362
Views
0
CrossRef citations to date
0
Altmetric
Review

Current challenges in the discovery of treatments against Mayaro fever

, , &
Received 24 Nov 2023, Accepted 01 May 2024, Published online: 08 May 2024

References

  • Hotez PJ, Murray KO, Gubler DJ, et al. Dengue, West Nile virus, chikungunya, Zika—and now Mayaro? PLOS Negl Trop Dis. 2017;11(8):e0005462. doi: 10.1371/journal.pntd.0005462
  • Diagne CT, Bengue M, Choumet V, et al. Mayaro virus pathogenesis and transmission mechanisms. Pathogens. 2020;9(9):738. doi: 10.3390/pathogens9090738
  • de Carvalho AC, Dias CSB, Coimbra LD, et al. Characterization of systemic disease development and paw inflammation in a susceptible mouse model of mayaro virus infection and validation using X-ray synchrotron microtomography. Int J Mol Sci. 2023;24(5):4799. doi: 10.3390/ijms24054799
  • Zaid A, Burt FJ, Liu X, et al. Arthritogenic alphaviruses: epidemiological and clinical perspective on emerging arboviruses. Lancet Infect Dis. 2021;21(5):e123–e133. doi: 10.1016/S1473-3099(20)30491-6
  • Coimbra TLM, Santos CLS, Suzuki A, et al. Mayaro virus: imported cases of human infection in São Paulo State, Brazil. Rev Inst Med Trop Sao Paulo. 2007;49(4):221–224. doi: 10.1590/S0036-46652007000400005
  • de Paula Silveira-Lacerda E, Laschuk Herlinger A, Tanuri A, et al. Molecular epidemiological investigation of mayaro virus in febrile patients from Goiania City, 2017–2018. Infect Genet Evol. 2021;95:104981. doi: 10.1016/j.meegid.2021.104981
  • Kazanji M, Bourreau E, Talarmin A, et al. Mayaro virus fever in French Guiana: isolation, identification, and seroprevalence. Am J Trop Med Hyg. 1998;59(3):452–456. doi: 10.4269/ajtmh.1998.59.452
  • Torres JR, Russell KL, Vasquez C, et al. Family cluster of mayaro fever, Venezuela. Emerg Infect Dis. 2004;10(7):1304–1306. doi: 10.3201/eid1007.030860
  • Mourão MPG, Bastos MDS, de Figueiredo RP, et al. Mayaro fever in the city of Manaus, Brazil, 2007–2008. Vector-Borne And Zoonotic Diseases. 2012;12(1):42–46. doi: 10.1089/vbz.2011.0669
  • Forshey BM, Guevara C, Laguna-Torres VA, et al. Arboviral etiologies of acute febrile illnesses in Western South America, 2000–2007. PLOS Negl Trop Dis. 2010;4(8):e787. doi: 10.1371/journal.pntd.0000787
  • Azevedo RSS, Silva EVP, Carvalho VL, et al. Mayaro fever virus, Brazilian Amazon. Emerg Infect Dis. 2009;15(11):1830–1832. doi: 10.3201/eid1511.090461
  • Freitas RB, da Rosa JFT, LeDuc JW, et al. An outbreak of mayaro virus disease in Belterra, Brazil. Am J Trop Med Hyg [Internet]. 1981;30(3):674–681. doi: 10.4269/ajtmh.1981.30.674
  • Alvis-Zakzuk NJ, Díaz-Jiménez D, Castillo-Rodríguez L, et al. Economic costs of Chikungunya virus in Colombia. Value Health Reg Issues. 2018;17:32–37. doi: 10.1016/j.vhri.2018.01.004
  • de Margarette Oliveira de Andrade M, de Almeida Barreto FK, Coelho TMS, et al. Chikungunya in Brazil: an epidemic of high cost for private healthcare, 2017. Tropical Med Int Health. 2022;27(10):925–933. doi: 10.1111/tmi.13810
  • Vidal ERN, Frutuoso LCV, Duarte EC, et al. Epidemiological burden of Chikungunya fever in Brazil, 2016 and 2017. Trop Med Int Health. 2022;27(2):174–184. doi: 10.1111/tmi.13711
  • Ribeiro-Filho HV, Coimbra LD, Cassago A, et al. Cryo-EM structure of the mature and infective mayaro virus at 4.4 Å resolution reveals features of arthritogenic alphaviruses. Nat Commun. 2021;12(1):3038. doi: 10.1038/s41467-021-23400-9
  • Pezzi L, Diallo M, Rosa-Freitas MG, et al. GloPID-R report on chikungunya, o’nyong-nyong and mayaro virus, part 5: entomological aspects. Antiviral Res. 2020;174:104670. doi: 10.1016/j.antiviral.2019.104670
  • Caicedo E-Y, Charniga K, Rueda A, et al. The epidemiology of mayaro virus in the Americas: a systematic review and key parameter estimates for outbreak modelling. PLOS Negl Trop Dis. 2021;15(6):e0009418. doi: 10.1371/journal.pntd.0009418
  • Causey OR, Laemmert HW, Kumm HW. Dispersion of forest mosquitoes in Brazil: further studies 1. Am J Trop Med Hyg. 1950;s1-30(2):301–312. doi: 10.4269/ajtmh.1950.s1-30.301
  • Hendy A, Hernandez-Acosta E, Valério D, et al. Where boundaries become bridges: mosquito community composition, key vectors, and environmental associations at forest edges in the central Brazilian Amazon. PLOS Negl Trop Dis. 2023;17(4):e0011296. doi: 10.1371/journal.pntd.0011296
  • Pereira TN, Carvalho FD, De Mendonça SF, et al. Vector competence of aedes aegypti, aedes albopictus, and Culex quinquefasciatus mosquitoes for mayaro virus. PLOS Negl Trop Dis. 2020;14(4):e0007518. doi: 10.1371/journal.pntd.0007518
  • Cereghino C, Roesch F, Carrau L, et al. The E2 glycoprotein holds key residues for mayaro virus adaptation to the urban aedes aegypti mosquito. PLOS Pathog. 2023;19(4):e1010491. doi: 10.1371/journal.ppat.1010491
  • Weise WJ, Hermance ME, Forrester N, et al. A novel live-attenuated vaccine Candidate for mayaro fever. PLOS Negl Trop Dis. 2014;8(8):e2969. doi: 10.1371/journal.pntd.0002969
  • Zhang R, Kim AS, Fox JM, et al. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature. 2018;557(7706):570–574. doi: 10.1038/s41586-018-0121-3
  • Mendonça DC, Reis E, Arias Nídia EC, et al. A study of the MAYV replication cycle: correlation between the kinetics of viral multiplication and viral morphogenesis. Virus Research. 2023;323:199002. doi: 10.1016/j.virusres.2022.199002
  • Mi S, Durbin R, Huang HV, et al. Association of the sindbis virus RNA methyltransferase activity with the nonstructural protein nsP1. Virology. 1989;170:385–391. doi: 10.1016/0042-6822(89)90429-7
  • Ahola T. Semliki forest virus mRNA capping enzyme requires association with anionic membrane phospholipids for activity. Embo J. 1999;18(11):3164–3172. doi: 10.1093/emboj/18.11.3164
  • Wang YF, Sawicki SG, Sawicki DL. Sindbis virus nsP1 functions in negative-strand RNA synthesis. J Virol. 1991;65(2):985–988. doi: 10.1128/jvi.65.2.985-988.1991
  • Kaur R, Mudgal R, Narwal M, et al. Development of an ELISA assay for screening inhibitors against divalent metal ion dependent alphavirus capping enzyme. Virus Res. 2018;256:209–218. doi: 10.1016/j.virusres.2018.06.013
  • Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994;58(3):491–562. doi: 10.1128/mr.58.3.491-562.1994
  • Abu Bakar F, Ng L. Nonstructural proteins of alphavirus—potential targets for drug development. Viruses. 2018;10(2):71. doi: 10.3390/v10020071
  • Gao Y, Goonawardane N, Ward J, et al. Multiple roles of the non-structural protein 3 (nsP3) alphavirus unique domain (AUD) during Chikungunya virus genome replication and transcription. PLOS Pathog. 2019;15(1):e1007239. doi: 10.1371/journal.ppat.1007239
  • Tossavainen H, Aitio O, Hellman M, et al. Structural basis of the high affinity interaction between the alphavirus nonstructural protein-3 (nsP3) and the SH3 domain of amphiphysin-2. J Biol Chem. 2016;291(31):16307–16317. doi: 10.1074/jbc.M116.732412
  • Dominguez F, Shiliaev N, Lukash T, et al. NAP1L1 and NAP1L4 binding to hypervariable domain of Chikungunya virus nsP3 protein is bivalent and requires phosphorylation. J Virol. 2021;95(16). doi: 10.1128/JVI.00836-21
  • Liljeström P, Garoff H. Internally located cleavable signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor. J Virol. 1991;65(1):147–154. doi: 10.1128/jvi.65.1.147-154.1991
  • Sefton BM. Immediate glycosylation of sindbis virus membrane proteins. Cell. 1977;10(4):659–668. doi: 10.1016/0092-8674(77)90099-X
  • Watts DM, Russell KL, Wooster MT, et al. Etiologies of acute undifferentiated febrile illnesses in and near Iquitos from 1993 to 1999 in the Amazon River Basin of Peru. Am J Trop Med Hyg. 2022;107(5):1114–1128. doi: 10.4269/ajtmh.22-0259
  • Tesh RB, Watts DM, Russell KL, et al. Mayaro virus disease: an emerging mosquito‐borne zoonosis in tropical South America. Clinical Infectious Diseases. 1999;28(1):67–73. doi: 10.1086/515070
  • Anderson CR, Wattley GH, Ahin NW, et al. Mayaro virus: a new human disease agent. Am J Trop Med Hyg. 1957;6(6):1012–1016. doi: 10.4269/ajtmh.1957.6.1012
  • Theilacker C, Held J, Allering L, et al. Prolonged polyarthralgia in a German traveller with mayaro virus infection without inflammatory correlates. BMC Infect Dis. 2013;13(1):369. doi: 10.1186/1471-2334-13-369
  • Andreolla AP, Borges AA, Bordignon J, et al. Mayaro virus: the state-of-the-art for antiviral drug development. Viruses. 2022;14(8):1787. doi: 10.3390/v14081787
  • Waggoner JJ, Rojas A, Mohamed-Hadley A, et al. Real-time RT-PCR for mayaro virus detection in plasma and urine. J Clin Virol. 2018;98:1–4. doi: 10.1016/j.jcv.2017.11.006
  • Earnest JT, Basore K, Roy V, et al. Neutralizing antibodies against mayaro virus require fc effector functions for protective activity. J Exp Med. 2019;216(10):2282–2301. doi: 10.1084/jem.20190736
  • Bartholomeeusen K, Daniel M, LaBeaud DA, et al. Chikungunya fever. Nat Rev Dis Primers. 2023;9(1):17. doi: 10.1038/s41572-023-00429-2
  • Lim SP, Wang Q-Y, Noble CG, et al. Ten Years of dengue drug discovery: progress and prospects. Antiviral Res. 2013;100(2):500–519. doi: 10.1016/j.antiviral.2013.09.013
  • Chan KKP, Hui DSC. Antiviral therapies for influenza. Curr Opin Infect Dis. 2023;36(2):124–131. doi: 10.1097/QCO.0000000000000910
  • Rocco PRM, Silva PL, Cruz FF, et al. Early use of nitazoxanide in mild COVID-19 disease: randomised, placebo-controlled trial. Eur Respir J. 2021;58(1):2003725. doi: 10.1183/13993003.03725-2020
  • Hoarau J-J, Jaffar Bandjee M-C, Krejbich Trotot P, et al. Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust Host immune response. J Immunol. 2010;184(10):5914–5927. doi: 10.4049/jimmunol.0900255
  • Labadie K, Larcher T, Joubert C, et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Investig. 2010;120(3):894–906. doi: 10.1172/JCI40104
  • Chung D-H, Jonsson CB, Tower NA, et al. Discovery of a novel compound with anti-venezuelan equine encephalitis virus activity that targets the nonstructural protein 2. PLOS Pathog. 2014;10(6):e1004213. doi: 10.1371/journal.ppat.1004213
  • Sahin K, Orhan MD, Avsar T, et al. Hybrid in Silico and TR-FRET-Guided discovery of novel BCL-2 inhibitors. ACS Pharmacol Transl Sci. 2021;4(3):1111–1123. doi: 10.1021/acsptsci.0c00210
  • Cerón‐Carrasco JP. When virtual screening yields inactive drugs: dealing with false theoretical friends. ChemMedchem. 2022;17(16):17. doi: 10.1002/cmdc.202200278
  • Rossetti GG, Ossorio MA, Rempel S, et al. Non-covalent SARS-CoV-2 mpro inhibitors developed from in silico screen hits. Sci Rep. 2022;12(1):2505. doi: 10.1038/s41598-022-06306-4
  • Gorgulla C, Boeszoermenyi A, Wang Z-F, et al. An open-source drug discovery platform enables ultra-large virtual screens. Nature. 2020;580(7805):663–668. doi: 10.1038/s41586-020-2117-z
  • Sadybekov AV, Katritch V. Computational approaches streamlining drug discovery. Nature. 2023;616(7958):673–685. doi: 10.1038/s41586-023-05905-z
  • Kokic G, Hillen HS, Tegunov D, et al. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat Commun. 2021;12(1):279. doi: 10.1038/s41467-020-20542-0
  • Kabinger F, Stiller C, Schmitzová J, et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol. 2021;28(9):740–746. doi: 10.1038/s41594-021-00651-0
  • Huang C, Shuai H, Qiao J, et al. A new generation mpro inhibitor with potent activity against SARS-CoV-2 omicron variants. Signal Transduct Target Ther. 2023;8(1):128. doi: 10.1038/s41392-023-01392-w
  • Owen DR, Allerton CMN, Anderson AS, et al. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science (1979). 2021;374:1586–1593. Available from: https://www.science.org/doi/10.1126/science.abl4784
  • Lohmann V. Hepatitis C virus cell culture models: an encomium on basic research paving the road to therapy development. Med Microbiol Immunol. 2019;208(1):3–24. doi: 10.1007/s00430-018-0566-x
  • Sugasti-Salazar M, Llamas-González YY, Campos D, et al. Inhibition of p38 mitogen-activated protein kinase impairs mayaro virus replication in human dermal fibroblasts and HeLa cells. Viruses. 2021;13(6):1156. doi: 10.3390/v13061156
  • Langendries L, Abdelnabi R, Neyts J, et al. Repurposing drugs for mayaro virus: identification of eidd-1931, favipiravir and suramin as mayaro virus inhibitors. Microorganisms. 2021;9(4):734. doi: 10.3390/microorganisms9040734
  • Remenyi R, Gao Y, Hughes RE, et al. Persistent replication of a Chikungunya virus replicon in human cells is associated with presence of stable cytoplasmic granules containing non-structural protein 3. J Virol. 2018;92(16):JVI.00477–18. Available from: http://jvi.asm.org/lookup/doi/10.1128/JVI.00477-18
  • Pohjala L, Utt A, Varjak M, et al. Inhibitors of alphavirus entry and replication identified with a stable chikungunya replicon cell line and virus-based assays. PLOS One. 2011 [cited 2015 Nov 23];6(12):e28923. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028923
  • Lohmann V, Körner F, Koch J-O, et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science (1979). 1999;285(5424):110–113. doi: 10.1126/science.285.5424.110
  • Leake CJ, Varma MGR, Pudney M. Cytopathic effect and plaque formation by arboviruses in a continuous cell line (XTC-2) from the toad xenopus laevis. J Gen Virol. 1977;35(2):335–339. doi: 10.1099/0022-1317-35-2-335
  • Doms RW. Chapter 3 - basic concepts: a step-by-step Guide to viral infection. In: Katze M, Korth M Law G, editors. Viral Pathogenesis. Third ed. Boston: Academic Press; 2016. p. p. 29–40. Available from: https://www.sciencedirect.com/science/article/pii/B9780128009642000033
  • Rietdijk J, Tampere M, Pettke A, et al. A phenomics approach for antiviral drug discovery. BMC Biol. 2021;19(1):156. doi: 10.1186/s12915-021-01086-1
  • Cimini BA, Chandrasekaran SN, Kost-Alimova M, et al. Optimizing the cell painting assay for image-based profiling. Nat Protoc. 2023;18(7):1981–2013. doi: 10.1038/s41596-023-00840-9
  • Richman DD, Nathanson N. Chapter 20 - antiviral therapy. In: Katze M, Korth M Law G, editors. Viral pathogenesis. Third ed. Boston: Academic Press; 2016. p. 271–287. Available from: https://www.sciencedirect.com/science/article/pii/B9780128009642000203
  • Shini VS, Udayarajan CT, Nisha P. A comprehensive review on lactoferrin: a natural multifunctional glycoprotein. Food Funct. 2022;13(23):11954–11972. doi: 10.1039/D2FO02371G
  • Fernandes LDS, Silva MD, Dias RS, et al. Evaluation of antiviral activity of cyclic ketones against mayaro virus. Viruses. 2021;13(11):2123. doi: 10.3390/v13112123
  • dos Santos AE, Kuster RM, Yamamoto KA, et al. Quercetin and quercetin 3-O-glycosides from bauhinia longifolia (Bong.) Steud. show anti-mayaro virus activity. Parasites Vectors. 2014;7(1):130. doi: 10.1186/1756-3305-7-130
  • Amorim R, de Meneses MDF, Borges JC, et al. Thieno[2,3-b]pyridine derivatives: a new class of antiviral drugs against mayaro virus. Arch Virol. 2017;162(6):1577–1587. doi: 10.1007/s00705-017-3261-0
  • Figueiredo CM, Neris RDS, Gavino-Leopoldino D, et al. Mayaro virus replication restriction and induction of muscular inflammation in mice are dependent on age, type-I interferon response, and adaptive immunity. Front Microbiol. 2019;10:1–11. doi: 10.3389/fmicb.2019.02246
  • Bengue M, Pintong AR, Liegeois F, et al. Favipiravir inhibits mayaro virus infection in mice. Viruses. 2021;13(11):2213–2217. doi: 10.3390/v13112213
  • Ferraz AC, Almeida LT, da Silva Caetano CC, et al. Hepatoprotective, antioxidant, anti-inflammatory, and antiviral activities of silymarin against mayaro virus infection. Antiviral Res. 2021;194:105168. doi: 10.1016/j.antiviral.2021.105168
  • Furuta Y, Takahashi K, Kuno-Maekawa M, et al. Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother. 2005;49(3):981–986. doi: 10.1128/AAC.49.3.981-986.2005
  • Franco EJ, Cella E, Tao X, et al. Favipiravir suppresses Zika Virus (ZIKV) through activity as a mutagen. Microorganisms. 2023;11(5):1342. doi: 10.3390/microorganisms11051342
  • Shiraki K, Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol Ther. Elsevier Inc.; 2020;209:107512. doi: 10.1016/j.pharmthera.2020.107512
  • Köksal E, Gülçin İ, Beyza S, et al. In vitro antioxidant activity of silymarin. J Enzyme Inhib Med Chem. 2009;24(2):395–405. doi: 10.1080/14756360802188081
  • Low ZX, OuYong BM, Hassandarvish P, et al. Antiviral activity of silymarin and baicalein against dengue virus. Sci Rep. 2021;11(1). doi: 10.1038/s41598-021-98949-y
  • Camini FC, Silva TD, Caetano CDS, et al. Antiviral activity of silymarin against mayaro virus and protective effect in virus-induced oxidative stress. Antiviral Research. 2018;158:8–12. doi: 10.1016/j.antiviral.2018.07.023
  • Milk Thistle. StatPearls. NCBI Bookshelf [Internet]; [cited 2023 Aug 16]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK541075/
  • Marques RE, Marques PE, Guabiraba R, et al. Exploring the Homeostatic and sensory roles of the immune system. Front Immunol. 2016;7. doi: 10.3389/fimmu.2016.00125
  • Rocha RF, Del Sarto JL, Marques RE, et al. Host target-based approaches against arboviral diseases. Biol Chem. 2018;399(3):203–217. doi: 10.1515/hsz-2017-0236
  • Stoermer KA, Burrack A, Oko L, et al. Genetic ablation of Arginase 1 in macrophages and neutrophils enhances clearance of an Arthritogenic Alphavirus. J Immunol. 2012;189(8):4047–4059. doi: 10.4049/jimmunol.1201240
  • Bae S, Lee JY, Myoung J. Chikungunya virus nsP2 impairs MDA5/RIG-I-Mediated induction of NF-κB promoter activation: a potential target for virus-specific therapeutics. J Microbiol Biotechnol. 2020;30(12):1801–1809. doi: 10.4014/jmb.2012.12005
  • Hyde JL, Gardner CL, Kimura T, et al. A viral RNA structural element alters Host recognition of nonself RNA. Science (1979). 2014;343:783–787. doi: 10.1126/science.1248465
  • Wauquier N, Becquart P, Nkoghe D, et al. The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J Infect Dis. 2011;204(1):115–123. doi: 10.1093/infdis/jiq006
  • De Castro-Jorge LA, De Carvalho RVH, Klein TM, et al. The NLRP3 inflammasome is involved with the pathogenesis of mayaro virus. PLOS Pathog. 2019;15(9):15. doi: 10.1371/journal.ppat.1007934
  • Her Z, Malleret B, Chan M, et al. Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. J Immunol. 2010;184(10):5903–5913. doi: 10.4049/jimmunol.0904181
  • Haist KC, Burrack KS, Davenport BJ, et al. Inflammatory monocytes mediate control of acute alphavirus infection in mice. PLOS Pathog. 2017;13(12):e1006748. doi: 10.1371/journal.ppat.1006748
  • Poo YS, Nakaya H, Gardner J, et al. CCR2 deficiency promotes exacerbated chronic erosive neutrophil-dominated chikungunya virus arthritis. J Virol. 2014;88(12):6862–6872. doi: 10.1128/JVI.03364-13
  • Chen W, Foo S-S, Taylor A, et al. Bindarit, an Inhibitor of Monocyte Chemotactic Protein Synthesis, protects against bone loss induced by Chikungunya virus infection. J Virol. 2015;89(1):581–593. doi: 10.1128/JVI.02034-14
  • Santos FM, Costa VDM, Araújo SD, Heise MT, et al. Essential role of the CCL2–CCR2 axis in Mayaro virus-induced disease. Heise MT, editor. J Virol. 2024 [cited 2024 Feb 20];98. Available from 1). doi: 10.1128/jvi.01102-23
  • Mostafavi H, Tharmarajah K, Vider J, et al. Interleukin-17 contributes to Ross River virus-induced arthritis and myositis. PLOS Pathog. 2022;18(2):e1010185. doi: 10.1371/journal.ppat.1010185
  • Herrero LJ, Nelson M, Srikiatkhachorn A, et al. Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis. In: Proceedings of the National Academy of Sciences; Washington, DC; 2011. p. 12048–12053;108.
  • Mota MDO, Costa VV, Sugimoto MA, et al. In-depth characterization of a novel live-attenuated mayaro virus vaccine candidate using an immunocompetent mouse model of mayaro disease. Sci Rep. 2020;10(1):5306. doi: 10.1038/s41598-020-62084-x
  • Hiroki CH, Toller-Kawahisa JE, Fumagalli MJ, et al. Neutrophil extracellular traps effectively control acute chikungunya virus infection. Front Immunol. 2020;10:10. doi: 10.3389/fimmu.2019.03108
  • Kumar R, Ahmed S, Parray HA, et al. Chikungunya and arthritis: an overview. Travel Med Infect Dis. 2021;44:102168. doi: 10.1016/j.tmaid.2021.102168
  • Amaral JK, Bingham CO, Taylor PC, et al. Therapy for Chikungunya arthritis: a study of 133 Brazilian patients. Am J Trop Med Hyg. 2023;109(3):542–547. doi: 10.4269/ajtmh.23-0205
  • Sales GMPG, Barbosa ICP, Canejo Neta LMS, et al. Treatment of chikungunya chronic arthritis: a systematic review. Rev Assoc Med Bras. 2018;64(1):63–70. doi: 10.1590/1806-9282.64.01.63
  • Amaral J, Taylor P, Teixeira M, et al. The clinical features, Pathogenesis and methotrexate therapy of chronic chikungunya arthritis. Viruses. 2019;11(3):289. doi: 10.3390/v11030289
  • Amaral JK, Bingham CO, Schoen RT. Successful methotrexate treatment of chronic chikungunya arthritis. JCR: J Clinic Rheumatol. 2020;26(3):119–124. doi: 10.1097/RHU.0000000000000943
  • Teng T-S, Kam Y-W, Lee B, et al. A systematic meta-analysis of immune signatures in patients with acute chikungunya virus infection. J Infect Dis. 2015;211(12):1925–1935. doi: 10.1093/infdis/jiv049
  • Wilson JAC, Prow NA, Schroder WA, et al. RNA-Seq analysis of chikungunya virus infection and identification of granzyme a as a major promoter of arthritic inflammation. PLOS Pathog. 2017;13(2):e1006155. doi: 10.1371/journal.ppat.1006155
  • Moreira TP, Sousa CD, Melo Costa VD, et al. Tumour necrosis factor plays a deleterious role in the pathogenesis of chikungunya virus infection. Immunology. 2023;168(3):444–458. doi: 10.1111/imm.13583
  • Zaid A, Rulli NE, Rolph MS, et al. Disease exacerbation by etanercept in a mouse model of alphaviral arthritis and myositis. Arthritis Rheum. 2011;63(2):488–491. doi: 10.1002/art.30112
  • Marques CDL, Duarte ALBP, Ranzolin A, et al. Recommendations of the Brazilian Society of Rheumatology for the diagnosis and treatment of chikungunya fever. Part 2 – treatment. Rev Bras Reumatologia (English Edition). 2017;57:438–451. doi: 10.1016/j.rbre.2017.06.004