69
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Molecular drilling to combat salmonella typhi biofilm using L-Asparaginase via multiple targeting process

, &
Pages 323-334 | Received 17 Mar 2023, Accepted 15 Apr 2024, Published online: 25 Apr 2024

References

  • Carradori S, Di Giacomo N, Lobefalo M, et al. Biofilm and quorum sensing inhibitors: the road so far. Expert Opin Ther Pat. 2020 Dec;30(12):917–930.
  • Willers C, Wentzel JF, du Plessis LH, et al. Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: the role of efflux inhibitors. Expert Opin Ther Targets. 2017 Jan;21(1):23–36.
  • Su S, Hassett DJ. Anaerobic Pseudomonas aeruginosa and other obligately anaerobic bacterial biofilms growing in the thick airway mucus of chronically infected cystic fibrosis patients: an emerging paradigm or “Old Hat”? Expert Opin Ther Targets. 2012 Sep;16(9):859–873. doi: 10.1517/14728222.2012.708025
  • Upadhayay A, Ling J, Pal D, et al. Resistance-proof antimicrobial drug discovery to combat global antimicrobial resistance threat. Drug Resist Updat. 2023 Jan;66:100890. doi: 10.1016/j.drup.2022.100890
  • Cámara M, Green W, MacPhee CE, et al. Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge. NPJ Biofilms Microbiomes. 2022;8(1):1–8. doi: 10.1038/s41522-022-00306-y
  • Grande R, Puca V, Muraro R. Antibiotic resistance and bacterial biofilm. Expert Opin Ther Pat. 2020;30(12):897–900. doi: 10.1080/13543776.2020.1830060
  • Alcalde-Rico M, Hernando-Amado S, Blanco P, et al. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol. 2016;7(SEP):1–14. doi: 10.3389/fmicb.2016.01483
  • Saxena P, Joshi Y, Rawat K, et al. Biofilms: architecture, resistance, quorum sensing and control mechanisms. Indian J Microbiol. 2019 Mar;59(1):3–12.
  • Marchello CS, Carr SD, Crump JA. A systematic review on antimicrobial resistance among salmonella typhi worldwide. Am J Trop Med Hyg. 2020;103(6):2518–2527. doi: 10.4269/ajtmh.20-0258
  • Manesh A, Balaji V, Kumar DRN, et al. A case of clinical and microbiological failure of azithromycin therapy in Salmonella enterica serotype Typhi despite low azithromycin MIC. Int J Infect Dis [Internet]. 2017;54:62–63. doi: 10.1016/j.ijid.2016.11.409
  • da Silva KE, Date K, Hirani N, et al. Population structure and antimicrobial resistance patterns of salmonella typhi and paratyphi a amid a phased municipal vaccination campaign in Navi Mumbai, India. MBio. 2023;14(4):e0117923. doi: 10.1128/mbio.01179-23
  • Smith AM, Erasmus LK, Tau NP, et al. Enteric fever cluster identification in South Africa using genomic surveillance of Salmonella enterica serovar Typhi. Microb Genomics. 2023;9(6). doi: 10.1099/mgen.0.001044
  • Hooda Y, Sajib MSI, Rahman H, et al. Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance. PLOS Negl Trop Dis. 2019;13(11):e0007868. doi: 10.1371/journal.pntd.0007868
  • Abuaita BH, Lawrence ALE, Berger RP, et al. Comparative transcriptional profiling of the early host response to infection by typhoidal and non-typhoidal Salmonella serovars in human intestinal organoids. PLOS Pathog [Internet]. 2021;17(10):1–23. doi: 10.1371/journal.ppat.1009987
  • Upadhayay A, Pal D, Kumar A. Salmonella typhi induced oncogenesis in gallbladder cancer: co-relation and progression. Adv Cancer Biol - Metastasis. 2022;4(October 2021):100032. doi: 10.1016/j.adcanc.2022.100032
  • Upadhyay A, Pal D, Kumar A. Substantial relation between the bacterial biofilm and oncogenesis progression in host. Microb Pathog [Internet]. 2023;175:105966. Available from: https://www.sciencedirect.com/science/article/pii/S0882401022005794
  • Upadhyay A, Pal D, Kumar A. Combinatorial enzyme therapy: a promising neoteric approach for bacterial biofilm disruption. Process Biochem [Internet]. 2023;129:56–66. Available from: https://www.sciencedirect.com/science/article/pii/S1359511323000697
  • Sahoo P, Dey J, Mahapatra SR, et al. Nanotechnology and COVID-19 convergence: toward new planetary health interventions against the pandemic. Omi A J Integr Biol [Internet]. 2022 Aug 30;26(9):473–488. doi: 10.1089/omi.2022.0072
  • Vimal A, Kumar A. Biotechnological production and practical application of L-asparaginase enzyme. Biotechnol Genet Eng Rev. 2017;33(1):40–61. [Internet]. doi: 10.1080/02648725.2017.1357294
  • Vimal A, Kumar A. Optimized production of medically significant enzyme l-asparaginase under submerged and solid-state fermentation from agricultural wastes. Curr Microbiol [Internet]. 2022;79(12):1–13. doi: 10.1007/s00284-022-03095-x
  • Vimal A, Kumar A. Antimicrobial potency evaluation of free and immobilized L-asparaginase using chitosan nanoparticles. J Drug Deliv Sci Technol [Internet]. 2021;61:102231. doi: 10.1016/j.jddst.2020.102231
  • Lubkowski J, Wlodawer A. Structural and biochemical properties of L-asparaginase. FEBS J. 2021;288(14):4183–4209. doi: 10.1111/febs.16042
  • Gauthier J, Vincent AT, Charette SJ, et al. A brief history of bioinformatics. Brief Bioinform. 2019;20(6):1981–1996. doi: 10.1093/bib/bby063
  • Wen QF, Liu S, Dong C, et al. Geptop 2.0: an updated, more precise, and faster geptop server for identification of prokaryotic essential genes. Front Microbiol. 2019;10:1–6. doi: 10.3389/fmicb.2019.01236
  • Wei W, Ning L-W, Ye Y-N, et al. Geptop: a gene essentiality prediction tool for sequenced bacterial genomes based on orthology and phylogeny. PLOS ONE. 2013;8(8):e72343. doi: 10.1371/journal.pone.0072343
  • Narang PK, Dey J, Mahapatra SR, et al. Genome-based identification and comparative analysis of enzymes for carotenoid biosynthesis in microalgae. World J Microbiol Biotechnol [Internet]. 2022;38(1):1–22. doi: 10.1007/s11274-021-03188-y
  • Chatzou M, Magis C, Chang JM, et al. Multiple sequence alignment modeling: methods and applications. Brief Bioinform. 2016;17(6):1009–1023. doi: 10.1093/bib/bbv099
  • Narang PK, Dey J, Mahapatra SR, et al. Functional annotation and sequence-structure characterization of a hypothetical protein putatively involved in carotenoid biosynthesis in microalgae. South African J Bot [Internet]. 2021;141:219–226. doi: 10.1016/j.sajb.2021.04.014
  • Sudeshna Panda S, Dey J, Mahapatra SR, et al. Investigation on structural prediction of pectate lyase enzymes from different microbes and comparative docking studies with pectin: the economical waste from food industry. Geomicrobiol J [Internet]. 2022 May 2;39(3–5): 294–305. doi: 10.1080/01490451.2021.1992042
  • Yadav M. Homology modeling and molecular dynamics dimulation study of β carbonic anhydrase of ascaris lumbricoides. Bioinformation. 2019;15(8):572–578. doi: 10.6026/97320630015572
  • Zhu K, Day T, Warshaviak D, et al. Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction. Proteins Struct Funct Bioinforma [Internet]. 2014;82(8):1646–1655. doi: 10.1002/prot.24551
  • Afzal M, Hassan SS, Sohail S, et al. Genomic landscape of the emerging XDR salmonella typhi for mining druggable targets clpP, hisH, folP and gpmI and screening of novel TCM inhibitors, molecular docking and simulation analyses. BMC Microbiol [Internet]. 2023;23(1):1–20. doi: 10.1186/s12866-023-02756-6
  • Khan K, Jalal K, Alam Y, et al. An integrated computational approach to infer therapeutic targets from campylobacter concisus and peptidomimetic based inhibition of its pyrimidine metabolism pathway. J Biomol Struct Dyn [Internet]. 2023 Mar 31;1–11. doi: 10.1080/07391102.2023.2191148
  • Rathinam M, Kesiraju K, Singh S, et al. Molecular interaction-based exploration of the broad spectrum efficacy of a bacillus thuringiensis insecticidal chimeric protein, Cry1AcF. Toxins (Basel). 2019;11(3):143. doi: 10.3390/toxins11030143
  • Laskowski RA, Rullmann JAC, MacArthur MW, et al. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996;8(4):477–486. doi: 10.1007/BF00228148
  • Hassan SS, Shams R, Camps I, et al. Subtractive sequence analysis aided druggable targets mining in Burkholderia cepacia complex and finding inhibitors through bioinformatics approach. Mol Divers [Internet]. 2022;27(6):2823–2847. doi: 10.1007/s11030-022-10584-5
  • Hassan SS, Tiwari S, Guimarães LC, et al. Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis. BMC Genomics. 2014;15(7). doi: 10.1186/1471-2164-15-S7-S3
  • Irfan M, Tariq M, Basharat Z, et al. Genomic analysis of Chryseobacterium indologenes and conformational dynamics of the selected DD-peptidase. Res Microbiol [Internet]. 2023;174(1):103990. Available from: https://www.sciencedirect.com/science/article/pii/S0923250822000717
  • TA H. Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model. 2009;49(2):377–389. doi: 10.1021/ci800324m
  • Bhachoo J, Beuming T. Investigating protein-peptide interactions using the schrödinger computational suite. Methods Mol Biol. 2017;1561:235–254.
  • Kozakov D, Brenke R, Comeau SR, et al. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins Struct Funct Bioinforma [Internet]. 2006;65(2):392–406. doi: 10.1002/prot.21117
  • Li J, Abel R, Zhu K, et al. The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins Struct Funct Bioinforma [Internet]. 2011;79(10):2794–2812. doi: 10.1002/prot.23106
  • Upadhyay A, Pal D, Kumar A. Deciphering target protein cascade in salmonella typhi biofilm using genomic data mining, and protein-protein interaction. Curr Genomics. 2023;24(2):100–109. Available from: http://www.eurekaselect.com/article/133608
  • Sokaribo AS, Hansen EG, McCarthy M, et al. Metabolic activation of csgd in the regulation of salmonella biofilms. Microorganisms. 2020;8(7):1–25. doi: 10.3390/microorganisms8070964

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.