285
Views
1
CrossRef citations to date
0
Altmetric
Review

Vitamin D/vitamin D receptor pathway in non-alcoholic fatty liver disease

, , &
Pages 1145-1157 | Received 16 Mar 2023, Accepted 18 Oct 2023, Published online: 06 Nov 2023

References

  • Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of non-alcoholic fatty liver disease. Cell. 2021 May 13;184(10):2537–2564. doi: 10.1016/j.cell.2021.04.015
  • Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of non-alcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016 Jul;64(1):73–84. doi: 10.1002/hep.28431
  • Zhou J, Zhou F, Wang W, et al. Epidemiological features of NAFLD from 1999 to 2018 in China. Hepatology. 2020 May;71(5):1851–1864. doi: 10.1002/hep.31150
  • Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015 Apr;62(1 Suppl):S47–64. doi: 10.1016/j.jhep.2014.12.012
  • Younossi ZM, Golabi P, de Avila L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J Hepatol. 2019 Oct;71(4):793–801. doi: 10.1016/j.jhep.2019.06.021
  • Kim D, Konyn P, Sandhu KK, et al. Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States. J Hepatol. 2021 Dec;75(6):1284–1291. doi: 10.1016/j.jhep.2021.07.035
  • Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guidance from the American Association for the study of liver diseases. Hepatology. 2018 Jan;67(1):328–357. doi: 10.1002/hep.29367
  • Eslam M, Sanyal AJ, George J, et al. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020 May;158(7):1999–2014 e1. doi: 10.1053/j.gastro.2019.11.312
  • Nan Y, An J, Bao J, et al. The Chinese society of Hepatology position statement on the redefinition of fatty liver disease. J Hepatol. 2021 Aug;75(2):454–461. doi: 10.1016/j.jhep.2021.05.003
  • Rinella ME, Lazarus JV, Ratziu V, et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023 Jun 20; S0168–8278(23):00418–X . doi: 10.1016/j.jhep.2023.06.003
  • Martens PJ, Gysemans C, Verstuyf A, et al. Vitamin D’s effect on immune function. Nutrients. 2020 Apr 28;12(5):1248. doi: 10.3390/nu12051248
  • Pop TL, Sirbe C, Benta G, et al. The role of vitamin D and vitamin D binding protein in chronic liver diseases. Int J Mol Sci. 2022 Sep 14;23(18):10705. doi: 10.3390/ijms231810705
  • Eliades M, Spyrou E, Agrawal N, et al. Meta-analysis: vitamin D and non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2013 Aug;38(3):246–254. doi: 10.1111/apt.12377
  • Wang X, Li W, Zhang Y, et al. Association between vitamin D and non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: results from a meta-analysis. Int J Clin Exp Med. 2015;8(10):17221–17234.
  • Chung GE, Kim D, Kwak MS, et al. The serum vitamin D level is inversely correlated with non-alcoholic fatty liver disease. Clin Mol Hepatol. 2016 Mar;22(1):146–151. doi: 10.3350/cmh.2016.22.1.146
  • Kim HS, Rotundo L, Kothari N, et al. Vitamin D is associated with severity and mortality of non-alcoholic fatty liver disease: a US population-based study. J Clin Transl Hepatol. 2017 Sep 28;5(3):185–192. doi: 10.14218/JCTH.2017.00025
  • Barchetta I, Angelico F, Del Ben M, et al. Strong association between non alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med. 2011 Jul 12;9(1):85. doi: 10.1186/1741-7015-9-85
  • Anty R, Hastier A, Canivet CM, et al. Severe vitamin D deficiency is not associated with liver damage in morbidly obese patients. Obes Surg. 2016 Sep;26(9):2138–2143. doi: 10.1007/s11695-016-2070-y
  • Bril F, Maximos M, Portillo-Sanchez P, et al. Relationship of vitamin D with insulin resistance and disease severity in non-alcoholic steatohepatitis. J Hepatol. 2015 Feb;62(2):405–411. doi: 10.1016/j.jhep.2014.08.040
  • Patel YA, Henao R, Moylan CA, et al. Vitamin D is not associated with severity in NAFLD: results of a paired clinical and gene expression profile analysis. Am J Gastroenterol. 2016 Nov;111(11):1591–1598. doi: 10.1038/ajg.2016.406
  • Bjelakovic M, Nikolova D, Bjelakovic G, et al. Vitamin D supplementation for chronic liver diseases in adults. Cochrane Database Syst Rev. 2021 Aug 25;8(8):CD011564. doi: 10.1002/14651858.CD011564.pub3
  • Lee HK, Shin SR, Han AL. Metabolic dysfunction associated fatty liver disease (MAFLD) and serum vitamin D concentration in South Korea. Asia Pac J Clin Nutr. 2022;31(2):201–207. doi: 10.6133/apjcn.202206_31(2).0005
  • Hussain M, Iqbal J, Malik SA, et al. Effect of vitamin D supplementation on various parameters in non-alcoholic fatty liver disease patients. Pak J Pharm Sci. 2019 May;32(3 Special):1343–1348.
  • Sindhughosa DA, Wibawa IDN, Mariadi IK, et al. Additional treatment of vitamin D for improvement of insulin resistance in non-alcoholic fatty liver disease patients: a systematic review and meta-analysis. Sci Rep. 2022 May 11;12(1):7716. doi: 10.1038/s41598-022-11950-x
  • Sharifi N, Amani R, Hajiani E, et al. Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease? A randomized clinical trial. Endocrine. 2014 Sep;47(1):70–80. doi: 10.1007/s12020-014-0336-5
  • Dasarathy J, Varghese R, Feldman A, et al. Patients with non-alcoholic fatty liver disease have a low response rate to vitamin D supplementation. J Nutr. 2017 Oct;147(10):1938–1946. doi: 10.3945/jn.117.254292
  • Barchetta I, Del Ben M, Angelico F, et al. No effects of oral vitamin D supplementation on non-alcoholic fatty liver disease in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. BMC Med. 2016 Jun 29;14(1):92. doi: 10.1186/s12916-016-0638-y
  • Kitson MT, Pham A, Gordon A, et al. High-dose vitamin D supplementation and liver histology in NASH. Gut. 2016 Apr;65(4):717–718. doi: 10.1136/gutjnl-2015-310417
  • Geier A, Eichinger M, Stirnimann G, et al. Treatment of non-alcoholic steatohepatitis patients with vitamin D: a double-blinded, randomized, placebo-controlled pilot study. Scand J Gastroenterol. 2018 Sep;53(9):1114–1120. doi: 10.1080/00365521.2018.1501091
  • McNally JD, Iliriani K, Pojsupap S, et al. Rapid normalization of vitamin D levels: a meta-analysis. Pediatrics. 2015 Jan;135(1):e152–66. doi: 10.1542/peds.2014-1703
  • Wijnen H, Salemink D, Roovers L, et al. Vitamin D supplementation in nursing home patients: randomized controlled trial of standard daily dose versus individualized loading dose regimen. Drugs Aging. 2015 May;32(5):371–378. doi: 10.1007/s40266-015-0259-8
  • Barchetta I, Cimini FA, Cavallo MG. Vitamin D supplementation and non-alcoholic fatty liver disease: present and future. Nutrients. 2017 Sep 14;9(9):1015. doi: 10.3390/nu9091015
  • Bertoldo F, Cianferotti L, Di Monaco M, et al. Definition, assessment, and management of Vitamin D Inadequacy: suggestions, recommendations, and warnings from the Italian Society for Osteoporosis, mineral metabolism and bone diseases (SIOMMMS). Nutrients. 2022 Oct 6;14(19):4148. doi: 10.3390/nu14194148
  • Barchetta I, Cimini FA, Cavallo MG. Vitamin D and metabolic dysfunction-associated fatty liver disease (MAFLD): an update. Nutrients. 2020 Oct 28;12(11):3302. doi: 10.3390/nu12113302
  • Su YB, Li TH, Huang CC, et al. Chronic calcitriol supplementation improves the inflammatory profiles of circulating monocytes and the associated intestinal/adipose tissue alteration in a diet-induced steatohepatitis rat model. PLoS One. 2018;13(4):e0194867. doi: 10.1371/journal.pone.0194867
  • Yin Y, Yu Z, Xia M, et al. Vitamin D attenuates high fat diet-induced hepatic steatosis in rats by modulating lipid metabolism. Eur J Clin Invest. 2012 Nov;42(11):1189–1196. doi: 10.1111/j.1365-2362.2012.02706.x
  • Chow EC, Magomedova L, Quach HP, et al. Vitamin D receptor activation down-regulates the small heterodimer partner and increases CYP7A1 to lower cholesterol. Gastroenterology. 2014 Apr;146(4):1048–1059. doi: 10.1053/j.gastro.2013.12.027
  • Li R, Guo E, Yang J, et al. 1,25(OH)(2) D(3) attenuates hepatic steatosis by inducing autophagy in mice. Obesity. 2017 Mar;25(3):561–571. (Silver Spring). doi: 10.1002/oby.21757
  • Ma M, Long Q, Chen F, et al. Active vitamin D impedes the progression of non-alcoholic fatty liver disease by inhibiting cell senescence in a rat model. Clin Res Hepatol Gastroenterol. 2020 Sep;44(4):513–523. doi: 10.1016/j.clinre.2019.10.007
  • Wang H, Zhang Q, Chai Y, et al. 1,25(OH)2D3 downregulates the Toll-like receptor 4-mediated inflammatory pathway and ameliorates liver injury in diabetic rats. J Endocrinol Invest. 2015 Oct;38(10):1083–1091. doi: 10.1007/s40618-015-0287-6
  • Han H, Cui M, You X, et al. A role of 1,25(OH)2D3 supplementation in rats with non-alcoholic steatohepatitis induced by choline-deficient diet. Nutr Metab Cardiovasc Dis. 2015 Jun;25(6):556–561. doi: 10.1016/j.numecd.2015.02.011
  • Nakano T, Cheng YF, Lai CY, et al. Impact of artificial sunlight therapy on the progress of non-alcoholic fatty liver disease in rats. J Hepatol. 2011 Aug;55(2):415–425. doi: 10.1016/j.jhep.2010.11.028
  • Liu XJ, Wang BW, Zhang C, et al. Vitamin d deficiency attenuates high-fat diet-induced hyperinsulinemia and hepatic lipid accumulation in male mice. Endocrinology. 2015 Jun;156(6):2103–2113. doi: 10.1210/en.2014-2037
  • Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor. Science. 2002 May 17;296(5571):1313–1316. doi: 10.1126/science.1070477
  • Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008 Oct;29(6):726–776. doi: 10.1210/er.2008-0004
  • Gascon-Barre M, Demers C, Mirshahi A, et al. The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology. 2003 May;37(5):1034–1042. doi: 10.1053/jhep.2003.50176
  • Itagaki H, Shimizu K, Morikawa S, et al. Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice. Int J Clin Exp Pathol. 2013;6(12):2683–2696.
  • Barchetta I, Carotti S, Labbadia G, et al. Liver vitamin D receptor, CYP2R1, and CYP27A1 expression: relationship with liver histology and vitamin D3 levels in patients with non-alcoholic steatohepatitis or hepatitis C virus. Hepatology. 2012 Dec;56(6):2180–2187. doi: 10.1002/hep.25930
  • Cao Y, Shu XB, Yao Z, et al. Is vitamin D receptor a druggable target for non-alcoholic steatohepatitis? World J Gastroenterol. 2020 Oct 14;26(38):5812–5821. doi: 10.3748/wjg.v26.i38.5812
  • Drocourt L, Ourlin JC, Pascussi JM, et al. Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem. 2002 Jul 12;277(28):25125–25132. doi: 10.1074/jbc.M201323200
  • Barchetta I, Cimini FA, Chiappetta C, et al. Relationship between hepatic and systemic angiopoietin-like 3, hepatic vitamin D receptor expression and NAFLD in obesity. Liver Int. 2020 Sep;40(9):2139–2147. doi: 10.1111/liv.14554
  • Bozic M, Guzman C, Benet M, et al. Hepatocyte vitamin D receptor regulates lipid metabolism and mediates experimental diet-induced steatosis. J Hepatol. 2016 Oct;65(4):748–757. doi: 10.1016/j.jhep.2016.05.031
  • Garcia-Monzon C, Petrov PD, Rey E, et al. Angiopoietin-like protein 8 is a novel vitamin D receptor target gene involved in non-alcoholic fatty liver pathogenesis. Am J Pathol. 2018 Dec;188(12):2800–2810. doi: 10.1016/j.ajpath.2018.07.028
  • Martinez-Sena T, Soluyanova P, Guzman C, et al. The vitamin D receptor regulates glycerolipid and phospholipid metabolism in human hepatocytes. Biomolecules. 2020 Mar 24;10(3):493. doi: 10.3390/biom10030493
  • Zhang H, Shen Z, Lin Y, et al. Vitamin D receptor targets hepatocyte nuclear factor 4alpha and mediates protective effects of vitamin D in non-alcoholic fatty liver disease. J Biol Chem. 2020 Mar 20;295(12):3891–3905. doi: 10.1074/jbc.RA119.011487
  • Zhang X, Shang X, Jin S, et al. Vitamin D ameliorates high-fat-diet-induced hepatic injury via inhibiting pyroptosis and alters gut microbiota in rats. Arch Biochem Biophys. 2021 Jul 15;705:108894. doi: 10.1016/j.abb.2021.108894
  • Leung PS. The Modulatory Action of vitamin D on the renin–angiotensin system and the determination of hepatic insulin resistance. Molecules. 2019 Jul 5;24(13):2479. doi: 10.3390/molecules24132479
  • Kusu H, Yoshida H, Kudo M, et al. Tomatidine reduces palmitate-induced lipid accumulation by activating AMPK via vitamin D receptor-mediated signaling in human HepG2 hepatocytes. Mol Nutr Food Res. 2019 Nov;63(22):e1801377. doi: 10.1002/mnfr.201801377
  • Cheng S, So WY, Zhang D, et al. Calcitriol reduces hepatic triglyceride accumulation and glucose output through Ca2+/CaMKKβ/AMPK activation under insulin-resistant conditions in type 2 diabetes mellitus. Curr Mol Med. 2016;16(8):747–758. doi: 10.2174/1566524016666160920111407
  • Han S, Chiang JY. Mechanism of vitamin D receptor inhibition of cholesterol 7alpha-hydroxylase gene transcription in human hepatocytes. Drug Metab Dispos. 2009 Mar;37(3):469–478. doi: 10.1124/dmd.108.025155
  • Echchgadda I, Song CS, Roy AK, et al. Dehydroepiandrosterone sulfotransferase is a target for transcriptional induction by the vitamin D receptor. Mol Pharmacol. 2004 Mar;65(3):720–729. doi: 10.1124/mol.65.3.720
  • Abramovitch S, Dahan-Bachar L, Sharvit E, et al. Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. Gut. 2011 Dec;60(12):1728–1737. doi: 10.1136/gut.2010.234666
  • Seydel S, Beilfuss A, Kahraman A, et al. Vitamin D ameliorates stress ligand expression elicited by free fatty acids in the hepatic stellate cell line LX-2. Turk J Gastroenterol. 2011 Aug;22(4):400–407. doi: 10.4318/tjg.2011.0254
  • Ding N, Yu RT, Subramaniam N, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 2013 Apr 25;153(3):601–613. doi: 10.1016/j.cell.2013.03.028
  • Beilfuss A, Sowa JP, Sydor S, et al. Vitamin D counteracts fibrogenic TGF-beta signalling in human hepatic stellate cells both receptor-dependently and independently. Gut. 2015 May;64(5):791–799. doi: 10.1136/gutjnl-2014-307024
  • Duran A, Hernandez ED, Reina-Campos M, et al. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell. 2016 Oct 10;30(4): 595–609. doi: 10.1016/j.ccell.2016.09.004
  • Alharthi J, Latchoumanin O, George J, et al. Macrophages in metabolic associated fatty liver disease. World J Gastroenterol. 2020 Apr 28;26(16):1861–1878. doi: 10.3748/wjg.v26.i16.1861
  • Kazankov K, Jorgensen SMD, Thomsen KL, et al. The role of macrophages in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019 Mar;16(3):145–159. doi: 10.1038/s41575-018-0082-x
  • Dong B, Zhou Y, Wang W, et al. Vitamin D receptor activation in liver macrophages ameliorates hepatic inflammation, Steatosis, and insulin resistance in mice. Hepatology. 2020 May;71(5):1559–1574. doi: 10.1002/hep.30937
  • Zhou Y, Dong B, Kim KH, et al. Vitamin D receptor activation in liver macrophages protects against hepatic endoplasmic reticulum stress in mice. Hepatology. 2020 Apr;71(4):1453–1466. doi: 10.1002/hep.30887
  • Van Herck MA, Weyler J, Kwanten WJ, et al. The differential roles of T cells in non-alcoholic fatty liver disease and obesity. Front Immunol. 2019;10:82. doi: 10.3389/fimmu.2019.00082
  • Hoogerland JA, Staels B, Dombrowicz D. Immune-metabolic interactions in homeostasis and the progression to NASH. Trends Endocrinol Metab. 2022 Oct;33(10):690–709. doi: 10.1016/j.tem.2022.07.001
  • Carranza-Trejo AM, Vetvicka V, Vistejnova L, et al. Hepatocyte and immune cell crosstalk in non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 2021 Jul;15(7):783–796. doi: 10.1080/17474124.2021.1887730
  • He B, Wu L, Xie W, et al. The imbalance of Th17/Treg cells is involved in the progression of non-alcoholic fatty liver disease in mice. BMC Immunol. 2017 Jun 24;18(1):33. doi: 10.1186/s12865-017-0215-y
  • Rau M, Schilling AK, Meertens J, et al. Progression from non-alcoholic fatty liver to non-alcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/Resting regulatory T cell ratio in peripheral blood and in the liver. J Immunol. 2016 Jan 1;196(1):97–105. doi: 10.4049/jimmunol.1501175
  • Todosenko N, Vulf M, Yurova K, et al. Causal links between hypovitaminosis D and dysregulation of the T cell connection of immunity associated with obesity and concomitant pathologies. Biomedicines. 2021 Nov 23;9(12):1750. doi: 10.3390/biomedicines9121750
  • Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys. 2000 Feb 15;374(2):334–338. doi: 10.1006/abbi.1999.1605
  • Chauss D, Freiwald T, McGregor R, et al. Autocrine vitamin D signaling switches off pro-inflammatory programs of T(H)1 cells. Nat Immunol. 2022 Jan;23(1):62–74. doi: 10.1038/s41590-021-01080-3
  • Palmer MT, Lee YK, Maynard CL, et al. Lineage-specific effects of 1,25-dihydroxyvitamin D(3) on the development of effector CD4 T cells. J Biol Chem. 2011 Jan 14;286(2):997–1004. doi: 10.1074/jbc.M110.163790
  • Cantorna MT, Snyder L, Lin YD, et al. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015 Apr 22;7(4):3011–3021. doi: 10.3390/nu7043011
  • Lithgow H, Florida-James G, Ross M, et al. Exercise acutely increases vitamin D receptor expression in T lymphocytes in vitamin D-deficient men, independent of age. Exp Physiol. 2021 Jul;106(7):1460–1469. doi: 10.1113/EP089480
  • Skrobot A, Demkow U, Wachowska M. Immunomodulatory role of vitamin D: a review. Adv Exp Med Biol. 2018;1108:13–23.
  • Canning MO, Grotenhuis K, de Wit H, et al. (1,25(OH)(2)D(3)) hampers the maturation of fully active immature dendritic cells from monocytes. Eur J Endocrinol. 2001 Sep;3145(13):351–357. -alpha,25-Dihydroxyvitamin D. doi: 10.1530/eje.0.1450351
  • Tilg H, Adolph TE, Trauner M. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab. 2022 Nov 1;34(11):1700–1718. doi: 10.1016/j.cmet.2022.09.017
  • Su D, Nie Y, Zhu A, et al. Vitamin D signaling through induction of paneth cell defensins maintains gut microbiota and improves metabolic disorders and hepatic steatosis in animal models. Front Physiol. 2016;7:498. doi: 10.3389/fphys.2016.00498
  • Kong M, Zhu L, Bai L, et al. Vitamin D deficiency promotes non-alcoholic steatohepatitis through impaired enterohepatic circulation in animal model. Am J Physiol Gastrointest Liver Physiol. 2014 Nov 1;307(9):G883–93. doi: 10.1152/ajpgi.00427.2013
  • Roth CL, Elfers CT, Figlewicz DP, et al. Vitamin D deficiency in obese rats exacerbates non-alcoholic fatty liver disease and increases hepatic resistin and Toll-like receptor activation. Hepatology. 2012 Apr;55(4):1103–1111. doi: 10.1002/hep.24737
  • Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol. 2020 Mar;72(3):558–577. doi: 10.1016/j.jhep.2019.10.003
  • Moreno-Torres M, Guzman C, Petrov PD, et al. Valproate and short-chain fatty acids activate transcription of the human vitamin D receptor gene through a proximal GC-Rich DNA region containing two putative Sp1 binding sites. Nutrients. 2022 Jun 28;14(13):2673. doi: 10.3390/nu14132673
  • Zhao ZH, Wang ZX, Zhou D, et al. Sodium butyrate supplementation inhibits hepatic steatosis by stimulating liver kinase B1 and insulin-induced gene. Cell Mol Gastroenterol Hepatol. 2021;12(3):857–871. doi: 10.1016/j.jcmgh.2021.05.006
  • van der Poorten D, Milner KL, Hui J, et al. Visceral fat: a key mediator of steatohepatitis in metabolic liver disease. Hepatology. 2008 Aug;48(2):449–457. doi: 10.1002/hep.22350
  • Dao AD, Nguyen VH, Ito T, et al. Prevalence, characteristics, and mortality outcomes of obese and nonobese MAFLD in the United States. Hepatol Int. 2023 Feb;17(1):225–236. doi: 10.1007/s12072-022-10436-2
  • Cimini FA, Barchetta I, Carotti S, et al. Relationship between adipose tissue dysfunction, vitamin D deficiency and the pathogenesis of non-alcoholic fatty liver disease. World J Gastroenterol. 2017 May 21;23(19):3407–3417. doi: 10.3748/wjg.v23.i19.3407
  • Bennour I, Haroun N, Sicard F, et al. Recent insights into vitamin D, adipocyte, and adipose tissue biology. Obes Rev. 2022 Aug;23(8):e13453. doi: 10.1111/obr.13453
  • Wong KE, Kong J, Zhang W, et al. Targeted expression of human vitamin D receptor in adipocytes decreases energy expenditure and induces obesity in mice. J Biol Chem. 2011 Sep 30;286(39):33804–33810. doi: 10.1074/jbc.M111.257568
  • Xu Y, Lou Y, Kong J. VDR regulates energy metabolism by modulating remodeling in adipose tissue. Eur J Pharmacol. 2019 Dec 15;865:172761. doi: 10.1016/j.ejphar.2019.172761
  • Matthews DG, D’Angelo J, Drelich J, et al. Adipose-specific vdr deletion alters body fat and enhances mammary epithelial density. J Steroid Biochem Mol Biol. 2016 Nov;164:299–308.
  • Lontchi-Yimagou E, Kang S, Goyal A, et al. Insulin-sensitizing effects of vitamin D repletion mediated by adipocyte vitamin D receptor: studies in humans and mice. Mol Metab. 2020 Dec;42:101095.
  • Kong J, Li YC. Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab. 2006 May;290(5):E916–24. doi: 10.1152/ajpendo.00410.2005
  • Blumberg JM, Tzameli I, Astapova I, et al. Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J Biol Chem. 2006 Apr 21;281(16):11205–11213. doi: 10.1074/jbc.M510343200
  • Nimitphong H, Holick MF, Fried SK, et al. 25-hydroxyvitamin D(3) and 1,25-dihydroxyvitamin D(3) promote the differentiation of human subcutaneous preadipocytes. PLoS One. 2012;7(12):e52171. doi: 10.1371/journal.pone.0052171
  • Salehpour A, Hedayati M, Shidfar F, et al. Modulates adipogenesis of human adipose-derived mesenchymal stem cells dose-dependently. Nutr Metab (Lond). 2021 Mar 12;118(1): 29. 25-Dihydroxyvitamin D3. doi: 10.1186/s12986-021-00561-4.
  • Gao D, Trayhurn P, Bing C. 1,25-dihydroxyvitamin D3 inhibits the cytokine-induced secretion of MCP-1 and reduces monocyte recruitment by human preadipocytes. Int J Obes (Lond). 2013 Mar;37(3):357–365. doi: 10.1038/ijo.2012.53
  • Marcotorchino J, Gouranton E, Romier B, et al. Vitamin D reduces the inflammatory response and restores glucose uptake in adipocytes. Mol Nutr Food Res. 2012 Dec;56(12):1771–1782. doi: 10.1002/mnfr.201200383
  • Mutt SJ, Karhu T, Lehtonen S, et al. Inhibition of cytokine secretion from adipocytes by 1,25-dihydroxyvitamin D(3) via the NF-kappaB pathway. FASEB J. 2012 Nov;26(11):4400–4407. doi: 10.1096/fj.12-210880
  • Karkeni E, Bonnet L, Marcotorchino J, et al. Vitamin D limits inflammation-linked microRNA expression in adipocytes in vitro and in vivo: a new mechanism for the regulation of inflammation by vitamin D. Epigenetics. 2018;13(2):156–162. doi: 10.1080/15592294.2016.1276681
  • Park CY, Kim TY, Yoo JS, et al. Effects of 1,25-dihydroxyvitamin D3 on the inflammatory responses of stromal Vascular cells and adipocytes from lean and obese mice. Nutrients. 2020 Jan 30;12(2):364. doi: 10.3390/nu12020364
  • Karkeni E, Marcotorchino J, Tourniaire F, et al. Vitamin D limits chemokine expression in adipocytes and macrophage migration in vitro and in male mice. Endocrinology. 2015 May;156(5):1782–1793. doi: 10.1210/en.2014-1647
  • Baskin KK, Winders BR, Olson EN. Muscle as a “mediator” of systemic metabolism. Cell Metab. 21(2):237–248. 2015 Feb 3 10.1016/j.cmet.2014.12.021
  • Arias-Loste MT, Ranchal I, Romero-Gomez M, et al. Irisin, a link among fatty liver disease, physical inactivity and insulin resistance. Int J Mol Sci. 2014 Dec 12;15(12):23163–23178. doi: 10.3390/ijms151223163
  • Nara H, Watanabe R. Anti-inflammatory effect of muscle-derived interleukin-6 and its involvement in lipid metabolism. Int J Mol Sci. 2021 Sep 13;22(18):9889. doi: 10.3390/ijms22189889
  • Xiao J, Bei Y, Liu J, et al. miR-212 downregulation contributes to the protective effect of exercise against non-alcoholic fatty liver via targeting FGF-21. J Cell Mol Med. 2016 Feb;20(2):204–216. doi: 10.1111/jcmm.12733
  • Koo BK, Kim D, Joo SK, et al. Sarcopenia is an independent risk factor for non-alcoholic steatohepatitis and significant fibrosis. J Hepatol. 2017 Jan;66(1):123–131. doi: 10.1016/j.jhep.2016.08.019
  • Kuchay MS, Martinez-Montoro JI, Kaur P, et al. Non-alcoholic fatty liver disease-related fibrosis and sarcopenia: an altered liver-muscle crosstalk leading to increased mortality risk. Ageing Res Rev. 2022 Sep;80:101696.
  • Poggiogalle E, Donini LM, Lenzi A, et al. Non-alcoholic fatty liver disease connections with fat-free tissues: a focus on bone and skeletal muscle. World J Gastroenterol. 2017 Mar 14;23(10):1747–1757. doi: 10.3748/wjg.v23.i10.1747
  • Agergaard J, Trostrup J, Uth J, et al. Does vitamin-D intake during resistance training improve the skeletal muscle hypertrophic and strength response in young and elderly men? – a randomized controlled trial. Nutr Metab (Lond). 2015;12(1):32. doi: 10.1186/s12986-015-0029-y
  • Bollen SE, Bass JJ, Fujita S, et al. The vitamin D/Vitamin D receptor (VDR) axis in muscle atrophy and sarcopenia. Cell Signal. 2022 Aug;96:110355.
  • Bass JJ, Kazi AA, Deane CS, et al. The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo. J Physiol. 2021 Feb;599(3):963–979. doi: 10.1113/JP280652
  • Gopinath SD. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor. Skelet Muscle. 2017 Jan 25;7(1):2. doi: 10.1186/s13395-017-0121-2
  • Bollen SE, Atherton PJ. Myogenic, genomic and non-genomic influences of the vitamin D axis in skeletal muscle. Cell Biochem Funct. 2021 Jan;39(1):48–59. doi: 10.1002/cbf.3595
  • Li J, Mihalcioiu M, Li L, et al. Vitamin D prevents lipid accumulation in murine muscle through regulation of PPARgamma and perilipin-2 expression. J Steroid Biochem Mol Biol. 2018 Mar;177:116–124.
  • Nadimi H, Djazayery A, Javanbakht MH, et al. The effect of vitamin D supplementation on serum and muscle irisin levels, and FNDC5 expression in diabetic rats. Rep Biochem Mol Biol. 2019 Oct;8(3):236–243.
  • Hayakawa N, Fukumura J, Yasuno H, et al. 1alpha,25(OH)2D3 downregulates gene expression levels of muscle ubiquitin ligases MAFbx and MuRF1 in human myotubes. Biomed Res. 2015;36(2):71–80. doi: 10.2220/biomedres.36.71
  • Hirose Y, Onishi T, Miura S, et al. Vitamin D attenuates FOXO1-target atrophy gene expression in C2C12 muscle cells. J Nutr Sci Vitaminol (Tokyo). 2018;64(3):229–232. doi: 10.3177/jnsv.64.229
  • Chang E, Kim Y. Vitamin D ameliorates fat accumulation with AMPK/SIRT1 activity in C2C12 skeletal muscle cells. Nutrients. 2019 Nov 17;11(11):2806. doi: 10.3390/nu11112806

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.