180
Views
0
CrossRef citations to date
0
Altmetric
Review

The pleiotropic CLEC10A: implications for harnessing this receptor in the tumor microenvironment

, , & ORCID Icon
Received 06 Feb 2024, Accepted 27 Jun 2024, Published online: 03 Jul 2024

References

  • Schjoldager KT, Narimatsu Y, Joshi HJ, et al. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020 Dec;21(12):729–749. doi: 10.1038/s41580-020-00294-x
  • Rodrigues JG, Balmana M, Macedo JA, et al. Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis. Cell Immunol. 2018 Nov;333:46–57. doi: 10.1016/j.cellimm.2018.03.007
  • Fischer S, Stegmann F, Gnanapragassam VS, et al. From structure to function - ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J. 2022;20:5790–5812. doi: 10.1016/j.csbj.2022.10.019
  • Valverde P, Martinez JD, Canada FJ, et al. Molecular recognition in C-type lectins: the cases of DC-SIGN, langerin, MGL, and L-sectin. Chembiochem. 2020 May 19;21(21):2999–3025. doi: 10.1002/cbic.202000238
  • Del Fresno C, Iborra S, Saz-Leal P, et al. Flexible signaling of myeloid c-type lectin receptors In immunity and inflammation. Front Immunol. 2018;9:804. doi: 10.3389/fimmu.2018.00804
  • Goodridge HS, Shimada T, Wolf AJ, et al. Differential use of CARD9 by dectin-1 in macrophages and dendritic cells. J Immunol Res. 2009 Jan 15;182(2):1146–1154. doi: 10.4049/jimmunol.182.2.1146
  • Marcelo F, Supekar N, Corzana F, et al. Identification of a secondary binding site in human macrophage galactose-type lectin by microarray studies: implications for the molecular recognition of its ligands. J Biol Chem. 2019 Jan 25;294(4):1300–1311. doi: 10.1074/jbc.RA118.004957
  • van Vliet SJ, van Liempt E, Saeland E, et al. Carbohydrate profiling reveals a distinctive role for the C-type lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells. Int Immunol. 2005 May;17(5):661–669. doi: 10.1093/intimm/dxh246
  • Higashi N, Fujioka K, Denda-Nagai K, et al. The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cells. J Biol Chem. 2002 Jun 7;277(23):20686–20693. doi: 10.1074/jbc.M202104200
  • van Vliet SJ, Steeghs L, Bruijns SC, et al. Variation of neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced t helper responses. PLOS Pathog. 2009 Oct;5(10):e1000625. doi: 10.1371/journal.ppat.1000625
  • Mortezai N, Behnken HN, Kurze AK, et al. Tumor-associated Neu5Ac-Tn and Neu5Gc-Tn antigens bind to C-type lectin CLEC10A (CD301, MGL). Glycobiology. 2013 Jul;23(7):844–852. doi: 10.1093/glycob/cwt021
  • van Vliet SJ, Gringhuis SI, Geijtenbeek TB, et al. Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45. Nat Immunol. 2006 Nov;7(11):1200–1208. doi: 10.1038/ni1390
  • Ilarregui JM, Kooij G, Rodríguez E, et al. Macrophage galactose-type lectin (MGL) is induced on M2 microglia and participates in the resolution phase of autoimmune neuroinflammation. J Neuroinflamm. 2019 Jun 27;16(1):130. doi: 10.1186/s12974-019-1522-4
  • Villani AC, Satija R, Reynolds G, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Sci. 2017 Apr 21;356(6335):eaah4573. doi: 10.1126/science.aah4573
  • Bourdely P, Anselmi G, Vaivode K, et al. Transcriptional and functional analysis of CD1c(+) human dendritic cells identifies a CD163(+) subset priming CD8(+)CD103(+) T cells. Immunity. 2020 Aug 18;53(2):335–52 e8. doi: 10.1016/j.immuni.2020.06.002
  • van Vliet SJ, Aarnoudse CA, Broks-van den Berg VC, et al. MGL-mediated internalization and antigen presentation by dendritic cells: a role for tyrosine-5. Eur J Immunol. 2007 Aug;37(8):2075–2081. doi: 10.1002/eji.200636838
  • Rosenbaum P, Artaud C, Bay S, et al. The fully synthetic glycopeptide MAG-Tn3 therapeutic vaccine induces tumor-specific cytotoxic antibodies in breast cancer patients. Cancer Immunol Immun. 2020 May;69(5):703–716. doi: 10.1007/s00262-020-02503-0
  • van Vliet SJ, Bay S, Vuist IM, et al. MGL signaling augments TLR2-mediated responses for enhanced IL-10 and TNF-alpha secretion. J Leukoc Biol. 2013 Aug;94(2):315–323. doi: 10.1189/jlb.1012520
  • Heger L, Balk S, Luhr JJ, et al. CLEC10A Is a specific marker for human CD1c(+) dendritic cells and enhances their toll-like receptor 7/8-induced cytokine secretion. Front Immunol. 2018;9:744. doi: 10.3389/fimmu.2018.00744
  • Diniz A, Coelho H, Dias JS, et al. The plasticity of the carbohydrate recognition domain dictates the exquisite mechanism of binding of human macrophage galactose-type lectin. Chem – A Eur J. 2019;25(61):13945–13955. doi: 10.1002/chem.201902780
  • Gabba A, Bogucka A, Luz JG, et al. Crystal structure of the carbohydrate recognition domain of the human macrophage galactose C-type lectin bound to GalNAc and the tumor-associated Tn antigen. Biochemistry. 2021 May 4;60(17):1327–1336. doi: 10.1021/acs.biochem.1c00009
  • Schrodinger L. The PyMOL molecular graphics system. Version 2.4.1. [software]. 2010 [cited 2024 May 17]. Available from: https://pymol.org/
  • Lima CDL, Coelho H, Gimeno A, et al. Structural insights into the molecular recognition mechanism of the cancer and pathogenic epitope, LacdiNAc by immune-related lectins. Chem A Eur J. 2021 May 20;27(29):7951–7958. doi: 10.1002/chem.202100800
  • Martínez JD, Valverde P, Delgado S, et al. Unraveling sugar binding modes to DC-SIGN by employing fluorinated carbohydrates. Molecules. 2019 Jun 25;24(12):2337. doi: 10.3390/molecules24122337
  • Artigas G, Monteiro JT, Hinou H, et al. Glycopeptides as targets for dendritic cells: exploring MUC1 glycopeptides binding profile toward macrophage galactose-type Lectin (MGL) orthologs. J Med Chem. 2017 Nov 09;60(21):9012–9021. doi: 10.1021/acs.jmedchem.7b01242
  • Abbas M, Maalej M, Nieto-Fabregat F, et al. The unique three-dimensional arrangement of macrophage galactose lectin enables E. coli LipoPolySaccharides recognition through two distinct interfaces. bioRxiv. 2023:2023.03.02.530591.
  • Jégouzo SA, Quintero-Martínez A, Ouyang X, et al. Organization of the extracellular portion of the macrophage galactose receptor: a trimeric cluster of simple binding sites for N-acetylgalactosamine. Glycobiology. 2013 Jul;23(7):853–864. doi: 10.1093/glycob/cwt022
  • Beckwith DM, FitzGerald FG, Rodriguez Benavente MC, et al. Calorimetric analysis of the interplay between synthetic Tn antigen-presenting MUC1 glycopeptides and human macrophage galactose-type lectin. Biochemistry. 2021 Feb 23;60(7):547–558. doi: 10.1021/acs.biochem.0c00942
  • Napoletano C, Steentoff C, Battisti F, et al. Investigating patterns of immune interaction in ovarian cancer: probing the O-glycoproteome by the macrophage galactose-like C-type lectin (MGL). Cancers (Basel). 2020 Oct 1;12(10):2841. doi: 10.3390/cancers12102841
  • Gu C, Wang L, Zurawski S, et al. Signaling cascade through DC-ASGPR induces transcriptionally active CREB for IL-10 induction and immune regulation. J Immunol. 2019 Jul 15;203(2):389–399. doi: 10.4049/jimmunol.1900289
  • Li D, Romain G, Flamar AL, et al. Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J Exp Med. 2012 Jan 16;209(1):109–121. doi: 10.1084/jem.20110399
  • Napoletano C, Zizzari IG, Rughetti A, et al. Targeting of macrophage galactose-type C-type lectin (MGL) induces DC signaling and activation. Eur J Immunol. 2012 Apr;42(4):936–945. doi: 10.1002/eji.201142086
  • Zaal A, Li RJE, Lubbers J, et al. Activation of the C-type lectin MGL by terminal GalNAc ligands reduces the glycolytic activity of human dendritic cells. Front Immunol. 2020;11:305. doi: 10.3389/fimmu.2020.00305
  • Zizzari IG, Martufi P, Battisti F, et al. The macrophage galactose-type C-type lectin (MGL) modulates regulatory T cell functions. PLOS ONE. 2015;10(7):e0132617. doi: 10.1371/journal.pone.0132617
  • van Vliet SJ, Vuist IM, Lenos K, et al. Human T cell activation results in extracellular signal-regulated kinase (ERK)-calcineurin-dependent exposure of Tn antigen on the cell surface and binding of the macrophage galactose-type lectin (MGL). J Biol Chem. 2013 Sep 20;288(38):27519–27532. doi: 10.1074/jbc.M113.471045
  • Kurze AK, Buhs S, Eggert D, et al. Immature O-glycans recognized by the macrophage glycoreceptor CLEC10A (MGL) are induced by 4-hydroxy-tamoxifen, oxidative stress and DNA-damage in breast cancer cells. Cell Commun Signal. 2019 Aug 27;17(1):107. doi: 10.1186/s12964-019-0420-9
  • Sahasrabudhe NM, van der Horst JC, Spaans V, et al. MGL ligand expression is correlated to lower survival and distant metastasis in cervical squamous cell and adenosquamous carcinoma. Front Oncol. 2019;9:29. doi: 10.3389/fonc.2019.00029
  • Pirro M, Rombouts Y, Stella A, et al. Characterization of macrophage galactose-type lectin (MGL) ligands in colorectal cancer cell lines. Biochim Biophys Acta Gen Subj. 2020 Apr;1864(4):129513. doi: 10.1016/j.bbagen.2020.129513
  • Lenos K, Goos JA, Vuist IM, et al. MGL ligand expression is correlated to BRAF mutation and associated with poor survival of stage III colon cancer patients. Oncotarget. 2015 Sep 22;6(28):26278–26290. doi: 10.18632/oncotarget.4495
  • Saeland E, van Vliet SJ, Bäckström M, et al. The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma. Cancer Immunol Immun. 2007 Aug;56(8):1225–1236. doi: 10.1007/s00262-006-0274-z
  • Dusoswa SA, Verhoeff J, Abels E, et al. Glioblastomas exploit truncated O-linked glycans for local and distant immune modulation via the macrophage galactose-type lectin. Proc Natl Acad Sci. 2020;117(7):3693–3703. doi: 10.1073/pnas.1907921117
  • NguyenHoang S, Liu Y, Xu L, et al. High truncated-O-glycan score predicts adverse clinical outcome in patients with localized clear-cell renal cell carcinoma after surgery. Oncotarget. 2017 Oct 3;8(45):80083–80092. doi: 10.18632/oncotarget.15900
  • Tan Z, Jiang Y, Liang L, et al. Dysregulation and prometastatic function of glycosyltransferase C1GALT1 modulated by cHp1bp3/miR-1-3p axis in bladder cancer. J Exp Clin Cancer Res. 2022 Jul 21;41(1):228. doi: 10.1186/s13046-022-02438-7
  • Dombek GE, Ore AS, Cheng J, et al. Immunohistochemical analysis of Tn antigen expression in colorectal adenocarcinoma and precursor lesions. BMC Cancer. 2022 Dec 7;22(1):1281. doi: 10.1186/s12885-022-10376-y
  • Pirro M, Schoof E, van Vliet SJ, et al. Glycoproteomic analysis of MGL-binding proteins on acute T-cell leukemia cells. J Proteome Res. 2019 Mar 1;18(3):1125–1132. doi: 10.1021/acs.jproteome.8b00796
  • Sahasrabudhe NM, Lenos K, van der Horst JC, et al. Oncogenic BRAFV600E drives expression of MGL ligands in the colorectal cancer cell line HT29 through N-acetylgalactosamine-transferase 3. Biol Chem. 2018 Jun 27;399(7):649–659. doi: 10.1515/hsz-2018-0120
  • Matsumoto T, Okayama H, Nakajima S, et al. Tn antigen expression defines an immune cold subset of mismatch-repair deficient colorectal cancer. IJMS. 2020 Nov 29;21(23):9081. doi: 10.3390/ijms21239081
  • Chen YP, Yin JH, Li WF, et al. Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Res. 2020 Nov;30(11):1024–1042. doi: 10.1038/s41422-020-0374-x
  • Pombo Antunes AR, Scheyltjens I, Lodi F, et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci. 2021 Apr;24(4):595–610. doi: 10.1038/s41593-020-00789-y
  • Wu SZ, Al-Eryani G, Roden DL, et al. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet. 2021 Sep;53(9):1334–1347. doi: 10.1038/s41588-021-00911-1
  • Sun Y, Wu L, Zhong Y, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021 Jan 21;184(2):404–21.e16. doi: 10.1016/j.cell.2020.11.041
  • Qin Y, Wang L, Zhang L, et al. Immunological role and prognostic potential of CLEC10A in pan-cancer. Am J Transl Res. 2022;14(5):2844–2860.
  • Tang S, Zhang Y, Lin X, et al. CLEC10A can serve as a potential therapeutic target and its level correlates with immune infiltration in breast cancer. Oncol Lett. 2022 Aug;24(2):285. doi: 10.3892/ol.2022.13405
  • Zou M, Wu H, Zhou M, et al. High expression of CLEC10A in head and neck squamous cell carcinoma indicates favorable prognosis and high-level immune infiltration status. Cell Immunol. 2022 Feb;372:104472. doi: 10.1016/j.cellimm.2021.104472
  • Pang Z, Chen X, Wang Y, et al. Comprehensive analyses of the heterogeneity and prognostic significance of tumor-infiltrating immune cells in non-small-cell lung cancer: development and validation of an individualized prognostic model. Int Immunopharmacol. 2020 Sep;86:106744. doi: 10.1016/j.intimp.2020.106744
  • Singh SK, Streng-Ouwehand I, Litjens M, et al. Characterization of murine MGL1 and MGL2 C-type lectins: distinct glycan specificities and tumor binding properties. Mol Immunol. 2009 Mar;46(6):1240–1249. doi: 10.1016/j.molimm.2008.11.021
  • da Costa V, van Vliet SJ, Carasi P, et al. The Tn antigen promotes lung tumor growth by fostering immunosuppression and angiogenesis via interaction with macrophage galactose-type lectin 2 (MGL2). Cancer Lett. 2021 Oct 10;518:72–81. doi: 10.1016/j.canlet.2021.06.012
  • da Costa V, Mariño KV, Rodríguez-Zraquia SA, et al. Lung tumor cells with different Tn antigen expression present distinctive immunomodulatory properties. Int J Mol Sci. 2022 Oct 10;23(19):12047. doi: 10.3390/ijms231912047
  • Freire T, Lo-Man R, Bay S, et al. Tn glycosylation of the MUC6 protein modulates its immunogenicity and promotes the induction of Th17-biased T cell responses. J Biol Chem. 2011 Mar 11;286(10):7797–7811. doi: 10.1074/jbc.M110.209742
  • Festari MF, da Costa V, Rodríguez-Zraquia SA, et al. The tumor-associated Tn antigen fosters lung metastasis and recruitment of regulatory T cells in triple negative breast cancer. Glycobiology. 2022 Apr 21;32(5):366–379. doi: 10.1093/glycob/cwab123
  • Cornelissen LAM, Blanas A, Zaal A, et al. Tn antigen expression contributes to an immune suppressive microenvironment and drives tumor growth in colorectal cancer. Front Oncol. 2020;10:1622. doi: 10.3389/fonc.2020.01622
  • Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018 May;154(1):3–20. doi: 10.1111/imm.12888
  • Heger L, Hofer TP, Bigley V, et al. Subsets of CD1c(+) DCs: dendritic cell versus monocyte lineage. Front Immunol. 2020;11:559166. doi: 10.3389/fimmu.2020.559166
  • Niveau C, Sosa Cuevas E, Roubinet B, et al. Melanoma tumour-derived glycans hijack dendritic cell subsets through C-type lectin receptor binding. Immunology. 2024;171(2):286–311. doi: 10.1111/imm.13717
  • Iwanowycz S, Ngoi S, Li Y, et al. Type 2 dendritic cells mediate control of cytotoxic T cell resistant tumors. JCI Insight. 2021 Sep 8;6(17):e145885. doi: 10.1172/jci.insight.145885
  • Michea P, Noel F, Zakine E, et al. Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific. Nat Immunol. 2018 Aug;19(8):885–897. doi: 10.1038/s41590-018-0145-8
  • Adhikaree J, Franks HA, Televantos C, et al. Impaired circulating myeloid CD1c+ dendritic cell function in human glioblastoma is restored by p38 inhibition - implications for the next generation of DC vaccines. Oncoimmunology. 2019;8(7):e1593803. doi: 10.1080/2162402X.2019.1593803
  • Sosa Cuevas E, Ouaguia L, Mouret S, et al. BDCA1(+) cDc2s, BDCA2(+) pDCs and BDCA3(+) cDc1s reveal distinct pathophysiologic features and impact on clinical outcomes in melanoma patients. Clin Transl Immunol. 2020;9(11):e1190. doi: 10.1002/cti2.1190
  • Zilionis R, Engblom C, Pfirschke C, et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity. 2019 May 21;50(5):1317–34.e10. doi: 10.1016/j.immuni.2019.03.009
  • van Beek JJP, Florez-Grau G, Gorris MAJ, et al. Human pDCs are superior to cDc2s in attracting cytolytic lymphocytes in melanoma patients receiving DC vaccination. Cell Rep. 2020 Jan 28;30(4):1027–38 e4. doi: 10.1016/j.celrep.2019.12.096
  • Westdorp H, Creemers JHA, van Oort IM, et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J Immunother Cancer. 2019 Nov 14;7(1):302. doi: 10.1186/s40425-019-0787-6
  • Schwarze JK, Awada G, Cras L, et al. Intratumoral combinatorial administration of CD1c (BDCA-1)(+) myeloid dendritic cells plus ipilimumab and avelumab in combination with intravenous low-dose nivolumab in patients with advanced solid tumors: a phase IB clinical trial. Vaccines (Basel). 2020 Nov 10;8(4):670. doi: 10.3390/vaccines8040670
  • Scheid E, Major P, Bergeron A, et al. Tn-MUC1 DC vaccination of rhesus macaques and a phase I/II trial in patients with nonmetastatic castrate-resistant prostate cancer. Cancer Immunol Res. 2016 Oct;4(10):881–892. doi: 10.1158/2326-6066.CIR-15-0189
  • Gabba A, Attariya R, Behren S, et al. MUC1 glycopeptide vaccine modified with a GalNAc glycocluster targets the macrophage galactose C-type lectin on dendritic cells to elicit an improved humoral response. J Am Chem Soc. 2023 Jun 21;145(24):13027–13037. doi: 10.1021/jacs.2c12843
  • García-Vallejo JJ, Bloem K, Knippels LM, et al. The consequences of multiple simultaneous C-type lectin-ligand interactions: DCIR alters the endo-lysosomal routing of DC-SIGN. Front Immunol. 2015;6:87. doi: 10.3389/fimmu.2015.00087
  • Zhao S, Wu D, Wu P, et al. Serum IL-10 predicts worse outcome in cancer patients: a meta-analysis. PLOS ONE. 2015;10(10):e0139598. doi: 10.1371/journal.pone.0139598
  • Zhang K, Zhang L, Wang X, et al. The IL-10 promoter haplotype and cancer risk: evidence from a meta-analysis. Fam Cancer. 2012 Sep;11(3):313–319. doi: 10.1007/s10689-012-9533-7
  • Zhang H, Li R, Cao Y, et al. Poor clinical outcomes and immunoevasive contexture in intratumoral IL-10-producing macrophages enriched gastric cancer patients. Ann Surg. 2022 Apr 1;275(4):e626–35. doi: 10.1097/SLA.0000000000004037
  • Mannino MH, Zhu Z, Xiao H, et al. The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. 2015 Oct 28;367(2):103–107. doi: 10.1016/j.canlet.2015.07.009
  • Li Y, Gao P, Yang J, et al. Relationship between IL-10 expression and prognosis in patients with primary breast cancer. Tumour Biol. 2014 Nov;35(11):11533–11540. doi: 10.1007/s13277-014-2249-6
  • Neven B, Mamessier E, Bruneau J, et al. A Mendelian predisposition to B-cell lymphoma caused by IL-10R deficiency. Blood. 2013 Nov 28;122(23):3713–3722. doi: 10.1182/blood-2013-06-508267
  • Kundu N, Fulton AM. Interleukin-10 inhibits tumor metastasis, downregulates MHC class I, and enhances NK lysis. Cell Immunol. 1997 Aug 25;180(1):55–61. doi: 10.1006/cimm.1997.1176
  • Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol. 2017;8:1124. doi: 10.3389/fimmu.2017.01124
  • Mocellin S, Panelli M, Wang E, et al. IL-10 stimulatory effects on human NK cells explored by gene profile analysis. Genes Immun. 2004 Dec;5(8):621–630. doi: 10.1038/sj.gene.6364135
  • Wang Z, Guan D, Huo J, et al. IL-10 enhances human natural killer cell effector functions via metabolic reprogramming regulated by mTORC1 signaling. Front Immunol. 2021;12:619195. doi: 10.3389/fimmu.2021.619195
  • Qian C, Jiang X, An H, et al. TLR agonists promote ERK-mediated preferential IL-10 production of regulatory dendritic cells (diffDcs), leading to NK-cell activation. Blood. 2006 Oct 1;108(7):2307–2315. doi: 10.1182/blood-2006-03-005595
  • Guo Y, Xie YQ, Gao M, et al. Metabolic reprogramming of terminally exhausted CD8(+) T cells by IL-10 enhances anti-tumor immunity. Nat Immunol. 2021 Jun;22(6):746–756. doi: 10.1038/s41590-021-00940-2
  • Mumm JB, Emmerich J, Zhang X, et al. IL-10 elicits IFNγ-dependent tumor immune surveillance. Cancer Cell. 2011 Dec 13;20(6):781–796. doi: 10.1016/j.ccr.2011.11.003
  • Fujii S, Shimizu K, Shimizu T, et al. Interleukin-10 promotes the maintenance of antitumor CD8(+) T-cell effector function in situ. Blood. 2001 Oct 1;98(7):2143–2151. doi: 10.1182/blood.v98.7.2143
  • Nizzoli G, Larghi P, Paroni M, et al. IL-10 promotes homeostatic proliferation of human CD8(+) memory T cells and, when produced by CD1c(+) DCs, shapes naive CD8(+) T-cell priming. Eur J Immunol. 2016 Jul;46(7):1622–1632. doi: 10.1002/eji.201546136
  • Gorby C, Sotolongo Bellón J, Wilmes S, et al. Engineered IL-10 variants elicit potent immunomodulatory effects at low ligand doses. Sci Signal. 2020 Sep 15;13(649):eabc0653. doi: 10.1126/scisignal.abc0653
  • Sun Q, Zhao X, Li R, et al. STAT3 regulates CD8+ T cell differentiation and functions in cancer and acute infection. Journal Of Experimental Medicine. 2023 Apr 3;220(4):e20220686. doi: 10.1084/jem.20220686
  • Naing A, Infante JR, Papadopoulos KP, et al. PEGylated IL-10 (pegilodecakin) induces systemic immune activation, CD8(+) T cell invigoration and polyclonal T cell expansion in cancer patients. Cancer Cell. 2018 Nov 12;34(5):775–91.e3. doi: 10.1016/j.ccell.2018.10.007
  • Naing A, Papadopoulos KP, Autio KA, et al. Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J Clin Oncol. 2016 Oct 10;34(29):3562–3569. doi: 10.1200/JCO.2016.68.1106
  • Spigel D, Jotte R, Nemunaitis J, et al. Randomized phase 2 studies of checkpoint inhibitors alone or in combination with pegilodecakin in patients with metastatic NSCLC (CYPRESS 1 and CYPRESS 2). J Thorac Oncol. 2021 Feb;16(2):327–333. doi: 10.1016/j.jtho.2020.10.001
  • Hecht JR, Lonardi S, Bendell J, et al. Randomized phase III study of FOLFOX alone or with pegilodecakin as second-line therapy in patients with metastatic pancreatic cancer that progressed after gemcitabine (SEQUOIA). J Clin Oncol. 2021 Apr 1;39(10):1108–1118. doi: 10.1200/JCO.20.02232
  • Hoober JK, Eggink LL. Glycomimetic peptides as therapeutic tools. Pharmaceutics. 2023 Feb 17;15(2):688. doi: 10.3390/pharmaceutics15020688
  • Gringhuis SI, den Dunnen J, Litjens M, et al. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol. 2009 Oct;10(10):1081–1088. doi: 10.1038/ni.1778
  • Takamiya R, Ohtsubo K, Takamatsu S, et al. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology. 2013 Feb;23(2):178–187. doi: 10.1093/glycob/cws139
  • Kushchayev SV, Sankar T, Eggink LL, et al. Monocyte galactose/N-acetylgalactosamine-specific C-type lectin receptor stimulant immunotherapy of an experimental glioma. Part 1: stimulatory effects on blood monocytes and monocyte-derived cells of the brain. Cancer Manag Res. 2012;4:309–323. doi: 10.2147/CMAR.S33248
  • Pan Y, Yu Y, Wang X, et al. Tumor-Associated Macrophages in Tumor Immunity. Front Immunol. 2020;11:583084. doi: 10.3389/fimmu.2020.583084