134
Views
0
CrossRef citations to date
0
Altmetric
Review

The potential for OGG1 inhibition to be a therapeutic strategy for pulmonary diseases

&
Pages 117-130 | Received 14 Aug 2023, Accepted 07 Feb 2024, Published online: 14 Feb 2024

References

  • Dizdaroglu M. Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat Res. 2005;591(1–2):45–59. doi: 10.1016/j.mrfmmm.2005.01.033
  • Girard PM, D’Ham C, Cadet J, et al. Opposite base-dependent excision of 7,8-dihydro-8-oxoadenine by the Ogg1 protein of Saccharomyces cerevisiae. Carcinogenesis. 1998;19:1299–1305. doi: 10.1093/carcin/19.7.1299
  • Muftuoglu M, de Souza-Pinto NC, Dogan A, et al. Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase. J Biol Chem. 2009;284(14):9270–9279. doi: 10.1074/jbc.M807006200
  • Bruner SD, Norman DP, Verdine GL. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature. 2000;403:859–866. doi: 10.1038/35002510
  • Yang W. Structure and mechanism for DNA lesion recognition. Cell Res. 2008;18(1):184–197. doi: 10.1038/cr.2007.116
  • Lee AJ, Wallace SS. Hide and seek: how do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases? Free Radic Biol Med. 2017;107:170–178. doi: 10.1016/j.freeradbiomed.2016.11.024
  • Dalhus B, Forsbring M, Helle IH, et al. Separation-of-function mutants unravel the dual-reaction mode of human 8-oxoguanine DNA glycosylase. Structure. 2011;19(1):117–127. doi: 10.1016/j.str.2010.09.023
  • Dizdaroglu M, Coskun E, Jaruga P. Repair of oxidatively induced DNA damage by DNA glycosylases: mechanisms of action, substrate specificities and excision kinetics. Mutat Res Rev Mutat Res. 2017;771:99–127. doi: 10.1016/j.mrrev.2017.02.001
  • Sampath H, Lloyd RS. Roles of OGG1 in transcriptional regulation and maintenance of metabolic homeostasis. DNA Repair. 2019;81:102667. doi: 10.1016/j.dnarep.2019.102667
  • Modrich P. Mechanisms and biological effects of mismatch repair. Ann Rev Genet. 1991;25(1):229–253. doi: 10.1146/annurev.ge.25.120191.001305
  • Audebert M, Radicella JP, Dizdaroglu M. Effect of single mutations in the OGG1 gene found in human tumors on the substrate specificity of the Ogg1 protein. Nucleic Acids Res. 2000;28:2672–2678. doi: 10.1093/nar/28.14.2672
  • Hao W, Wang J, Zhang Y, et al. Enzymatically inactive OGG1 binds to DNA and steers base excision repair toward gene transcription. FASEB J. 2020;34(6):7427–7441. doi: 10.1096/fj.201902243R
  • Hung RJ, Hall J, Brennan P, et al. Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am J Epidemiol. 2005;162(10):925–942. doi: 10.1093/aje/kwi318
  • Bravard A, Vacher M, Moritz E, et al. Oxidation status of human OGG1-S326C polymorphic variant determines cellular DNA repair capacity. Cancer Res. 2009;69(8):3642–3649. doi: 10.1158/0008-5472.CAN-08-3943
  • Zarakowska E, Gackowski D, Foksinski M, et al. Are 8-oxoguanine (8-oxoGua) and 5-hydroxymethyluracil (5-hmUra) oxidatively damaged DNA bases or transcription (epigenetic) marks? Mutat Res Genet Toxicol Environ Mutagen. 2014;764-765:58–63. doi: 10.1016/j.mrgentox.2013.09.002
  • Tornaletti S, Maeda LS, Kolodner RD, et al. Effect of 8-oxoguanine on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. DNA Repair. 2004;3(5):483–494. doi: 10.1016/j.dnarep.2004.01.003
  • Doetsch PW. Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis. Mutat Res. 2002;510(1–2):131–140. doi: 10.1016/S0027-5107(02)00258-0
  • Charlet-Berguerand N, Feuerhahn S, Kong SE, et al. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J. 2006;25(23):5481–5491. doi: 10.1038/sj.emboj.7601403
  • Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi: 10.1038/35057062
  • Amente S, Di Palo G, Scala G, et al. Genome-wide mapping of 8-oxo-7,8-dihydro-2’-deoxyguanosine reveals accumulation of oxidatively-generated damage at DNA replication origins within transcribed long genes of mammalian cells. Nucleic Acids Res. 2019;47:221–236. doi: 10.1093/nar/gky1152
  • Gorini F, Scala G, Di Palo G, et al. The genomic landscape of 8-oxodG reveals enrichment at specific inherently fragile promoters. Nucleic Acids Res. 2020;48(8):4309–4324. doi: 10.1093/nar/gkaa175
  • Scala G, Gorini F, Ambrosio S, et al. 8-oxodG accumulation within super-enhancers marks fragile CTCF-mediated chromatin loops. Nucleic Acids Res. 2022;50(6):3292–3306. doi: 10.1093/nar/gkac143
  • Parkinson GN, Lee MP, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature. 2002;417:876–880. doi: 10.1038/nature755
  • Hanakahi LA, Sun H, Maizels N. High affinity interactions of nucleolin with G-G-paired rDNA. J Biol Chem. 1999;274(22):15908–15912. doi: 10.1074/jbc.274.22.15908
  • Arakawa H, Iwasato T, Hayashida H, et al. The complete murine immunoglobulin class switch region of the alpha heavy chain gene-hierarchic repetitive structure and recombination breakpoints. J Biol Chem. 1993;268(7):4651–4655. doi: 10.1016/S0021-9258(18)53445-1
  • Wong Z, Wilson V, Patel I, et al. Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann Hum Genet. 1987;51:269–288. doi: 10.1111/j.1469-1809.1987.tb01062.x
  • Bidula S. Analysis of putative G-quadruplex forming sequences in inflammatory mediators and their potential as targets for treating inflammatory disorders. Cytokine. 2021;142:155493. doi: 10.1016/j.cyto.2021.155493
  • Drsata T, Kara M, Zacharias M, et al. Effect of 8-oxoguanine on DNA structure and deformability. J Phys Chem B. 2013;117(39):11617–11622. doi: 10.1021/jp407562t
  • Hailer-Morrison MK, Kotler JM, Martin BD, et al. Oxidized guanine lesions as modulators of gene transcription. Altered p50 binding affinity and repair shielding by 7,8-dihydro-8-oxo-2’-deoxyguanosine lesions in the NF-κB promoter element. Biochemistry. 2003;42:9761–9770. doi: 10.1021/bi034546k
  • Ghosh R, Mitchell DL. Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res. 1999;27(15):3213–3218. doi: 10.1093/nar/27.15.3213
  • Ramon O, Wong HK, Joyeux M, et al. 2’-deoxyguanosine oxidation is associated with decrease in the DNA-binding activity of the transcription factor Sp1 in liver and kidney from diabetic and insulin-resistant rats. Free Radic Biol Med. 2001;30:107–118. doi: 10.1016/S0891-5849(00)00451-2
  • Ramon O, Sauvaigo S, Gasparutto D, et al. Effects of 8-oxo-7,8-dihydro-2’-deoxyguanosine on the binding of the transcription factor Sp1 to its cognate target DNA sequence (GC box). Free Radic Res. 1999;31:217–229. doi: 10.1080/10715769900300781
  • Moore SP, Toomire KJ, Strauss PR. DNA modifications repaired by base excision repair are epigenetic. DNA Repair. 2013;12:1152–1158. doi: 10.1016/j.dnarep.2013.10.002
  • Pastukh V, Ruchko M, Gorodnya O, et al. Sequence-specific oxidative base modifications in hypoxia-inducible genes. Free Radic Biol Med. 2007;43(12):1616–1626. doi: 10.1016/j.freeradbiomed.2007.08.027
  • Gillespie MN, Wilson GL. Bending and breaking the code: dynamic changes in promoter integrity may underlie a new mechanism regulating gene expression. Am J Physiol Lung Cell Mol Physiol. 2007;292(1):L1–3. doi: 10.1152/ajplung.00275.2006
  • Forneris F, Binda C, Vanoni MA, et al. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 2005;579(10):2203–2207. doi: 10.1016/j.febslet.2005.03.015
  • Perillo B, Ombra MN, Bertoni A, et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science. 2008;319(5860):202–206. doi: 10.1126/science.1147674
  • Tell G, Quadrifoglio F, Tiribelli C, et al. The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal. 2009;11:601–620. doi: 10.1089/ars.2008.2194
  • Ayadi L, Coulombeau C, Lavery R. The impact of abasic sites on DNA flexibility. J Biomol Struct Dyn. 2000;17(4):645–653. doi: 10.1080/07391102.2000.10506555
  • Bazlekowa-Karaban M, Prorok P, Baconnais S, et al. Mechanism of stimulation of DNA binding of the transcription factors by human apurinic/apyrimidinic endonuclease 1, APE1. DNA Repair. 2019;82:102698. doi: 10.1016/j.dnarep.2019.102698
  • Cogoi S, Ferino A, Miglietta G, et al. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: implications on transcription. Nucleic Acids Res. 2018;46(2):661–676. doi: 10.1093/nar/gkx1142
  • Cogoi S, Xodo LE. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res. 2006;34(9):2536–2549. doi: 10.1093/nar/gkl286
  • Fleming AM, Ding Y, Burrows CJ. Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc Natl Acad Sci U S A. 2017;114(10):2604–2609. doi: 10.1073/pnas.1619809114
  • Fleming AM, Zhu J, Ding Y, et al. 8-oxo-7,8-dihydroguanine in the context of a gene promoter G-Quadruplex is an on-off switch for transcription. ACS Chem Biol. 2017;12:2417–2426. doi: 10.1021/acschembio.7b00636
  • Fleming AM, Zhu J, Ding Y, et al. Human DNA repair genes possess potential G-Quadruplex sequences in their promoters and 5’-untranslated regions. Biochemistry. 2018;57:991–1002. doi: 10.1021/acs.biochem.7b01172
  • Roychoudhury S, Pramanik S, Harris HL, et al. Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome. Proc Natl Acad Sci U S A. 2020;117(21):11409–11420. doi: 10.1073/pnas.1912355117
  • Pramanik S, Chen Y, Song H, et al. The human AP-endonuclease 1 (APE1) is a DNA G-quadruplex structure binding protein and regulates KRAS expression in pancreatic ductal adenocarcinoma cells. Nucleic Acids Res. 2022;50(6):3394–3412. doi: 10.1093/nar/gkac172
  • Grishko V, Solomon M, Breit JF, et al. Hypoxia promotes oxidative base modifications in the pulmonary artery endothelial cell VEGF gene. FASEB J. 2001;15(7):1267–1269. doi: 10.1096/fj.00-0755fje
  • Amente S, Bertoni A, Morano A, et al. LSD1-mediated demethylation of histone H3 lysine 4 triggers Myc-induced transcription. Oncogene. 2010;29(25):3691–3702. doi: 10.1038/onc.2010.120
  • Pan L, Zhu B, Hao W, et al. Oxidized guanine base lesions function in 8-Oxoguanine DNA Glycosylase-1-mediated epigenetic regulation of nuclear factor κB-driven gene expression. J Biol Chem. 2016;291:25553–25566. doi: 10.1074/jbc.M116.751453
  • Pan L, Hao W, Xue Y, et al. 8-Oxoguanine targeted by 8-oxoguanine DNA glycosylase 1 (OGG1) is central to fibrogenic gene activation upon lung injury. Nucleic Acids Res. 2023;51(3):1087–1102. doi: 10.1093/nar/gkac1241
  • Baltimore D. NF-κB is 25. Nat Immunol. 2011;12:683–685. doi: 10.1038/ni.2072
  • Wang K, Maayah M, Sweasy JB, et al. The role of cysteines in the structure and function of OGG1. J Biol Chem. 2021;296:100093. doi: 10.1074/jbc.RA120.016126
  • Lukina MV, Popov AV, Koval VV, et al. DNA damage processing by human 8-oxoguanine-DNA glycosylase mutants with the occluded active site. J Biol Chem. 2013;288(40):28936–28947. doi: 10.1074/jbc.M113.487322
  • Pan L, Hao W, Zheng X, et al. OGG1-DNA interactions facilitate NF-kappaB binding to DNA targets. Sci Rep. 2017;7:43297. doi: 10.1038/srep43297
  • Brasier AR, Boldogh I. Targeting inducible epigenetic reprogramming pathways in chronic airway remodeling. Drugs Context. 2019;8:1–10. doi: 10.7573/dic.2019-8-3
  • Nowak DE, Tian B, Jamaluddin M, et al. RelA Ser276 phosphorylation is required for activation of a subset of NF-κB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes. Mol Cell Biol. 2008;28:3623–3638. doi: 10.1128/MCB.01152-07
  • Devaiah BN, Case-Borden C, Gegonne A, et al. BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin. Nat Struct Mol Biol. 2016;23(6):540–548. doi: 10.1038/nsmb.3228
  • Hao W, Qi T, Pan L, et al. Effects of the stimuli-dependent enrichment of 8-oxoguanine DNA glycosylase1 on chromatinized DNA. Redox Biol. 2018;18:43–53. doi: 10.1016/j.redox.2018.06.002
  • Bangalore DM, Tessmer I. Direct hOGG1-Myc interactions inhibit hOGG1 catalytic activity and recruit Myc to its promoters under oxidative stress. Nucleic Acids Res. 2022;50(18):10385–10398. doi: 10.1093/nar/gkac796
  • Aguilera-Aguirre L, Hosoki K, Bacsi A, et al. Whole transcriptome analysis reveals an 8-oxoguanine DNA glycosylase-1-driven DNA repair-dependent gene expression linked to essential biological processes. Free Radic Biol Med. 2015;81:107–118. doi: 10.1016/j.freeradbiomed.2015.01.004
  • Hajas G, Bacsi A, Aguilerra-Aguirre L, et al. Biochemical identification of a hydroperoxide derivative of the free 8-oxo-7,8-dihydroguanine base. Free Radic Biol Med. 2012;52(4):749–756. doi: 10.1016/j.freeradbiomed.2011.11.015
  • Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12(12):801–817. doi: 10.1038/nrc3399
  • Arai T, Kelly VP, Minowa O, et al. The study using wild-type and Ogg1 knockout mice exposed to potassium bromate shows no tumor induction despite an extensive accumulation of 8-hydroxyguanine in kidney DNA. Toxicology. 2006;221(2–3):179–186. doi: 10.1016/j.tox.2006.01.004
  • Sakumi K, Tominaga Y, Furuichi M, et al. Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. Cancer Res. 2003;63:902–905.
  • Klungland A, Rosewell I, Hollenbach S, et al. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci U S A. 1999;96(23):13300–13305. doi: 10.1073/pnas.96.23.13300
  • Minowa O, Arai T, Hirano M, et al. Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguanine in mice. Proc Natl Acad Sci U S A. 2000;97(8):4156–4161. doi: 10.1073/pnas.050404497
  • Mabley JG, Pacher P, Deb A, et al. Potential role for 8-oxoguanine DNA glycosylase in regulating inflammation. FASEB J. 2005;19:290–292. doi: 10.1096/fj.04-2278fje
  • Li G, Yuan K, Yan C, et al. 8-oxoguanine-DNA glycosylase 1 deficiency modifies allergic airway inflammation by regulating STAT6 and IL-4 in cells and in mice. Free Radic Biol Med. 2012;52(2):392–401. doi: 10.1016/j.freeradbiomed.2011.10.490
  • Bacsi A, Aguilera-Aguirre L, Szczesny B, et al. Down-regulation of 8-oxoguanine DNA glycosylase 1 expression in the airway epithelium ameliorates allergic lung inflammation. DNA Repair. 2013;12(1):18–26. doi: 10.1016/j.dnarep.2012.10.002
  • Donley N, Jaruga P, Coskun E, et al. Small molecule inhibitors of 8-oxoguanine DNA glycosylase-1 (OGG1). ACS Chem Biol. 2015;10(10):2334–2343. doi: 10.1021/acschembio.5b00452
  • Visnes T, Cazares-Korner A, Hao W, et al. Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation. Science. 2018;362(6416):834–839. doi: 10.1126/science.aar8048
  • Edwards SK, Ono T, Wang S, et al. In vitro fluorogenic real-time assay of the repair of oxidative DNA damage. Chembiochem. 2015;16(11):1637–1646. doi: 10.1002/cbic.201500184
  • Qin S, Lin P, Wu Q, et al. Small-Molecule Inhibitor of 8-Oxoguanine DNA Glycosylase 1 Regulates Inflammatory Responses during Pseudomonas aeruginosa Infection. J Immunol. 2020;205(8):2231–2242. doi: 10.4049/jimmunol.1901533
  • Zheng X, Wang K, Pan L, et al. Innate immune responses to RSV infection facilitated by OGG1, an enzyme repairing oxidatively modified DNA base lesions. J Innate Immun. 2022;14(6):593–614. doi: 10.1159/000524186
  • Xue Y, Pan L, Vlahopoulos S, et al. Epigenetic control of type III interferon expression by 8-oxoguanine and its reader 8-oxoguanine DNA glycosylase1. Front Immunol. 2023;14:1161160. doi: 10.3389/fimmu.2023.1161160
  • Fan J, Lv X, Yang S, et al. OGG1 inhibition suppresses African swine fever virus replication. Virol Sin. 2023;38:96–107. doi: 10.1016/j.virs.2022.11.006
  • Grollman AP, Moriya M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 1993;9(7):246–249. doi: 10.1016/0168-9525(93)90089-Z
  • Osterod M, Hollenbach S, Hengstler JG, et al. Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1) deficient mice. Carcinogenesis. 2001;22:1459–1463. doi: 10.1093/carcin/22.9.1459
  • Steenken S, Jovanovic SV, Bietti M, et al. The trap depth (in DNA) of 8-oxo-7,8-dihydro-2‘deoxyguanosine as derived from electron-transfer equilibria in aqueous solution. J Am Chem Soc. 2000;122(10):2373–2374. doi: 10.1021/ja993508e
  • Neeley WL, Essigmann JM. Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol. 2006;19(4):491–505. doi: 10.1021/tx0600043
  • Hailer MK, Slade PG, Martin BD, et al. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2. DNA Repair. 2005;4:41–50.
  • Zhou J, Liu M, Fleming AM, et al. Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context*. J Biol Chem. 2013;288(38):27263–27272. doi: 10.1074/jbc.M113.479055
  • Hazra TK, Muller JG, Manuel RC, et al. Repair of hydantoins, one electron oxidation product of 8-oxoguanine, by DNA glycosylases of Escherichia coli. Nucleic Acids Res. 2001;29:1967–1974. doi: 10.1093/nar/29.9.1967
  • Kumar N, Raja S, Van Houten B. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res. 2020;48(20):11227–11243. doi: 10.1093/nar/gkaa777
  • Tanner L, Single AB, Bhongir RKV, et al. Small-molecule-mediated OGG1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model. Nat Commun. 2023;14(1):643. doi: 10.1038/s41467-023-36314-5
  • Victoni T, Barreto E, Lagente V, et al. Oxidative imbalance as a crucial factor in inflammatory lung diseases: could antioxidant treatment constitute a new therapeutic strategy? Oxid Med Cell Longev. 2021;2021:1–11. doi: 10.1155/2021/6646923
  • Porsbjerg C, Melen E, Lehtimaki L, et al. Asthma. Lancet. 2023;401(10379):858–873. doi: 10.1016/S0140-6736(22)02125-0
  • Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012;18(5):684–692. doi: 10.1038/nm.2737
  • Ito JT, Lourenco JD, Righetti RF, et al. Extracellular matrix component remodeling in respiratory diseases: what has been found in clinical and experimental studies? Cells. 2019;8(4):342. doi: 10.3390/cells8040342
  • Kobayashi Y, Tata A, Konkimalla A, et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat Cell Biol. 2020;22(8):934–946. doi: 10.1038/s41556-020-0542-8
  • Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward. Cell. 2019;179(4):813–827. doi: 10.1016/j.cell.2019.10.005
  • Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020;587(7835):555–566. doi: 10.1038/s41586-020-2938-9
  • Erjefalt JS. Unravelling the complexity of tissue inflammation in uncontrolled and severe asthma. Curr Opin Pulm Med. 2019;25(1):79–86. doi: 10.1097/MCP.0000000000000536
  • Tanner L, Bergwik J, Bhongir RKV, et al. Pharmacological OGG1 inhibition decreases murine allergic airway inflammation. Front Pharmacol. 2022;13:999180. doi: 10.3389/fphar.2022.999180
  • Husemoen LL, Glumer C, Lau C, et al. Association of obesity and insulin resistance with asthma and aeroallergen sensitization. Allergy. 2008;63(5):575–582. doi: 10.1111/j.1398-9995.2007.01613.x
  • Ford ES. The epidemiology of obesity and asthma. J Allergy Clin Immunol. 2005;115(5):897–909. quiz 910. doi: 10.1016/j.jaci.2004.11.050
  • Sampath H, Vartanian V, Rollins MR, et al. 8-oxoguanine DNA glycosylase (OGG1) deficiency increases susceptibility to obesity and metabolic dysfunction. PLoS One. 2012;7(12):e51697. doi: 10.1371/journal.pone.0051697
  • Komakula SSB, Tumova J, Kumaraswamy D, et al. The DNA repair protein OGG1 protects against obesity by altering mitochondrial energetics in white adipose tissue. Sci Rep. 2018;8(1):14886. doi: 10.1038/s41598-018-33151-1
  • Luo J, Hosoki K, Bacsi A, et al. 8-oxoguanine DNA glycosylase-1-mediated DNA repair is associated with Rho GTPase activation and alpha-smooth muscle actin polymerization. Free Radic Biol Med. 2014;73:430–438. doi: 10.1016/j.freeradbiomed.2014.03.030
  • Aguilera-Aguirre L, Hosoki K, Bacsi A, et al. Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling. Free Radic Biol Med. 2015;89:20–33. doi: 10.1016/j.freeradbiomed.2015.07.007
  • Stolz D, Mkorombindo T, Schumann DM, et al. Towards the elimination of chronic obstructive pulmonary disease: a lancet commission. Lancet. 2022;400(10356):921–972. doi: 10.1016/S0140-6736(22)01273-9
  • Wang C, Zhou J, Wang J, et al. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther. 2020;5:248.
  • Pan L, Wang H, Luo J, et al. Epigenetic regulation of TIMP1 expression by 8-oxoguanine DNA glycosylase-1 binding to DNA: RNA hybrid. FASEB J. 2019;33(12):14159–14170. doi: 10.1096/fj.201900993RR
  • Leach JP, Morrisey EE. Repairing the lungs one breath at a time: how dedicated or facultative are you? Genes Dev. 2018;32(23–24):1461–1471. doi: 10.1101/gad.319418.118
  • Arai T, Kelly VP, Komoro K, et al. Cell proliferation in liver of Mmh/Ogg1-deficient mice enhances mutation frequency because of the presence of 8-hydroxyguanine in DNA. Cancer Res. 2003;63:4287–4292.
  • Karsten S. Targeting the DNA repair enzymes MTH1 and OGG1 as a novel approach to treat inflammatory diseases. Basic Clin Pharmacol Toxicol. 2022;131(2):95–103. doi: 10.1111/bcpt.13765
  • Tanushi X, Pinna G, Vandamme M, et al. OGG1 competitive inhibitors show important off-target effects by directly inhibiting efflux pumps and disturbing mitotic progression. Front Cell Dev Biol. 2023;11:1124960. doi: 10.3389/fcell.2023.1124960
  • Visnes T, Benitez-Buelga C, Cazares-Korner A, et al. Targeting OGG1 arrests cancer cell proliferation by inducing replication stress. Nucleic Acids Res. 2020;48(21):12234–12251. doi: 10.1093/nar/gkaa1048
  • Baquero JM, Benitez-Buelga C, Rajagopal V, et al. Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects. Sci Rep. 2021;11(1):3490. doi: 10.1038/s41598-021-82917-7
  • Wijsenbeek M, Suzuki A, Maher TM. Interstitial lung diseases. Lancet. 2022;400(10354):769–786. doi: 10.1016/S0140-6736(22)01052-2
  • Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med. 2005;353:1711–1723. doi: 10.1056/NEJMra050541
  • Perico N, Cortinovis M, Suter F, et al. Home as the new frontier for the treatment of COVID-19: the case for anti-inflammatory agents. Lancet Infect Dis. 2023;23(1):e22–e33. doi: 10.1016/S1473-3099(22)00433-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.