intern Emerg Med. 2011 Oct;6(Suppl 1):45–51. doi: 10.1007/s11739-011-0669-5
  • Turnbull F, Neal B, Blood Pressure Lowering Treatment Trialists C, et al. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomised trials. BMJ.2008 May 17;336(7653):1121–1123.
  • Turnbull F, Neal B, Algert C, et al. Blood Pressure Lowering Treatment Trialists C. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med. 2005;165(12):1410–9. doi: 10.1001/archinte.165.12.1410
  • Dusing R, Sellers F. ACE inhibitors, angiotensin receptor blockers and direct renin inhibitors in combination: a review of their role after the ONTARGET trial. Curr Med Res Opin. 2009 Sep;25(9):2287–2301. doi: 10.1185/03007990903152045
  • Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019 Dec;25(12):1822–1832. doi: 10.1038/s41591-019-0675-0
  • Ferrario CM, Ahmad S, Varagic J, et al. Intracrine angiotensin II functions originate from noncanonical pathways in the human heart. Am J Physiol Heart Circ Physiol. 2016 Aug 1;311(2):H404–14. doi: 10.1152/ajpheart.00219.2016
  • Abadir PM, Walston JD, Carey RM. Subcellular characteristics of functional intracellular renin-angiotensin systems. Peptides. 2012 Dec;38(2):437–445. doi: 10.1016/j.peptides.2012.09.016
  • Kumar R, Singh VP, Baker KM. The intracellular renin-angiotensin system: implications in cardiovascular remodeling. Curr Opin Nephrol Hypertens. 2008 Mar;17(2):168–173. doi: 10.1097/MNH.0b013e3282f521a8
  • Re RN. Mechanisms of disease: local renin-angiotensin-aldosterone systems and the pathogenesis and treatment of cardiovascular disease. Nat Clin Pract Cardiovasc Med. 2004 Nov;1(1):42–47. doi: 10.1038/ncpcardio0012
  • Abassi Z, Skorecki K, Hamo-Giladi DB, et al. Kinins and chymase: the forgotten components of the renin-angiotensin system and their implications in COVID-19 disease. Am J Physiol Lung Cell Mol Physiol. 2021 Mar 1;320(3):L422–L429. doi: 10.1152/ajplung.00548.2020
  • Ahmad S, Ferrario CM. Chymase inhibitors for the treatment of cardiac diseases: a patent review (2010-2018). Expert Opin Ther Pat. 2018 Nov;28(11):755–764. doi: 10.1080/13543776.2018.1531848
  • Ondetti MA, Cushman DW. Enzymes of the renin-angiotensin system and their inhibitors. Annu Rev Biochem. 1982;51(1):283–308. doi: 10.1146/annurev.bi.51.070182.001435
  • Skeggs LT, Dorer FE, Kahn JR, et al. The biological production of angiotensin. In: Page I Bumpus Feditors. Angiotensin handbook of experimental pharmacologyVol. XXXVII. XXXVII Springer-Verlag: Berlin -Heidelberg - (NY); 1974. p. 1–7. 10.1007/978-3-642-65600-2_1
  • Santos RA, Brosnihan KB, Chappell MC, et al. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension. 1988 Feb;11(2 Pt 2):I153–7. doi: 10.1161/01.HYP.11.2_Pt_2.I153
  • Schiavone MT, Santos RA, Brosnihan KB, et al. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci U S A. 1988 Jun;85(11):4095–4098. doi: 10.1073/pnas.85.11.4095
  • Benter IF, Diz DI, Ferrario CM. Cardiovascular actions of angiotensin(1-7). Peptides. 1993 Jul;14(4):679–684. doi: 10.1016/0196-9781(93)90097-Z
  • Ferrario CM. Contribution of angiotensin-(1-7) to cardiovascular physiology and pathology. Curr Hypertens Rep. 2003 Apr;5(2):129–134. doi: 10.1007/s11906-003-0069-y
  • Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in Health and disease. Int J Pept. 2012;2012:256294. doi: 10.1155/2012/256294
  • Turner AJ, Tipnis SR, Guy JL, et al. ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors. Can J Physiol Pharmacol. 2002 Apr;80(4):346–353. doi: 10.1139/y02-021
  • Rice GI, Thomas DA, Grant PJ, et al. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004 Oct 1;383(Pt 1):45–51. doi: 10.1042/BJ20040634
  • Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002 Apr 26;277(17):14838–14843. doi: 10.1074/jbc.M200581200
  • Jankowski V, Vanholder R, van der Giet M, et al. Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler Thromb Vasc Biol. 2007 Feb;27(2):297–302. doi: 10.1161/01.ATV.0000253889.09765.5f
  • Lautner RQ, Villela DC, Fraga-Silva RA, et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res. 2013 Apr 12;112(8):1104–1111. doi: 10.1161/CIRCRESAHA.113.301077
  • Ferrario CM, Groban L, Wang H, et al. The renin-angiotensin system biomolecular cascade: a 2022 update of newer insights and concepts. Kidney Int Suppl. 2022 Apr;12(1):36–47. doi: 10.1016/j.kisu.2021.11.002
  • Hrenak J, Paulis L, Simko F. Angiotensin A/Alamandine/MrgD axis: another clue to understanding cardiovascular pathophysiology. Int J Mol Sci. 2016 Jul 20;17(7):1098. doi: 10.3390/ijms17071098
  • Nagata S, Kato J, Sasaki K, et al. Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. Biochem Biophys Res Commun. 2006 Dec 1;350(4):1026–1031. doi: 10.1016/j.bbrc.2006.09.146
  • Husain A, Bumpus FM, Smeby RR, et al. Evidence for the existence of a family of biologically active angiotensin I-like peptides in the dog central nervous system. Circ Res. 1983 Apr;52(4):460–464. doi: 10.1161/01.RES.52.4.460
  • Bumpus FM, Catt KJ, Chiu AT, et al. Nomenclature for angiotensin receptors. A report of the Nomenclature committee of the council for high blood pressure research. Hypertension. 1991;17(5):720–721. doi: 10.1161/01.HYP.17.5.720
  • Moniwa N, Varagic J, Simington SW, et al. Primacy of angiotensin converting enzyme in angiotensin-(1-12) metabolism. Am J Physiol Heart Circ Physiol. 2013 Sep 1;305(5):H644–50. doi: 10.1152/ajpheart.00210.2013
  • Ahmad S, Simmons T, Varagic J, et al. Chymase-dependent generation of angiotensin II from angiotensin-(1-12) in human atrial tissue. PLoS One. 2011;6(12):e28501. doi: 10.1371/journal.pone.0028501
  • Ahmad S, Varagic J, Groban L, et al. Angiotensin-(1-12): a chymase-mediated cellular angiotensin II substrate. Curr Hypertens Rep. 2014 May;16(5):429. doi: 10.1007/s11906-014-0429-9
  • Ahmad S, Varagic J, VonCannon JL, et al. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme. Biochem Biophys Res Commun. 2016 Sep 16;478(2):559–564. doi: 10.1016/j.bbrc.2016.07.100
  • Ahmad S, Wei CC, Tallaj J, et al. Chymase mediates angiotensin-(1-12) metabolism in normal human hearts. J Am Soc Hypertens. 2013 Mar;7(2):128–136. doi: 10.1016/j.jash.2012.12.003
  • Ahmad S, Wright KN, Ferrario CM, et al. Internalization of angiotensin-(1-12) in adult retinal pigment epithelial-19 cells. FASEB J. 2022;36(S1): doi: 10.1096/fasebj.2022.36.S1.L7802
  • Trask AJ, Jessup JA, Chappell MC, et al. Angiotensin-(1-12) is an alternate substrate for angiotensin peptide production in the heart. Am J Physiol Heart Circ Physiol. 2008 May;294(5):H2242–7. doi: 10.1152/ajpheart.00175.2008
  • Westwood BM, Chappell MC. Divergent pathways for the angiotensin-(1-12) metabolism in the rat circulation and kidney. Peptides. 2012 Jun;35(2):190–195. doi: 10.1016/j.peptides.2012.03.025
  • Yamashita T, Ahmad S, Wright KN, et al. Noncanonical mechanisms for direct bone marrow generating Ang II (angiotensin II) predominate in CD68 positive myeloid lineage cells. Hypertension. 2020 Feb;75(2):500–509. doi: 10.1161/HYPERTENSIONAHA.119.13754
  • Simington SW, Moniwa N, Ahmad S, et al. Renin does not participate in the production of plasma Ang-(1–12) from angiotensinogen. Hypertension. 2013;60(suppl_1):A628. doi: 10.1161/hyp.60.suppl_1.A628
  • Simington SW, Moniwa N, Ahmad S, et al. Abstract 628: Renin does not participate in the production of plasma Ang-(1-12) from angiotensinogen. Hypertension. 2012;60(suppl_1):A628–A628. doi: 10.1161/hyp.60.suppl_1.A628
  • Ahmad S, Varagic J, Westwood BM, et al. Uptake and metabolism of the novel peptide angiotensin-(1-12) by neonatal cardiac myocytes. PLoS One. 2011 Jan 10;6(1):e15759. doi: 10.1371/journal.pone.0015759
  • De Mello WC, Dell’itallia LJ, Varagic J, et al. Intracellular angiotensin-(1-12) changes the electrical properties of intact cardiac muscle. Mol Cell Biochem. 2016 Nov;422(1–2):31–40. doi: 10.1007/s11010-016-2801-3
  • Reyes S, Cheng CP, Roberts DJ, et al. Angiotensin-(1-12)/chymase axis modulates cardiomyocyte L-type calcium currents in rats expressing human angiotensinogen. Int J Cardiol. 2019 Dec 15;297:104–110. doi: 10.1016/j.ijcard.2019.09.052
  • Ferrario CM, VonCannon J, Ahmad S, et al. Activation of the human angiotensin-(1-12)-chymase pathway in rats with human angiotensinogen gene transcripts. Front Cardiovasc Med. 2019;6:163. DOI:10.3389/fcvm.2019.00163
  • Pulgar VM, Cruz-Diaz N, Westwood BM, et al. Angiotensinogen uptake and stimulation of oxidative stress in human pigment retinal epithelial cells. Peptides. 2022 Feb 18;152:170770. doi: 10.1016/j.peptides.2022.170770
  • Li T, Zhang X, Cheng HJ, et al. Critical role of the chymase/angiotensin-(1-12) axis in modulating cardiomyocyte contractility. Int J Cardiol. 2018 Aug 1;264:137–144. doi: 10.1016/j.ijcard.2018.03.066
  • Urata H, Healy B, Stewart RW, et al. Angiotensin II-forming pathways in normal and failing human hearts. Circ Res. 1990 Apr;66(4):883–890. doi: 10.1161/01.RES.66.4.883
  • Urata H, Kinoshita A, Misono KS, et al. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem. 1990 Dec 25;265(36):22348–22357. doi: 10.1016/S0021-9258(18)45712-2
  • Park S, Bivona BJ, Kobori H, et al. Major role for ACE-independent intrarenal ANG II formation in type II diabetes. Am J Physiol Renal Physiol. 2010 Jan;298(1):F37–48. doi: 10.1152/ajprenal.00519.2009
  • Lorenz JN. Chymase: the other ACE? Am J Physiol Renal Physiol. 2010 Jan;298(1):F35–6. doi: 10.1152/ajprenal.00641.2009
  • Kaltenecker CC, Domenig O, Kopecky C, et al. Critical role of neprilysin in kidney angiotensin metabolism. Circ Res. 2020 Aug 14;127(5):593–606. doi: 10.1161/CIRCRESAHA.119.316151
  • Pavo N, Prausmuller S, Spinka G, et al. Myocardial angiotensin metabolism in end-stage heart failure. J Am Coll Cardiol. 2021 Apr 13;77(14):1731–1743. doi: 10.1016/j.jacc.2021.01.052
  • Ferrario CM, Santos RA, Brosnihan KB, et al. A hypothesis regarding the function of angiotensin peptides in the brain. Clin Exp Hypertens A. 1988;10 Suppl 1(sup1):107–121. doi: 10.3109/10641968809075966
  • Jessup JA, Trask AJ, Chappell MC, et al. Localization of the novel angiotensin peptide, angiotensin-(1-12), in heart and kidney of hypertensive and normotensive rats. Am J Physiol Heart Circ Physiol. 2008 Jun;294(6):H2614–8. doi: 10.1152/ajpheart.91521.2007
  • Ferrario CM, VonCannon J, Jiao Y, et al. Cardiac angiotensin-(1-12) expression and systemic hypertension in rats expressing the human angiotensinogen gene. Am J Physiol Heart Circ Physiol. 2016 Apr 15;310(8):H995–1002. doi: 10.1152/ajpheart.00833.2015
  • Balcells E, Meng QC, Johnson WH Jr., et al. Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations. Am J Physiol. 1997 Oct;273(4):H1769–74. doi: 10.1152/ajpheart.1997.273.4.H1769
  • Dell’italia LJ, Collawn JF, Ferrario CM. Multifunctional role of chymase in acute and chronic tissue injury and remodeling. Circ Res. 2018 Jan 19;122(2):319–336. doi: 10.1161/CIRCRESAHA.117.310978
  • Schechter I, Berger A. On the size of the active site in proteases. I Papain Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/S0006-291X(67)80055-X
  • Dell’italia LJ, Husain A. Dissecting the role of chymase in angiotensin II formation and heart and blood vessel diseases. Curr Opin Cardiol. 2002 Jul;17(4):374–379. doi: 10.1097/00001573-200207000-00009
  • Doggrell SA, Wanstall JC. Vascular chymase: pathophysiological role and therapeutic potential of inhibition. Cardiovasc Res. 2004;61(4):653–662. doi: 10.1016/j.cardiores.2003.11.029
  • Berglund P, Akula S, Fu Z, et al. Extended cleavage Specificity of the rat vascular chymase, a potential blood pressure regulating enzyme expressed by rat vascular smooth muscle cells. Int J Mol Sci. 2020 Nov 12;21(22):8546. doi: 10.3390/ijms21228546
  • Chandrasekharan UM, Sanker S, Glynias MJ, et al. Angiotensin II-forming activity in a reconstructed ancestral chymase. Science. 1996 Jan 26;271(5248):502–505. doi: 10.1126/science.271.5248.502
  • Lutzelschwab C, Pejler G, Aveskogh M, et al. Secretory granule proteases in rat mast cells. Cloning of 10 different serine proteases and a carboxypeptidase a from various rat mast cell populations. J Exp Med. 1997 Jan 6;185(1):13–29. doi: 10.1084/jem.185.1.13
  • Kunori Y, Koizumi M, Masegi T, et al. Rodent alpha-chymases are elastase-like proteases. Eur J Biochem. 2002 Dec;269(23):5921–5930. doi: 10.1046/j.1432-1033.2002.03316.x
  • Caughey GH. Mast cell proteases as pharmacological targets. Eur J Pharmacol. 2016 May 5;778:44–55. doi: 10.1016/j.ejphar.2015.04.045
  • Guo C, Ju H, Leung D, et al. A novel vascular smooth muscle chymase is upregulated in hypertensive rats. J Clin Invest. 2001 Mar;107(6):703–715. doi: 10.1172/JCI9997
  • Kishi K, Jin D, Takai S, et al. Role of chymase-dependent angiotensin II formation in monocrotaline-induced pulmonary hypertensive rats. Pediatr Res. 2006 Jul;60(1):77–82. doi: 10.1203/01.pdr.0000219431.45075.d9
  • Wintroub BU, Schechter NB, Lazarus GS, et al. Angiotensin I conversion by human and rat chymotryptic proteinases. J Invest Dermatol. 1984 Nov;83(5):336–339. doi: 10.1111/1523-1747.ep12264144
  • Pejler G. Novel insight into the in vivo function of mast cell chymase: lessons from knockouts and inhibitors. J Innate Immun. 2020;12(5):357–372. doi: 10.1159/000506985
  • Wasse H, Naqvi N, Husain A. Impact of mast cell chymase on renal disease progression. Curr Hypertens Rev. 2012 Feb 1;8(1):15–23. doi: 10.2174/157340212800505007
  • Rawlings ND, Barrett AJ, Thomas PD, et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018 Jan 4;46(D1):D624–d632. doi: 10.1093/nar/gkx1134
  • Fritz H. Human mucus proteinase inhibitor (human MPI). Human seminal inhibitor I (HUSI-I), antileukoprotease (ALP), secretory leukocyte protease inhibitor (SLPI). Biol Chem Hoppe-Seyler. 1988 May;369:79–82.
  • Schick C, Kamachi Y, Bartuski AJ, et al. Squamous cell carcinoma antigen 2 is a novel serpin that inhibits the chymotrypsin-like proteinases cathepsin G and mast cell chymase. J Biol Chem. 1997 Jan 17;272(3):1849–1855. doi: 10.1074/jbc.272.3.1849
  • Tinel H, Zubov D, Zimmermann K, et al. Abstract 13624: a novel chymase inhibitor BAY 1142524 reduces fibrosis and improves cardiac function after myocardial infarction in hamster. Circulation. 2017;136(suppl_1):A13624–A13624.
  • Trivedi NN, Caughey GH. Mast cell peptidases: chameleons of innate immunity and host defense. Am J Respir Cell Mol Biol. 2010 Mar;42(3):257–267. doi: 10.1165/rcmb.2009-0324RT
  • Matsumoto C, Hayashi T, Kitada K, et al. Chymase plays an important role in left ventricular remodeling induced by intermittent hypoxia in mice. Hypertension. 2009 Jul;54(1):164–171. doi: 10.1161/HYPERTENSIONAHA.109.131391
  • Ishida K, Takai S, Murano M, et al. Role of chymase-dependent matrix metalloproteinase-9 activation in mice with dextran sodium sulfate-induced colitis. J Pharmacol Exp Ther. 2008 Feb;324(2):422–426. doi: 10.1124/jpet.107.131946
  • Inoue N, Muramatsu M, Jin D, et al. Effects of chymase inhibitor on angiotensin II-induced abdominal aortic aneurysm development in apolipoprotein E-deficient mice. Atherosclerosis. 2009 Jun;204(2):359–364. doi: 10.1016/j.atherosclerosis.2008.09.032
  • Devarajan S, Yahiro E, Uehara Y, et al. Depressor effect of chymase inhibitor in mice with high salt-induced moderate hypertension. Am J Physiol Heart Circ Physiol. 2015 Dec 1;309(11):H1987–96. doi: 10.1152/ajpheart.00721.2014
  • Palaniyandi SS, Nagai Y, Watanabe K, et al. Chymase inhibition reduces the progression to heart failure after autoimmune myocarditis in rats. Exp Biol Med (Maywood). 2007 Oct;232(9):1213–1221. doi: 10.3181/0703-RM-85
  • Takai S, Jin D, Chen H, et al. Chymase inhibition improves vascular dysfunction and survival in stroke-prone spontaneously hypertensive rats. J Hypertens. 2014 Aug;32(8):1637–1648. discussion 1649. doi: 10.1097/HJH.0000000000000231
  • Kakimoto K, Takai S, Murano M, et al. Significance of chymase-dependent matrix metalloproteinase-9 activation on indomethacin-induced small intestinal damages in rats. J Pharmacol Exp Ther. 2010 Feb;332(2):684–689. doi: 10.1124/jpet.109.162933
  • Imai Y, Takai S, Jin D, et al. Chymase inhibition attenuates lipopolysaccharide/d-galactosamine-induced acute liver failure in hamsters. Pharmacology. 2014;93(1–2):47–56. doi: 10.1159/000357684
  • Komeda K, Takai S, Jin D, et al. Chymase inhibition attenuates tetrachloride-induced liver fibrosis in hamsters. Hepatol Res. 2010 Aug;40(8):832–840. doi: 10.1111/j.1872-034X.2010.00672.x
  • Tsunemi K, Takai S, Nishimoto M, et al. A specific chymase inhibitor, 2-(5-formylamino-6-oxo-2-phenyl-1,6-dihydropyrimidine-1-yl)-N-[[3,4-dioxo-1-phenyl-7-(2-pyridyloxy)]-2-heptyl]acetamide (NK3201), suppresses development of abdominal aortic aneurysm in hamsters. J Pharmacol Exp Ther. 2004 Jun;309(3):879–883. doi: 10.1124/jpet.103.063974
  • Takai S, Jin D, Ohzu M, et al. Chymase inhibition provides pancreatic islet protection in hamsters with streptozotocin-induced diabetes. J Pharmacol Sci. 2009 Aug;110(4):459–465. doi: 10.1254/jphs.09115FP
  • Maeda Y, Inoguchi T, Takei R, et al. Chymase inhibition prevents myocardial fibrosis through the attenuation of NOX4-associated oxidative stress in diabetic hamsters. J Diabetes Investig. 2012 Aug 20;3(4):354–361. doi: 10.1111/j.2040-1124.2012.00202.x
  • Maeda Y, Inoguchi T, Takei R, et al. Inhibition of chymase protects against diabetes-induced oxidative stress and renal dysfunction in hamsters. Am J Physiol Renal Physiol. 2010 Dec;299(6):F1328–38. doi: 10.1152/ajprenal.00337.2010
  • Kosanovic D, Luitel H, Dahal BK, et al. Chymase: a multifunctional player in pulmonary hypertension associated with lung fibrosis. Eur Respir J. 2015 Oct;46(4):1084–1094. doi: 10.1183/09031936.00018215
  • Wang T, Han SX, Zhang SF, et al. Role of chymase in cigarette smoke-induced pulmonary artery remodeling and pulmonary hypertension in hamsters. Respir Res. 2010 Mar 31;11(1):36. doi: 10.1186/1465-9921-11-36
  • Jin D, Takai S, Yamada M, et al. Impact of chymase inhibitor on cardiac function and survival after myocardial infarction. Cardiovasc Res. 2003 Nov 1;60(2):413–420. doi: 10.1016/S0008-6363(03)00535-2
  • Jin D, Takai S, Yamada M, et al. Beneficial effects of cardiac chymase inhibition during the acute phase of myocardial infarction. Life Sci. 2002 Jun 14;71(4):437–446. doi: 10.1016/S0024-3205(02)01689-2
  • Hoshino F, Urata H, Inoue Y, et al. Chymase inhibitor improves survival in hamsters with myocardial infarction. J Cardiovasc Pharmacol. 2003.Jan;41 Suppl 1:S11–8.
  • Fan YY, Nishiyama A, Fujisawa Y, et al. Contribution of chymase-dependent angiotensin II formation to the progression of tubulointerstitial fibrosis in obstructed kidneys in hamsters. J Pharmacol Sci. 2009 Sep;111(1):82–90. doi: 10.1254/jphs.09152FP
  • Uehara Y, Urata H, Ideishi M, et al. Chymase inhibition suppresses high-cholesterol diet-induced lipid accumulation in the hamster aorta. Cardiovasc Res. 2002 Sep;55(4):870–876. doi: 10.1016/S0008-6363(02)00458-3
  • Hooshdaran B, Kolpakov MA, Guo X, et al. Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury. Basic Res Cardiol. 2017 Sep 14;112(6):62. doi: 10.1007/s00395-017-0652-z
  • Oyamada S, Bianchi C, Takai S, et al. Chymase inhibition reduces infarction and matrix metalloproteinase-9 activation and attenuates inflammation and fibrosis after acute myocardial ischemia/reperfusion. J Pharmacol Exp Ther. 2011 Oct;339(1):143–151. doi: 10.1124/jpet.111.179697
  • Zheng J, Wei CC, Hase N, et al. Chymase mediates injury and mitochondrial damage in cardiomyocytes during acute ischemia/reperfusion in the dog. PLoS One. 2014;9(4):e94732. doi: 10.1371/journal.pone.0094732
  • Duengen HD, Kim RJ, Zahger D, et al. 87 effects of the chymase inhibitor fulacimstat on adverse cardiac remodelling after acute myocardial infarction - results of the CHIARA MIA 2 trial. Eur Heart J. 2019;40(Supplement_1). doi:10.1093/eurheartj/ehz747.0017
  • Duengen HD, Kim RJ, Zahger D, et al. Effects of the chymase inhibitor fulacimstat on adverse cardiac remodeling after acute myocardial infarction-results of the chymase inhibitor in adverse remodeling after myocardial infarction (CHIARA MIA) 2 trial. Am Heart J. 2020 Jun;224:129–137.
  • Okamura K, Kuroda R, Nagata K, et al. Prospective single-arm observational study of human chymase inhibitor Polygonum hydropiper L in subjects with hypertension. Clin Exp Hypertens. 2019;41(8):717–725. doi: 10.1080/10641963.2018.1545847
  • Takai S, Jin D, Nishimoto M, et al. Oral administration of a specific chymase inhibitor, NK3201, inhibits vascular proliferation in grafted vein. Life Sci. 2001;69(15):1725–1732. doi: 10.1016/S0024-3205(01)01255-3
  • Takai S, Jin D, Sakaguchi M, et al. An orally active chymase inhibitor, BCEAB, suppresses heart chymase activity in the hamster. Jpn J Pharmacol. 2001;86(1):124–126. doi: 10.1254/jjp.86.124
  • Wei CC, Hase N, Inoue Y, et al. Mast cell chymase limits the cardiac efficacy of Ang I-converting enzyme inhibitor therapy in rodents. J Clin Invest. 2010 Apr;120(4):1229–1239. doi: 10.1172/JCI39345
  • Kanemitsu H, Takai S, Tsuneyoshi H, et al. Chymase inhibition prevents cardiac fibrosis and dysfunction after myocardial infarction in rats. Hypertens Res. 2006 Jan;29(1):57–64. doi: 10.1291/hypres.29.57
  • Jin D, Takai S, Nonaka Y, et al. A chymase Inhibitory RNA aptamer improves cardiac function and survival after myocardial infarction. Mol Ther Nucleic Acids. 2019 Mar 1;14:41–51. doi: 10.1016/j.omtn.2018.11.001
  • Houde M, Schwertani A, Touil H, et al. Mouse mast cell protease 4 deletion protects heart function and survival after Permanent myocardial infarction. Front Pharmacol. 2018;9:868. DOI:10.3389/fphar.2018.00868
  • Wang Y, Liu CL, Fang W, et al. Deficiency of mouse mast cell protease 4 mitigates cardiac dysfunctions in mice after myocardium infarction. Biochim Biophys Acta Mol Basis Dis. 2019 Jun 1;1865(6):1170–1181. doi: 10.1016/j.bbadis.2019.01.011
  • Tejada T, Tan L, Torres RA, et al. IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction. Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):6949–6954. doi: 10.1073/pnas.1603127113
  • Butts B, Ahmed MI, Bajaj NS, et al. Reduced left atrial emptying fraction and chymase activation in pathophysiology of primary mitral regurgitation. JACC Basic Transl Sci. 2020 Feb;5(2):109–122. doi: 10.1016/j.jacbts.2019.11.006
  • Butts B, Goeddel LA, Zheng J, et al. Impact of early pericardial fluid chymase activation after cardiac surgery. Front Cardiovasc Med. 2023;10:1132786. Epub 20230412. doi: 10.3389/fcvm.2023.1132786
  • Okamura K, Okuda T, Shirai K, et al. Positive correlation between blood pressure or heart rate and chymase-dependent angiotensin II-forming activity in circulating mononuclear leukocytes measured by new ELISA. Clin Exp Hypertens. 2018;40(2):112–117. doi: 10.1080/10641963.2017.1339071
  • Matsumoto T, Wada A, Tsutamoto T, et al. Chymase inhibition prevents cardiac fibrosis and improves diastolic dysfunction in the progression of heart failure. Circulation. 2003 May 27;107(20):2555–2558. doi: 10.1161/01.CIR.0000074041.81728.79
  • Pat B, Chen Y, Killingsworth C, et al. Chymase inhibition prevents fibronectin and myofibrillar loss and improves cardiomyocyte function and LV torsion angle in dogs with isolated mitral regurgitation. Circulation. 2010 Oct 12;122(15):1488–1495. doi: 10.1161/CIRCULATIONAHA.109.921619
  • Takato H, Yasui M, Ichikawa Y, et al. The specific chymase inhibitor TY-51469 suppresses the accumulation of neutrophils in the lung and reduces silica-induced pulmonary fibrosis in mice. Exp Lung Res. 2011 Mar;37(2):101–108. doi: 10.3109/01902148.2010.520815
  • Tomimori Y, Muto T, Saito K, et al. Involvement of mast cell chymase in bleomycin-induced pulmonary fibrosis in mice. Eur J Pharmacol. 2003 Oct 8;478(2–3):179–185. doi: 10.1016/j.ejphar.2003.08.050
  • Coppini R, Santini L, Palandri C, et al. Pharmacological inhibition of serine proteases to reduce cardiac inflammation and fibrosis in atrial fibrillation. Front Pharmacol. 2019;10:1420. DOI:10.3389/fphar.2019.01420
  • Wang H, Varagic J, Nagata S, et al. Atrial angiotensin-(1-12)/chymase expression data in patient of heart diseases. Data Brief. 2020 Aug;31:105744.
  • Powell PC, Wei CC, Fu L, et al. Chymase uptake by cardiomyocytes results in myosin degradation in cardiac volume overload. Heliyon. 2019 Apr;5(4):e01397. doi: 10.1016/j.heliyon.2019.e01397
  • Wang H, Varagic J, Nagata S, et al. Differential expression of the angiotensin-(1-12)/Chymase axis in human atrial tissue. J Surg Res. 2020 Sep;253:173–184.
  • Okamura K, Kuroda R, Nagata K, et al. Prospective single-arm observational study of human chymase inhibitor Polygonum hydropiper L in subjects with hypertension. Ann Clin Exp Hypertens. 2019;41(8):717–725. 2019/11/17. doi: 10.1080/10641963.2018.1545847
  • Ansary TM, Urushihara M, Fujisawa Y, et al. Effects of the selective chymase inhibitor TEI-F00806 on the intrarenal renin-angiotensin system in salt-treated angiotensin I-infused hypertensive mice. Exp Physiol. 2018 Nov;103(11):1524–1531. doi: 10.1113/EP087209
  • Bivona BJ, Takai S, Seth DM, et al. Chymase inhibition retards albuminuria in type 2 diabetes. Physiol Rep. 2019 Dec;7(24):e14302. doi: 10.14814/phy2.14302
  • Rossing P, Strand J, Avogaro A, et al. Effects of the chymase inhibitor fulacimstat in diabetic kidney disease—results from the CADA DIA trial. Nephrol Dialysis Transplantation. 2020;36(12):2263–2273. doi: 10.1093/ndt/gfaa299
  • Huang XR, Chen WY, Truong LD, et al. Chymase is upregulated in diabetic nephropathy: implications for an alternative pathway of angiotensin II-mediated diabetic renal and vascular disease. J Am Soc Nephrol. 2003 Jul;14(7):1738–1747. doi: 10.1097/01.ASN.0000071512.93927.4E
  • Cristovam PC, Arnoni CP, de Andrade MC, et al. ACE-dependent and chymase-dependent angiotensin II generation in normal and glucose-stimulated human mesangial cells. Exp Biol Med (Maywood). 2008 Aug;233(8):1035–1043. doi: 10.3181/0708-RM-229
  • McPherson EA, Luo Z, Brown RA, et al. Chymase-like angiotensin II-generating activity in end-stage human autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2004 Feb;15(2):493–500. doi: 10.1097/01.ASN.0000109782.28991.26
  • de Garavilla L, Greco MN, Sukumar N, et al. A novel, potent dual inhibitor of the leukocyte proteases cathepsin G and chymase: molecular mechanisms and anti-inflammatory activity in vivo. J Biol Chem. 2005 May 6;280(18):18001–18007. doi: 10.1074/jbc.M501302200
  • Dungen HD, Kober L, Nodari S, et al. Safety and Tolerability of the chymase inhibitor Fulacimstat in patients with left ventricular dysfunction after myocardial infarction-results of the CHIARA MIA 1 trial. Clin Pharmacol Drug Dev. 2019 Oct;8(7):942–951. doi: 10.1002/cpdd.633
  • Zhang M, Huang W, Bai J, et al. Chymase inhibition protects diabetic rats from renal lesions. Mol Med Rep. 2016 Jul;14(1):121–128. doi: 10.3892/mmr.2016.5234
  • Lee JH, Kim JW, Ko NY, et al. Mast cell-mediated allergic response is suppressed by sophorae flos: inhibition of SRC-family kinase. Exp Biol Med (Maywood). 2008 Oct;233(10):1271–1279. doi: 10.3181/0803-RM-89
  • Dispenza MC. The use of Bruton’s tyrosine kinase inhibitors to treat allergic disorders. Curr Treat Options Allergy. 2021;8(3):261–273. doi: 10.1007/s40521-021-00286-y
  • Louis RE, Radermecker MF. Substance P-induced histamine release from human basophils, skin and lung fragments: effect of nedocromil sodium and theophylline. Int Arch Allergy Appl Immunol. 1990;92(4):329–333. doi: 10.1159/000235160
  • Wei L, Wang J, Zhang X, et al. Discovery of 2H-Chromen-2-one derivatives as G protein-coupled receptor-35 agonists. J Med Chem. 2017 Jan 12;60(1):362–372. doi: 10.1021/acs.jmedchem.6b01431
  • Theoharides TC. Potential association of mast cells with coronavirus disease 2019. Ann Allergy Asthma Immunol. 2021 Mar;126(3):217–218. doi: 10.1016/j.anai.2020.11.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.