137
Views
0
CrossRef citations to date
0
Altmetric
Review

The role of ubiquitination in microbial infection induced endothelial dysfunction: potential therapeutic targets for sepsis

ORCID Icon, &
Pages 827-839 | Received 31 May 2023, Accepted 07 Sep 2023, Published online: 14 Sep 2023

References

  • Nakamura N. Ubiquitin system. Int J Mol Sci. 2018 Apr 4;19(4):1080.
  • Allan DC, Phillips JC. Why ubiquitin has not evolved. Int J Mol Sci. 2017 Sep 16;18(9):1995.
  • Wang P, Dai X, Jiang W, et al. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol. 2020 Dec;67(Pt 2):131–144. doi: 10.1016/j.semcancer.2020.05.002
  • Li Y, Reverter D. Molecular mechanisms of DUBs regulation in signaling and disease. Int J Mol Sci. 2021 Jan 20;22(3):986.
  • Mooney EC, Sahingur SE. The ubiquitin system and A20: implications in health and disease. J Dent Res. 2021 Jan;100(1):10–20. doi: 10.1177/0022034520949486
  • Beaudette P, Popp O, Dittmar G. Proteomic techniques to probe the ubiquitin landscape. Proteomics. 2016 Jan;16(2):273–287. doi: 10.1002/pmic.201500290
  • Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 2018 Feb;18(2):69–88. doi: 10.1038/nrc.2017.105
  • Song L, Luo ZQ. Post-translational regulation of ubiquitin signaling. J Cell Bio. 2019 Jun 3;218(6):1776–1786.
  • Natarajan V. Mind the gap between the endothelium and E3 ubiquitin ligase: TRIM21 is a viable therapeutic target in sepsis-induced endothelial dysfunction. Am J Respir Cell Mol Biol. 2019 Dec;61(6):676–677. doi: 10.1165/rcmb.2019-0161ED
  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016 Feb 23;315(8):801–810. doi: 10.1001/jama.2016.0287
  • Joffre J, Hellman J, Ince C, et al. Endothelial responses in sepsis. Am J Respir Crit Care Med. 2020 Aug 1;202(3):361–370. doi: 10.1164/rccm.201910-1911TR
  • Feng J, Liu L, Yao F, et al. The protective effect of tanshinone IIa on endothelial cells: a generalist among clinical therapeutics. Expert Rev Clin Pharmacol. 2021 Feb;14(2):239–248. doi: 10.1080/17512433.2021.1878877
  • Dymkowska D. The involvement of autophagy in the maintenance of endothelial homeostasis: the role of mitochondria. Mitochondrion. 2021 Mar;57:131–147. doi: 10.1016/j.mito.2020.12.013
  • Vozandychova V, Stojkova P, Hercik K, et al. The ubiquitination system within bacterial host–pathogen interactions. Microorganisms. 2021 Mar 19;9(3):638. doi: 10.3390/microorganisms9030638
  • Shin D, Mukherjee R, Liu Y, et al. Regulation of phosphoribosyl-linked serine ubiquitination by deubiquitinases DupA and DupB. Mol Cell. 2020 Jan 2;77(1):164–179 e6. doi: 10.1016/j.molcel.2019.10.019
  • Kalayil S, Bhogaraju S, Bonn F, et al. Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination. Nature. 2018 May;557(7707):734–738. doi: 10.1038/s41586-018-0145-8
  • Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017 Jun 20;86(1):129–157.
  • McDowell MA, Byrne AM, Mylona E, et al. The S. Typhi effector StoD is an E3/E4 ubiquitin ligase which binds K48- and K63-linked diubiquitin. Life Sci Alliance. 2019 Jun;2(3):e201800272. doi: 10.26508/lsa.201800272
  • Valleau D, Little DJ, Borek D, et al. Functional diversification of the NleG effector family in enterohemorrhagic Escherichia coli. Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):10004–10009. doi: 10.1073/pnas.1718350115
  • Suzuki S, Suzuki T, Mimuro H, et al. Shigella hijacks the glomulin-cIaps-inflammasome axis to promote inflammation. EMBO Rep. 2018 Jan;19(1):89–101. doi: 10.15252/embr.201643841
  • Guo Y, Li L, Xu T, et al. HUWE1 mediates inflammasome activation and promotes host defense against bacterial infection. J Clin Investig. 2020 Dec 1;130(12):6301–6316. doi: 10.1172/JCI138234
  • Leclair HM, Andre-Gregoire G, Treps L, et al. The E3 ubiquitin ligase MARCH3 controls the endothelial barrier. FEBS Lett. 2016 Oct;590(20):3660–3668. doi: 10.1002/1873-3468.12417
  • Harel S, Sanchez-Gonzalez V, Echavarria R, et al. Roles of miR-640 and zinc finger protein 91 (ZFP91) in angiopoietin-1-induced in vitro angiogenesis. Cells. 2020 Jul 2;9(7):1602. doi: 10.3390/cells9071602
  • Peltzer N, Rieser E, Taraborrelli L, et al. HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep. 2014 Oct 9;9(1):153–165. doi: 10.1016/j.celrep.2014.08.066
  • Lorenz S. Structural mechanisms of HECT-type ubiquitin ligases. Biol Chem. 2018 Jan 26;399(2):127–145.
  • Wang Y, Shi M, Feng H, et al. Structural insights into non-canonical ubiquitination Catalyzed by SidE. Cell. 2018 May 17;173(5):1231–1243 e16. doi: 10.1016/j.cell.2018.04.023
  • Schneider SM, Lee BH, Nicola AV. Viral entry and the ubiquitin-proteasome system. Cell Microbiol. 2021 Feb;23(2):e13276. doi: 10.1111/cmi.13276
  • Hu J, Zhang L, Liu X. Role of Post-translational modifications in influenza a virus Life Cycle and host innate immune response. Front Microbiol. 2020;11:517461. doi: 10.3389/fmicb.2020.517461
  • Valerdi KM, Hage A, van Tol S, et al. The role of the host ubiquitin system in promoting replication of emergent Viruses. Viruses. 2021 Feb 26;13(3):369. doi: 10.3390/v13030369
  • Giraldo MI, Xia H, Aguilera-Aguirre L, et al. Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature. 2020 Sep;585(7825):414–419. doi: 10.1038/s41586-020-2457-8
  • Sola-Riera C, Gupta S, Maleki KT, et al. Hantavirus inhibits TRAIL-Mediated killing of infected cells by downregulating death receptor 5. Cell Rep. 2019 Aug 20;28(8):2124–2139 e6. doi: 10.1016/j.celrep.2019.07.066
  • Min YQ, Ning YJ, Wang H, et al. A RIG-I-like receptor directs antiviral responses to a bunyavirus and is antagonized by virus-induced blockade of TRIM25-mediated ubiquitination. J Biol Chem. 2020 Jul 10;295(28):9691–9711. doi: 10.1074/jbc.RA120.013973
  • Kumar B, Roy A, Asha K, et al. HACE1, an E3 ubiquitin protein ligase, Mitigates Kaposi’s sarcoma-associated herpesvirus infection-induced oxidative stress by promoting Nrf2 activity. J Virol. 2019 May 1:93(9). doi: 10.1128/JVI.01812-18
  • Colomer-Lluch M, Castro-Gonzalez S, Serra-Moreno R. Ubiquitination and SUMOylation in HIV infection: friends and foes. Curr Issues Mol Biol. 2020;35:159–194. doi: 10.21775/cimb.035.159
  • van Tol S, Kalveram B, Ilinykh PA, et al. Ubiquitination of Ebola virus VP35 at lysine 309 regulates viral transcription and assembly. PLOS Pathog. 2022 May;18(5):e1010532. doi: 10.1371/journal.ppat.1010532
  • Luo H. Interplay between the virus and the ubiquitin-proteasome system: molecular mechanism of viral pathogenesis. Curr Opin Virol. 2016 Apr;17:1–10. doi: 10.1016/j.coviro.2015.09.005
  • Zhang M, Fu M, Li M, et al. Herpes simplex virus type 2 inhibits type I IFN signaling mediated by the novel E3 ubiquitin protein ligase activity of viral protein ICP22. J Immunol. 2020 Sep 1;205(5):1281–1292. doi: 10.4049/jimmunol.2000418
  • Bharaj P, Atkins C, Luthra P, et al. The host E3-ubiquitin ligase TRIM6 Ubiquitinates the Ebola virus VP35 protein and promotes virus replication. J Virol. 2017 Sep 15;91(18): doi: 10.1128/JVI.00833-17
  • Li X, Elmira E, Rohondia S, et al. A patent review of the ubiquitin ligase system: 2015-2018. Expert Opin Ther Pat. 2018 Dec;28(12):919–937. doi: 10.1080/13543776.2018.1549229
  • Liu P, Lu Z, Liu L, et al. NOD-like receptor signaling in inflammation-associated cancers: from functions to targeted therapies. Phytomedicine. 2019 Nov;64:152925.
  • Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol. 2020 Dec;89(Pt B):107087. doi: 10.1016/j.intimp.2020.107087
  • Hu H, Sun SC. Ubiquitin signaling in immune responses. Cell Res. 2016 Apr;26(4):457–483. doi: 10.1038/cr.2016.40
  • Sujashvili R. Advantages of extracellular ubiquitin in modulation of immune responses. Mediators Inflamm. 2016;2016:4190390. doi: 10.1155/2016/4190390
  • Roh KH, Lee Y, Yoon JH, et al. TRAF6-mediated ubiquitination of MST1/STK4 attenuates the TLR4-NF-kappaB signaling pathway in macrophages. Cell Mol Life Sci. 2021 Mar;78(5):2315–2328. doi: 10.1007/s00018-020-03650-4
  • Bird L. ABCs of sepsis control. Nat Rev Immunol. 2019 Apr;19(4):200–201. doi: 10.1038/s41577-019-0146-3
  • Xiong MG, Xu ZS, Li YH, et al. RNF152 positively regulates TLR/IL-1R signaling by enhancing MyD88 oligomerization. EMBO Rep. 2020 Mar 4;21(3):e48860. doi: 10.15252/embr.201948860
  • Akutsu M, Dikic I, Bremm A. Ubiquitin chain diversity at a glance. J Cell Sci. 2016 Mar 1;129(5):875–880.
  • Heim VJ, Stafford CA, Nachbur U. NOD signaling and cell death. Front Cell Dev Biol. 2019;7:208. doi: 10.3389/fcell.2019.00208
  • Wu Z, Tong M, Tian L, et al. Plant E3 ligases SNIPER1 and SNIPER2 broadly regulate the homeostasis of sensor NLR immune receptors. EMBO J. 2020 Aug 3;39(15):e104915. doi: 10.15252/embj.2020104915
  • Chen ST, Chen L, Lin DS, et al. NLRP12 regulates Anti-viral RIG-I activation via interaction with TRIM25. Cell Host Microbe. 2019 Apr 10;25(4):602–616 e7. doi: 10.1016/j.chom.2019.02.013
  • Oshiumi H. Recent advances and contradictions in the study of the Individual Roles of ubiquitin ligases that regulate RIG-I-Like receptor-mediated antiviral innate immune responses. Front Immunol. 2020;11:1296. doi: 10.3389/fimmu.2020.01296
  • Kato K, Ahmad S, Zhu Z, et al. Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases. Mol Cell. 2021 Feb 4;81(3):599–613 e8. doi: 10.1016/j.molcel.2020.11.047
  • Weerawardhana A, Uddin MB, Choi JH, et al. Foot-and-mouth disease virus non-structural protein 2B downregulates the RLR signaling pathway via degradation of RIG-I and MDA5. Front Immunol. 2022;13:1020262. doi: 10.3389/fimmu.2022.1020262
  • Zhao C, Jia M, Song H, et al. The E3 ubiquitin ligase TRIM40 attenuates antiviral immune responses by targeting MDA5 and RIG-I. Cell Rep. 2017 Nov 7;21(6):1613–1623. doi: 10.1016/j.celrep.2017.10.020
  • Wicherska-Pawlowska K, Wrobel T, Rybka J. Toll-like receptors (TLRs), NOD-Like receptors (NLRs), and RIG-I-Like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases. Int J Mol Sci. 2021 Dec 13;22(24):13397.
  • Li Y, Suo L, Fu Z, et al. Pivotal role of endothelial cell autophagy in sepsis. Life Sci. 2021 Jul 1;276:119413.
  • Danielski LG, Giustina AD, Bonfante S, et al. The NLRP3 inflammasome and its role in sepsis development. Inflammation. 2020 Feb;43(1):24–31. doi: 10.1007/s10753-019-01124-9
  • Yao RQ, Ren C, Xia ZF, et al. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles. Autophagy. 2021 Feb;17(2):385–401. doi: 10.1080/15548627.2020.1725377
  • Xu Y, Shen J, Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy. 2020 Jan;16(1):3–17. doi: 10.1080/15548627.2019.1603547
  • Zhao X, Nedvetsky P, Stanchi F, et al. Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1. Elife. 2019 Oct 3;8. doi: 10.7554/eLife.46380
  • Lu SL, Kawabata T, Cheng YL, et al. Endothelial cells are intrinsically defective in xenophagy of Streptococcus pyogenes. PLoS Pathog. 2017 Jul;13(7):e1006444. doi: 10.1371/journal.ppat.1006444
  • Cheng YL, Wu YW, Kuo CF, et al. Galectin-3 inhibits galectin-8/Parkin-mediated ubiquitination of group a Streptococcus. MBio. 2017 Jul 25;8(4): doi: 10.1128/mBio.00899-17
  • Liao K, Niu F, Hu G, et al. HIV Tat-mediated induction of autophagy regulates the disruption of ZO-1 in brain endothelial cells. Tissue Barr. 2020 Apr 2;8(2):1748983. doi: 10.1080/21688370.2020.1748983
  • Zhang S, An Q, Wang T, et al. Autophagy- and MMP-2/9-mediated reduction and redistribution of ZO-1 contribute to hyperglycemia-increased blood-brain barrier permeability during early reperfusion in stroke. Neuroscience. 2018 May 1;377:126–137.
  • Yang Z, Lin P, Chen B, et al. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5). Autophagy. 2020 Dec;7(1):1–20. doi: 10.1080/15548627.2019.1665293
  • Yang Z, Huang C, Wu Y, et al. Autophagy protects the blood-brain barrier through regulating the dynamic of claudin-5 in short-term starvation. Front Physiol. 2019;10:2. doi: 10.3389/fphys.2019.00002
  • Liu J, Bi X, Chen T, et al. Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression. Cell Death Dis. 2015 Jul 16;6(7):e1827. doi: 10.1038/cddis.2015.193
  • Carresi C, Mollace R, Macri R, et al. Oxidative stress triggers defective autophagy in endothelial cells: role in Atherothrombosis development. Antioxidants. 2021 Mar 5;10(3):387. doi: 10.3390/antiox10030387
  • Torisu K, Singh KK, Torisu T, et al. Intact endothelial autophagy is required to maintain vascular lipid homeostasis. Aging Cell. 2016 Feb;15(1):187–191. doi: 10.1111/acel.12423
  • Li CF, Pan YK, Gao Y, et al. Autophagy protects HUVECs against ER stress-mediated apoptosis under simulated microgravity. Apoptosis. 2019 Oct;24(9–10):812–825. doi: 10.1007/s10495-019-01560-w
  • Engstrom P, Burke TP, Mitchell G, et al. Evasion of autophagy mediated by Rickettsia surface protein OmpB is critical for virulence. Nat Microbiol. 2019 Dec;4(12):2538–2551. doi: 10.1038/s41564-019-0583-6
  • Laina A, Stellos K, Stamatelopoulos K. Vascular ageing: underlying mechanisms and clinical implications. Exp Gerontol. 2018 Aug;109:16–30. doi: 10.1016/j.exger.2017.06.007
  • Wang YZ, Wang YM, Pan X, et al. Antioxidant mechanisms of the Oligopeptides (FWKVV and FMPLH) from muscle hydrolysate of miiuy croaker against oxidative damage of HUVECs. Oxid Med Cell Longev. 2021;2021:9987844. doi: 10.1155/2021/9987844
  • Fu S, Zheng Y, Sun Y, et al. Suppressing long noncoding RNA OGRU ameliorates diabetic retinopathy by inhibition of oxidative stress and inflammation via miR-320/USP14 axis. Free Radic Biol Med. 2021 Jun;169:361–381.
  • Guo Z, Mo Z. Keap1-Nrf2 signaling pathway in angiogenesis and vascular diseases. J Tissue Eng Regen Med. 2020 Jun;14(6):869–883. doi: 10.1002/term.3053
  • Honke N, Shaabani N, Zhang DE, et al. Multiple functions of USP18. Cell Death Dis. 2016 Nov 3;7(11):e2444. doi: 10.1038/cddis.2016.326
  • Gupta A, Anjomani-Virmouni S, Koundouros N, et al. PARK2 depletion connects energy and oxidative stress to PI3K/Akt activation via PTEN S-Nitrosylation. Mol Cell. 2017 Mar 16;65(6):999–1013 e7. doi: 10.1016/j.molcel.2017.02.019
  • Zhao M, Wang Y, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11(4):1845–1863. doi: 10.7150/thno.50905
  • Bingol B, Sheng M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic Biol Med. 2016 Nov;100:210–222. doi: 10.1016/j.freeradbiomed.2016.04.015
  • Koyano F, Yamano K, Kosako H, et al. Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL. J Biol Chem. 2019 Jun 28;294(26):10300–10314. doi: 10.1074/jbc.RA118.006302
  • Miyai T, Vasanth S, Melangath G, et al. Activation of PINK1-Parkin-mediated mitophagy degrades mitochondrial quality control proteins in fuchs endothelial corneal dystrophy. Am J Pathol. 2019 Oct;189(10):2061–2076. doi: 10.1016/j.ajpath.2019.06.012
  • Xia W, Yin J, Zhang S, et al. Parkin modulates ERRalpha/eNOS Signaling pathway in endothelial cells. Cell Physiol Biochem. 2018;49(5):2022–2034. doi: 10.1159/000493713
  • Wang YW, Zhang JH, Yu Y, et al. Inhibition of store-operated calcium entry protects endothelial progenitor cells from H2O2-induced apoptosis. Biomol Ther. 2016 Jul 1;24(4):371–379. doi: 10.4062/biomolther.2015.130
  • Keuss MJ, Hjerpe R, Hsia O, et al. Unanchored tri-NEDD8 inhibits PARP-1 to protect from oxidative stress-induced cell death. EMBO J. 2019 Mar 15;38(6): doi: 10.15252/embj.2018100024
  • Zou DB, Mou Z, Wu W, et al. TRIM33 protects osteoblasts from oxidative stress-induced apoptosis in osteoporosis by inhibiting FOXO3a ubiquitylation and degradation. Aging Cell. 2021 Jul;20(7):e13367. doi: 10.1111/acel.13367
  • Xu K, Xiwen L, Ren G, et al. Depletion of CPEB1 protects against oxidized LDL-induced endothelial apoptosis and inflammation though SIRT1/LOX-1 signalling pathway. Life Sci. 2019 Dec 15;239:116874.
  • Lou Z, Zhu J, Li X, et al. LncRNA Sirt1-AS upregulates Sirt1 to attenuate aging related deep venous thrombosis. Aging. 2021 Feb 26;13(5):6918–6935. doi: 10.18632/aging.202550
  • Nagar H, Jung SB, Kwon SK, et al. CRIF1 deficiency induces p66shc-mediated oxidative stress and endothelial activation. PLoS One. 2014;9(6):e98670. doi: 10.1371/journal.pone.0098670
  • Nagar H, Jung SB, Ryu MJ, et al. CR6-interacting factor 1 deficiency impairs vascular function by inhibiting the Sirt1-endothelial nitric oxide synthase pathway. Antioxid Redox Signal. 2017 Aug 1;27(4):234–249. doi: 10.1089/ars.2016.6719
  • Kim S, Piao S, Lee I, et al. CR6 interacting factor 1 deficiency induces premature senescence via SIRT3 inhibition in endothelial cells. Free Radic Biol Med. 2020 Apr;150:161–171.
  • Zhu W, Yuan Y, Liao G, et al. Mesenchymal stem cells ameliorate hyperglycemia-induced endothelial injury through modulation of mitophagy. Cell Death Dis. 2018 Aug 6;9(8):837. doi: 10.1038/s41419-018-0861-x
  • Sheng Z, Xu Y, Wang S, et al. XPO1-mediated nuclear export of RNF146 protects from angiotensin II-induced endothelial cellular injury. Biochem Biophys Res Commun. 2018 Sep 10;503(3):1544–1549. doi: 10.1016/j.bbrc.2018.07.077
  • Xu J, Sheng Z, Li F, et al. NEDD4 protects vascular endothelial cells against angiotensin II-induced cell death via enhancement of XPO1-mediated nuclear export. Exp Cell Res. 2019 Oct 1;383(1):111505. doi: 10.1016/j.yexcr.2019.111505
  • Zhang N, Zhang Y, Wu B, et al. Role of WW domain E3 ubiquitin protein ligase 2 in modulating ubiquitination and degradation of Septin4 in oxidative stress endothelial injury. Redox Biol. 2020 Feb;30:101419.
  • Zhang N, Zhang Y, Zhao S, et al. Septin4 as a novel binding partner of PARP1 contributes to oxidative stress induced human umbilical vein endothelial cells injure. Biochem Biophys Res Commun. 2018 Feb 5;496(2):621–627. doi: 10.1016/j.bbrc.2018.01.105
  • Qian H, Zhang N, Wu B, et al. The E3 ubiquitin ligase Smurf2 regulates PARP1 stability to alleviate oxidative stress-induced injury in human umbilical vein endothelial cells. J Cell Mol Med. 2020 Apr;24(8):4600–4611. doi: 10.1111/jcmm.15121
  • Kim YR, Jacobs JS, Li Q, et al. SUMO2 regulates vascular endothelial function and oxidative stress in mice. Am J Physiol Heart Circ Physiol. 2019 Dec 1;317(6):H1292–H1300. doi: 10.1152/ajpheart.00530.2019
  • Fang S, Sigmund CD. Ppargamma and RhoBTB1 in hypertension. Curr Opin Nephrol Hypertens. 2020 Mar;29(2):161–170. doi: 10.1097/MNH.0000000000000579
  • Kokeny G, Calvier L, Legchenko E, et al. Ppargamma is a gatekeeper for extracellular matrix and vascular cell homeostasis: beneficial role in pulmonary hypertension and renal/cardiac/pulmonary fibrosis. Curr Opin Nephrol Hypertens. 2020 Mar;29(2):171–179. doi: 10.1097/MNH.0000000000000580
  • Lopes-Pires ME, Frade-Guanaes JO, Quinlan GJ. Clotting dysfunction in sepsis: a role for ROS and potential for therapeutic intervention. Antioxidants. 2021 Dec 30;11(1):88.
  • Wang Z, Zhang S, Xiao Y, et al. NLRP3 inflammasome and inflammatory diseases. Oxid Med Cell Longev. 2020;2020:4063562. doi: 10.1155/2020/4063562
  • Biasizzo M, Kopitar-Jerala N. Interplay between NLRP3 inflammasome and autophagy. Front Immunol. 2020;11:591803.
  • Paik S, Kim JK, Silwal P, et al. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021 May;18(5):1141–1160. doi: 10.1038/s41423-021-00670-3
  • Lopez-Castejon G. Control of the inflammasome by the ubiquitin system. FEBS J. 2020 Jan;287(1):11–26. doi: 10.1111/febs.15118
  • Traba J, Sack MN. The role of caloric load and mitochondrial homeostasis in the regulation of the NLRP3 inflammasome. Cell Mol Life Sci. 2017 May;74(10):1777–1791. doi: 10.1007/s00018-016-2431-7
  • Tang J, Tu S, Lin G, et al. Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia. J Exp Med. 2020 Apr 6;217(4): doi: 10.1084/jem.20182091
  • Song H, Liu B, Huai W, et al. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nat Commun. 2016 Dec 8;7(1):13727. doi: 10.1038/ncomms13727
  • Humphries F, Bergin R, Jackson R, et al. The E3 ubiquitin ligase Pellino2 mediates priming of the NLRP3 inflammasome. Nat Commun. 2018 Apr 19;9(1):1560. doi: 10.1038/s41467-018-03669-z
  • Wang W, Hu D, Wu C, et al. STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection. PLoS Pathog. 2020 Mar;16(3):e1008335. doi: 10.1371/journal.ppat.1008335
  • Wan P, Zhang Q, Liu W, et al. Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome activation. FASEB J. 2019 Apr;33(4):5793–5807. doi: 10.1096/fj.201801681R
  • Kawashima A, Karasawa T, Tago K, et al. ARIH2 Ubiquitinates NLRP3 and negatively regulates NLRP3 inflammasome activation in macrophages. J Immunol. 2017 Nov 15;199(10):3614–3622. doi: 10.4049/jimmunol.1700184
  • Zhou Z, Zhu X, Yin R, et al. K63 ubiquitin chains target NLRP3 inflammasome for autophagic degradation in ox-LDL-stimulated THP-1 macrophages. Aging. 2020 Jan 29;12(2):1747–1759. doi: 10.18632/aging.102710
  • Korbecki J, Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res. 2019 Nov;68(11):915–932. doi: 10.1007/s00011-019-01273-5
  • Ren G, Zhang X, Xiao Y, et al. ABRO1 promotes NLRP3 inflammasome activation through regulation of NLRP3 deubiquitination. EMBO J. 2019 Mar 15;38(6): doi: 10.15252/embj.2018100376
  • Palazon-Riquelme P, Worboys JD, Green J, et al. USP7 and USP47 deubiquitinases regulate NLRP3 inflammasome activation. EMBO Rep. 2018 Oct;19(10). doi: 10.15252/embr.201744766
  • Li J, Chai QY, Liu CH. The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions. Cell Mol Immunol. 2016 Sep;13(5):560–576. doi: 10.1038/cmi.2016.40
  • Zhan Z, Xie X, Cao H, et al. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy. 2014 Feb;10(2):257–268. doi: 10.4161/auto.27162
  • Lv Y, Kim K, Sheng Y, et al. YAP controls endothelial activation and vascular inflammation through TRAF6. Circ Res. 2018 Jun 22;123(1):43–56. doi: 10.1161/CIRCRESAHA.118.313143
  • Zhou W, Zhong Z, Lin D, et al. Hypothermic oxygenated perfusion inhibits HECTD3-mediated TRAF3 polyubiquitination to alleviate DCD liver ischemia-reperfusion injury. Cell Death Dis. 2021 Feb 24;12(2):211. doi: 10.1038/s41419-021-03493-2
  • Majolee J, Pronk MCA, Jim KK, et al. CSN5 inhibition triggers inflammatory signaling and Rho/ROCK-dependent loss of endothelial integrity. Sci Rep. 2019 May 31;9(1):8131. doi: 10.1038/s41598-019-44595-4
  • Li YY, Zhang GY, He JP, et al. Ufm1 inhibits LPS-induced endothelial cell inflammatory responses through the NF-kappaB signaling pathway. Int J Mol Med. 2017 May;39(5):1119–1126. doi: 10.3892/ijmm.2017.2947
  • Kotla S, Le NT, Vu HT, et al. Endothelial senescence-associated secretory phenotype (SASP) is regulated by makorin-1 ubiquitin E3 ligase. Metabolism. 2019 Nov;100:153962.
  • Wang Y, Dai X, Liu Y, et al. MTUS1 silencing promotes E-selectin production through p38 MAPK-dependent CREB ubiquitination in endothelial cells. J Mol Cell Cardiol. 2016 Dec;101:1–10.
  • Li L, Wei J, Mallampalli RK, et al. TRIM21 mitigates human lung microvascular endothelial cells’ inflammatory responses to LPS. Am J Respir Cell Mol Biol. 2019 Dec;61(6):776–785. doi: 10.1165/rcmb.2018-0366OC
  • Wang Y, Li J, Huang Y, et al. Tripartite motif-containing 28 bridges endothelial inflammation and angiogenic activity by retaining expression of TNFR-1 and -2 and VEGFR2 in endothelial cells. FASEB J. 2017 May;31(5):2026–2036. doi: 10.1096/fj.201600988RR
  • Li Y, Huang X, Guo F, et al. TRIM65 E3 ligase targets VCAM-1 degradation to limit LPS-induced lung inflammation. J Mol Cell Biol. 2020 Apr 24;12(3):190–201. doi: 10.1093/jmcb/mjz077
  • Grimsey NJ, Trejo J. Integration of endothelial protease-activated receptor-1 inflammatory signaling by ubiquitin. Curr Opin Hematol. 2016 May;23(3):274–279. doi: 10.1097/MOH.0000000000000232
  • Fernandez Esmerats J, Villa-Roel N, Kumar S, et al. Disturbed flow increases UBE2C (ubiquitin E2 ligase C) via loss of miR-483-3p, inducing aortic valve calcification by the pVHL (von Hippel-Lindau protein) and HIF-1alpha (Hypoxia-inducible factor-1alpha) pathway in endothelial cells. Arterioscler Thromb Vasc Biol. 2019 Mar;39(3):467–481. doi: 10.1161/ATVBAHA.118.312233
  • Brophy ML, Dong Y, Tao H, et al. Myeloid-specific deletion of Epsins 1 and 2 reduces atherosclerosis by preventing LRP-1 downregulation. Circ Res. 2019 Feb 15;124(4):e6–e19. doi: 10.1161/CIRCRESAHA.118.313028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.