127
Views
1
CrossRef citations to date
0
Altmetric
Articles

IAQ in CCU units: an experimental and numerical investigation based on the outlet air height (case study: Namazi Hospital, Shiraz)

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 156-181 | Received 20 Oct 2021, Accepted 21 Mar 2023, Published online: 16 Apr 2023

References

  • Abanto, J., Barrero, D., Reggio, M., & Ozell, B. (2004). Airflow modelling in a computer room. Building and Environment , 39(12), 1393–1402.
  • Abdel-Salam, M. M. M. (2015). Investigation of PM2.5 and carbon dioxide levels in urban homes. Journal of the Air & Waste Management Association (1995), 65(8), 930–936. https://doi.org/10.1080/10962247.2015.1040138
  • Abdel-Salam, M. M. M. (2021). Outdoor and indoor factors influencing particulate matter and carbon dioxide levels in naturally ventilated urban homes. Journal of the Air & Waste Management Association (1995), 71(1), 60–69. https://doi.org/10.1080/10962247.2020.1834009
  • Abou Hweij, W., Ghaddar, N., Ghali, K., & Habchi, C. (2016). Optimized performance of displacement ventilation aided with chair fans for comfort and indoor air quality. Energy and Buildings, 127, 907–919.
  • ACGIH. (2021). American Conference of Governmental Industrial Hygienists. http://www.acgih.org
  • Adinyira, E., Oteng, S., & Adjei-Kumi, T. (2007). A review of urban sustainability assessment methodologies. International Conference on Whole Life Urban Sustainability and its Assessment, Glasgow.
  • Afra, A., Mollaei Pardeh, M., Saki, H., Farhadi, M., Geravandi, S., Mehrabi, P., Dobaradaran, S., Momtazan, M., Dehkordi, Z., & Mohammadi, M. J. (2020). Anesthetic toxic isoflurane and health risk assessment in the operation room in Abadan, Iran during 2018. Clinical Epidemiology and Global Health, 8(1), 251–256.
  • Agarwal, N., Meena, C. S., Raj, B. P., Saini, L., Kumar, A., Gopalakrishnan, N., Kumar, A., Balam, N. B., Alam, T., Kapoor, N. R., & Aggarwal, V. (2021). Indoor air quality improvement in COVID-19 pandemic: Review. Sustainable Cities and Society, 70, 102942.
  • Al-Rawi, M. (2021). The thermal comfort sweet-spot: A case study in a residential house in Waikato, New Zealand. Case Studies in Thermal Engineering, 28, 101530.
  • Amoatey, P., Omidvarborna, H., Baawain, M. S., & Al-Mamun, A. (2020). Impact of building ventilation systems and habitual indoor incense burning on SARS-CoV-2 virus transmissions in Middle Eastern countries. The Science of the Total Environment, 733, 139356.
  • Andrade, M. d F., de Miranda, R. M., Fornaro, A., Kerr, A., Oyama, B., de Andre, P. A., & Saldiva, P. (2012). Vehicle emissions and PM2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere, & Health, 5(1), 79–88. https://doi.org/10.1007/s11869-010-0104-5
  • Andrade, M. d F., Kumar, P., de Freitas, E. D., Ynoue, R. Y., Martins, J., Martins, L. D., Nogueira, T., Perez-Martinez, P., de Miranda, R. M., Albuquerque, T., Gonçalves, F. L. T., Oyama, B., & Zhang, Y. (2017). Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmospheric Environment, 159, 66–82.
  • Ascione, F., De Masi, R. F., Mastellone, M., & Vanoli, G. P. (2021). The design of safe classrooms of educational buildings for facing contagions and transmission of diseases: A novel approach combining audits, calibrated energy models, building performance (BPS) and computational fluid dynamic (CFD) simulations. Energy and Buildings, 230, 110533.
  • Atarodi, Z., Karimyan, K., Gupta, V. K., Abbasi, M., & Moradi, M. (2018). Evaluation of indoor air quality and its symptoms in office building – A case study of Mashhad, Iran. Data in Brief, 20, 74–79.
  • Barcelo, D. (2020). An environmental and health perspective for COVID-19 outbreak: Meteorology and air quality influence, sewage epidemiology indicator, hospitals disinfection, drug therapies and recommendations. Journal of Environmental Chemical Engineering, 8(4), 104006.
  • Bartington, S. E., Bakolis, I., Devakumar, D., Kurmi, O. P., Gulliver, J., Chaube, G., Manandhar, D. S., Saville, N. M., Costello, A., Osrin, D., Hansell, A. L., & Ayres, J. G. (2017). Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur, Nepal. Environmental Pollution (Barking, Essex: 1987), 220(Pt A), 38–45.
  • Bonadonna, L., Briancesco, R., & Coccia, A. M. (2017). Analysis of microorganisms in hospital environments and potential risks. In S. Capolongo, G. Settimo, M. Gola (Eds.), Indoor air quality in healthcare and care facilities. (pp. 53–62). Nature Public Health Emergency Collection.
  • Branco, P. T. B. S., Alvim-Ferraz, M. C. M., Martins, F. G., Ferraz, C., Vaz, L. G., & Sousa, S. V. (2020). Impact of indoor air pollution in nursery and primary schools on childhood asthma. The Science of the Total Environment, 745, 140982.
  • Brittain, O., Wood, H., & Kumar, P. (2021). Prioritising indoor air quality in building design can mitigate future airborne viral outbreaks, Cities & Health, 5(sup1), S162–S165, https://doi.org/10.1080/23748834.2020.1786652.
  • Cairncross, E. K., John, J., & Zunckel, M. (2007). A novel air pollution index based on the relative risk of daily mortality associated with short-term exposure to common air pollutants. Atmospheric Environment, 41(38), 8442–8454.
  • Can, E., Özden Üzmez, Ö., Döğeroğlu, T., & Gaga, E. O. (2015). Indoor air quality assessment in painting and printmaking department of a fine arts faculty building. Atmospheric Pollution Research, 6(6), 1035–1045.
  • Canha, N., Alves, A. C., Marta, C. S., Lage, J., Belo, J., Faria, T., Cabo Verde, S., Viegas, C., Alves, C., & Almeida, S. M. (2020). Compliance of indoor air quality during sleep with legislation and guidelines - A case study of Lisbon dwellings. Environmental Pollution (Barking, Essex: 1987), 264, 114619. https://doi.org/10.1016/j.envpol.2020.114619
  • Cao, S.-J., Zhu, D.-H., & Yang, Y.-B. (2016). Associated relationship between ventilation rates and indoor air quality. RSC Advances, 6(112), 111427–111435.
  • Capolongo, S., & Settimo, G. G. (2017). Indoor air quality in healthcare facilities. Springer Public Heal.
  • CATAMA. (1953). An introduction to the subject and a handbook of data. Committee on Aviation Toxicology AMA (Ed., 6–9, 31–39, 52–55, 74–79, 110–115 p). The Blakiston Co.
  • CCM. (2021). Canadian Standards. https://www.ccme.ca/en/resources/air/index.html
  • Cetin, Y.E., Avci, M., & Aydin, O. (2020). Effect of air change rate on particle dispersion from inlet opening under varying particle source strengths. International Journal of Ventilation. 21(3), 177–194. https://doi.org/10.1080/14733315.2020.1823071
  • Chahardoli, S., Khakzand, M., Faizi, M., & Siavashi, M. (2022). Numerical analysis of the effect of roof types and porch on particle dispersion and deposition around a low-rise building. Journal of Building Engineering, 53, 104533.
  • Chen, C., & Zhao, B. (2020). Makeshift hospitals for COVID-19 patients: Where health-care workers and patients need sufficient ventilation for more protection. The Journal of Hospital Infection, 105(1), 98–99. https://doi.org/10.1016/j.jhin.2020.03.008
  • Chen, R., Wang, X., Meng, X., Hua, J., Zhou, Z., Chen, B., & Kan, H. (2013). Communicating air pollution-related health risks to the public: An application of the Air Quality Health Index in Shanghai, China. Environment International, 51, 168–173.
  • Chen, Z., Xin, J., & Liu, P. (2020). Air quality and thermal comfort analysis of kitchen environment with CFD simulation and experimental calibration. Building and Environment, 172, 106691.
  • Cho, J., Woo, K., & Kim, B. S. (2019). Removal of airborne contamination in airborne infectious isolation rooms. ASHRAE Journal, 61, 8–21.
  • Conticini, E., Frediani, B., & Caro, D. (2020). Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environmental Pollution (Barking, Essex: 1987), 261, 114465.
  • Cooper, E., Wang, Y., Stamp, S., Burman, E., & Mumovic, D. (2021). Use of portable air purifiers in homes: Operating behaviour, effect on indoor PM2.5 and perceived indoor air quality. Building and Environment, 191, 107621.
  • Correia, G., Rodrigues, L., Gameiro da Silva, M., & Gonçalves, T. (2020). Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission. Medical Hypotheses, 141, 109781. https://doi.org/10.1016/j.mehy.2020.109781
  • Deng, S., & Lau, J. (2019). Seasonal variations of indoor air quality and thermal conditions and their correlations in 220 classrooms in the Midwestern United States. Building and Environment, 157, 79–88.
  • Dettori, M., Deiana, G., Balletto, G., Borruso, G., Murgante, B., Arghittu, A., Azara, A., & Castiglia, P. (2021). Air pollutants and risk of death due to COVID-19 in Italy. Environmental Research, 192, 110459.
  • Dorizas, P. V., Assimakopoulos, M.-N., Helmis, C., & Santamouris, M. (2015). An integrated evaluation study of the ventilation rate, the exposure and the indoor air quality in naturally ventilated classrooms in the Mediterranean region during spring. The Science of the Total Environment, 502, 557–570. https://doi.org/10.1016/j.scitotenv.2014.09.060
  • Dripps, R. D., & Comroe, J. H. J. (1947). The respiratory and circulatory response of normal man to inhalation of 7.6 and 10.4 per cent CO2 with a comparison of the maximal ventilation produced by severe muscular exercise, inhalation of CO2 and maximal voluntary hyperventilation. The American Journal of Physiology, 149(1), 43–51. https://doi.org/10.1152/ajplegacy.1947.149.1.43
  • Du, Y., Sun, T., Peng, J., Fang, K., Liu, Y., Yang, Y., & Wang, Y. (2018). Direct and spillover effects of urbanization on PM2.5 concentrations in China’s top three urban agglomerations. Journal of Cleaner Production, 190, 72–83.
  • Elliot, A. J., Smith, S., Dobney, A., Thornes, J., Smith, G. E., & Vardoulakis, S. (2016). Monitoring the effect of air pollution episodes on health care consultations and ambulance call-outs in England during March/April 2014: A retrospective observational analysis. Environmental Pollution (Barking, Essex: 1987), 214, 903–911. https://doi.org/10.1016/j.envpol.2016.04.026
  • EPA, NIOSH. (1991). Building air quality. https://www.cdc.gov/niosh/docs/91-114/default.html
  • Faulkner, W. B., Memarzadeh, F., Riskowski, G., Kalbasi, A., & Ching-Zu Chang, A. (2015). Effects of air exchange rate, particle size and injection place on particle concentrations within a reduced-scale room. Building and Environment, 92, 246–255.
  • Fischer, A., Ljungström, E., Hägerhed Engman, L., & Langer, S. (2015). Ventilation strategies and indoor particulate matter in a classroom. Indoor Air, 25(2), 168–175. https://doi.org/10.1111/ina.12133
  • Ghinai, I., McPherson, T. D., Hunter, J. C., Kirking, H. L., Christiansen, D., & Joshi, K. (2020). First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet (London, England), 395(10230):1137–1144.
  • Giwa, S. O., Nwaokocha, C. N., & Odufuwa, B. O. (2019). Air pollutants characterization of kitchen microenvironments in southwest Nigeria. Building and Environment, 153, 138–147.
  • Gola, M., Settimo, G., & Capolongo, S. (2019). Indoor air quality in inpatient environments: A systematic review on factors that influence chemical pollution in inpatient wards. Maier A, editor. Journal of Healthcare Engineering, 2019, 8358306.
  • Gould, C. F., Schlesinger, S. B., Molina, E., Lorena Bejarano, M., Valarezo, A., & Jack, D. W. (2020). Long-standing LPG subsidies, cooking fuel stacking, and personal exposure to air pollution in rural and peri-urban Ecuador. Journal of Exposure Science & Environmental Epidemiology, 30(4), 707–720. https://doi.org/10.1038/s41370-020-0231-5
  • Guo, W., Liu, X., & Yuan, X. (2015). Study on natural ventilation design optimization based on CFD simulation for green buildings. Procedia Engineering, 121, 573–581.
  • Haghighifard, H. R., Tavakol, M. M., & Ahmadi, G. (2018). Numerical study of fluid flow and particle dispersion and deposition around two inline buildings. Journal of Wind Engineering and Industrial Aerodynamics, 179, 385–406. https://doi.org/10.1016/j.jweia.2018.06.018
  • Hassan, A. M., ELMokadem, A. A., Megahed, N. A., & Abo Eleinen, O. M. (2020a). Urban morphology as a passive strategy in promoting outdoor air quality. Journal of Building Engineering, 29, 101204.
  • Hassan, A. M., Fatah El Mokadem, A. A., Megahed, N. A., & Abo Eleinen, O. M. (2020b). Improving outdoor air quality based on building morphology: Numerical investigation. Frontiers of Architectural Research, 9(2), 319–334.
  • Heo, K. J., Noh, J. W., Lee, B. U., Kim, Y., & Jung, J. H. (2019). Comparison of filtration performance of commercially available automotive cabin air filters against various airborne pollutants. Building and Environment, 161, 106272.
  • Hou, Y., Li, A., & Mei, S. (2022). Learning from Chinese traditional architecture: Field test and CFD modelling of ventilation enhancement techniques in southern Chinese houses. International Journal of Ventilation, 21(1), 1–18.
  • Hou, Y., Liu, J., & Li, J. (2015). Investigation of indoor air quality in primary school classrooms. Procedia Engineering, 121, 830–837.
  • Hwang, S. H., Roh, J., & Park, W. M. (2018). Evaluation of PM10, CO2, airborne bacteria, TVOCs, and formaldehyde in facilities for susceptible populations in South Korea. Environmental Pollution (Barking, Essex: 1987), 242(Pt A), 700–708.
  • Iqbal Qureshi, M. Z., & Chan, A. L. S. (2020). Influence of eddy viscosity parameterisation on the characteristics of turbulence and wind flow: Assessment of steady RANS turbulence model. Journal of Building Engineering, 27, 100934.
  • Jahanbin, A. (2022). Efficacy of coupling heat recovery ventilation and fan coil systems in improving the indoor air quality and thermal comfort condition. Energy and Built Environment, 3(4), 478–495.
  • Jang, D.-S., Lee, Y.-W., Don, D.-H., Kobayashi, T., & Kang, C.-S. (2001). Large eddy simulation of flow around a bluff body of vehicle shape. KSME International Journal, 15(12), 1835–1844.
  • Kan, H., Chen, R., & Tong, S. (2012). Ambient air pollution, climate change, and population health in China. Environment International, 42, 10–19.
  • Kempe, S., Höfle, C., Görres, J., Erhorn-Kluttig, H., Erhorn, H., & Beckert, H.-M. (2015). School of the Future: Deep Renovation of the Solitude-Gymnasium in Stuttgart. Energy Procedia, 78, 3312–3317.
  • Kinney, P. L., Roman, H. A., Walker, K. D., Richmond, H. M., Conner, L., & Hubbell, B. J. (2010). On the use of expert judgment to characterize uncertainties in the health benefits of regulatory controls of particulate matter. Environmental Science & Policy, 13(5), 434–443.
  • Kumar, P., & Morawska, L. (2019). Could fighting airborne transmission be the next line of defence against COVID-19 spread? City and Environment Interactions, 4, 100033.
  • Lam, T. Smart buildings: How a virus might lead to healthier buildings. https://www.arup.com/perspectives/smart-buildings-how-a-virus-mi%0Aght-lead-to-healthier-buildings
  • Lane, D. D., & Stukel, J. J. (1978). Aerosol deposition on a flat plate. Journal of Aerosol Science, 9(3), 191–197.
  • Langer, S., Österman, C., Strandberg, B., Moldanová, J., & Fridén, H. (2020). Impacts of fuel quality on indoor environment onboard a ship: From policy to practice. Transportation Research Part D: Transport and Environment, 83, 102352.
  • Laverge, J., Pattyn, X., & Janssens, A. (2013). Performance assessment of residential mechanical exhaust ventilation systems dimensioned in accordance with Belgian, British, Dutch, French and ASHRAE standards. Building and Environment, 59, 177–186.
  • Leconte, A., Lafféter, C., Fritsch, T., Giordano, N., Escaich, J., & Ouvrier-Bonnaz, O. (2021). Experimental study of the combination of a positive input ventilation and active air vents on the air change rates of a house. International Journal of Ventilation, 20(3–4), 215–225.
  • Lecrivain, G., Sevan, D.-M., Thomas, B., & Hampel, U. (2014). Numerical simulation of multilayer deposition in an obstructed channel flow. Advanced Powder Technology, 25(1), 310–320.
  • LEED. (2020). LEED Communities Technical Manual, USA, LEED group. http://leed.usgbc.org/leed.html
  • Lewis, J. J., Hollingsworth, J. W., Chartier, R. T., Cooper, E. M., Foster, W. M., Gomes, G. L., Kussin, P. S., MacInnis, J. J., Padhi, B. K., Panigrahi, P., Rodes, C. E., Ryde, I. T., Singha, A. K., Stapleton, H. M., Thornburg, J., Young, C. J., Meyer, J. N., & Pattanayak, S. K. (2017). Biogas stoves reduce firewood use, household air pollution, and hospital visits in Odisha, India. Environmental Science & Technology, 51(1), 560–569. https://doi.org/10.1021/acs.est.6b02466
  • Lin, S., Wang, S., Marinova, D., Zhao, D., & Hong, J. (2017). Impacts of urbanization and real economic development on CO2 emissions in non-high income countries: Empirical research based on the extended STIRPAT model. Journal of Cleaner Production, 166, 952–966.
  • Liu, Y., Ning, Z., Chen, Y., Guo, M., Liu, Y., Gali, N. K., Sun, L., Duan, Y., Cai, J., Westerdahl, D., Liu, X., Xu, K., Ho, K.-F., Kan, H., Fu, Q., & Lan, K. (2020). Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 582(7813), 557–560. https://doi.org/10.1038/s41586-020-2271-3
  • Lv, Y., Wang, H., & Wei, S. (2018). The transmission characteristics of indoor particles under two ventilation modes. Energy and Buildings, 163, 1–9.
  • Madurai Elavarasan, R., & Pugazhendhi, R. (2020). Restructured society and environment: A review on potential technological strategies to control the COVID-19 pandemic. The Science of the Total Environment, 725, 138858.
  • Madureira, J., Paciência, I., Cavaleiro-Rufo, J., & de Oliveira Fernandes, E. (2016). Indoor pollutant exposure among children with and without asthma in Porto, Portugal, during the cold season. Environmental Science and Pollution Research International, 23(20), 20539–20552. https://doi.org/10.1007/s11356-016-7269-x
  • Maji, K. J., Dikshit, A. K., Arora, M., & Deshpande, A. (2018). Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020. The Science of the Total Environment, 612, 683–693.
  • Megahed, N. A., & Ghoneim, E. M. (2021). Indoor air quality: Rethinking rules of building design strategies in post-pandemic architecture. Environmental Research, 193, 110471.
  • Moen, A., Mauri, L., & Narasimhamurthy, V. D. (2019). Comparison of k-ε models in gaseous release and dispersion simulations using the CFD code FLACS. Process Safety and Environmental Protection, 130, 306–316.
  • Montagna, M., Giglio, O., Cristina, M. L., Pacifico, C., Agodi, A., Baldovin, T., Casini, B., Coniglio, M., Delia, S., Deriu, M., Guida, M., Laganà, P., Liguori, G., Moro, M., Mura, I., Pennino, F., Privitera, G., Romano Spica, V., Sembeni, S., Pasquarella, C. (2018). Indoor air quality in healthcare facilities.
  • Morawska, L., & Cao, J. (2020). Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International, 139, 105730.
  • Mousavi, E. S., Kananizadeh, N., Martinello, R. A., & Sherman, J. D. (2021). COVID-19 outbreak and hospital air quality: A systematic review of evidence on air filtration and recirculation. Environmental Science & Technology, 55(7), 4134–4147.
  • Nair, A. N., Anand, P., George, A., & Mondal, N. (2022). A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. Environmental Research, 213, 113579.
  • NIOSH. (2021). National Institute for Occupational Safety and Health. https://www.cdc.gov/niosh.htm
  • OSHA. (1989). Industrial Exposure and Control Technologies for OSHA Regulated Hazardous Substances, Volume I of II, Substance A - I. U.S. Department of Labor: Occupational Safety and Health Administration. https://www.osha.gov/chemicaldata/
  • OSHA. (2021). Occupational safety and health administration permissible exposure limits- Annotated tables. https://www.osha.gov/annotated-pels/table-z-1
  • Othman, M., Latif, M. T., Yee, C. Z., Norshariffudin, L. K., Azhari, A., Halim, N. D. A., Alias, A., Sofwan, N. M., Hamid, H. H. A., & Matsumi, Y. (2020). PM2.5 and ozone in office environments and their potential impact on human health. Ecotoxicology and Environmental Safety, 194, 110432.
  • Pacitto, A., Amato, F., Moreno, T., Pandolfi, M., Fonseca, A., Mazaheri, M., Stabile, L., Buonanno, G., & Querol, X. (2020). Effect of ventilation strategies and air purifiers on the children’s exposure to airborne particles and gaseous pollutants in school gyms. The Science of the Total Environment, 712, 135673. https://doi.org/10.1016/j.scitotenv.2019.135673
  • Park, D. Y., & Chang, S. (2020). Effects of combined central air conditioning diffusers and window-integrated ventilation system on indoor air quality and thermal comfort in an office. Sustainable Cities and Society, 61, 102292.
  • Peixoto, C., Slezakova, K., Pereira, M. D. C., & Morais, S. (2022). Air quality in fitness centers: The impact of ventilation restrictions-A case study. Journal of Engineering, 8(4), 26–35.
  • Qian, Z., Chapman, R. S., Hu, W., Wei, F., Korn, L. R., & Zhang, J. J. (2004). Using air pollution based community clusters to explore air pollution health effects in children. Environment International, 30(5), 611–620.
  • Quansah, R., Semple, S., Ochieng, C. A., Juvekar, S., Armah, F. A., Luginaah, I., & Emina, J. (2017). Effectiveness of interventions to reduce household air pollution and/or improve health in homes using solid fuel in low-and-middle income countries: A systematic review and meta-analysis. Environment International, 103, 73–90. https://doi.org/10.1016/j.envint.2017.03.010
  • Remmert, V., Ciaburri, C., Sandoval, A., Stephenson, C., Rojas, A., Hernandez, E., Hernandez, L., Ward, P., Ainslie, R., & Mercer, T. (2020). Understanding community health needs and forging an academic global health partnership in Puebla, Mexico: A mixed methods study. The Lancet Global Health, 8, S13.
  • Schulte, J. (1964). Sealed environments in relation to health and disease. Arch. Environ. https://books.google.com/books?id=0maSrWpvR10C&pg=PA320&lpg=PA320&dq=23)+Schulte,+JH.+1964.+Sealed+environments+in+relation+to+health+and+disease.+Arch.+Environ.+Health8:438-452.&source=bl&ots=D73U9ntM63&sig=ACfU3U3c4M0xj5iJuDEcIuWX5WvmTM4C4w&hl=en&sa=X&v
  • Sechzer, P. H., Egbert, L. D., Linde, H. W., Cooper, D. Y., Dripps, R. D., & Price, H. L. (1960). Effect of carbon dioxide inhalation on arterial pressure, ECG and plasma catecholamines and 17-OH corticosteroids in normal man. Journal of Applied Physiology, 15, 454–458. https://doi.org/10.1152/jappl.1960.15.3.454
  • Setti, L., Passarini, F., De Gennaro, G., Barbieri, P., Perrone, M. G., Borelli, M., Palmisani, J., Di Gilio, A., Torboli, V., Fontana, F., Clemente, L., Pallavicini, A., Ruscio, M., Piscitelli, P., & Miani, A. (2020). SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. Environmental Research, 188, 109754.
  • Settimo, G., & Avino, P. (2021). The dichotomy between indoor air quality and energy efficiency in light of the onset of the COVID-19 pandemic. Atmosphere (Basel), 12(6), 791.
  • Settimo, G., Gola, M., & Capolongo, S. (2020). The relevance of indoor air quality in hospital settings: From an exclusively biological issue to a global approach in the Italian context. Atmosphere (Basel), 11(4), 361. https://doi.org/10.3390/atmos11040361
  • Settimo, G., Indinnimeo, L, Inglessis, M., De Felice, M., Morlino, R., di Coste, A., Fratianni, A., Avino, P. (2020). Indoor air quality levels in schools: Role of student activities and no activities. International Journal of Environmental Research and Public Health, 17(18), 6695. PMID: 32938001; PMCID: PMC7559628. https://doi.org/10.3390/ijerph17186695
  • Shen, J.-H., Wang, Y.-S., Lin, J.-P., Wu, S.-H., & Horng, J.-J. (2014). Improving the indoor air quality of respiratory type of medical facility by zeolite filtering. Journal of the Air & Waste Management Association (1995), 64(1), 13–18. https://doi.org/10.1080/10962247.2013.831798
  • Shiue, A., Hu, S.-C., Tseng, C.-H., Kuo, E.-H., Liu, C.-Y., Hou, C.-T., & Yu, T. (2019). Verification of air cleaner on-site modeling for PM2.5 and TVOC purification in a full-scale indoor air quality laboratory. Atmospheric Pollution Research, 10(1), 209–218.
  • Sicard, P., Lesne, O., Alexandre, N., Mangin, A., & Collomp, R. (2011). Air quality trends and potential health effects – Development of an aggregate risk index. Atmospheric Environment, 45(5), 1145–1153.
  • Sicard, P., Talbot, C., Lesne, O., Mangin, A., Alexandre, N., & Collomp, R. (2012). The aggregate risk index: An intuitive tool providing the health risks of air pollution to health care community and public. Atmospheric Environment, 46, 11–16.
  • Singh, D., Kumar, A., Kumar, K., Singh, B., Mina, U., Singh, B. B., & Jain, V. K. (2016). Statistical modeling of O3, NOx, CO, PM2.5, VOCs and noise levels in commercial complex and associated health risk assessment in an academic institution. The Science of the Total Environment, 572, 586–594.
  • Snider, G., Carter, E., Clark, S., Tseng, J. T. W., Yang, X., Ezzati, M., Schauer, J. J., Wiedinmyer, C., & Baumgartner, J. (2018). Impacts of stove use patterns and outdoor air quality on household air pollution and cardiovascular mortality in southwestern China. Environment International, 117, 116–124.
  • Sodiq, A., Khan, M. A., Naas, M., & Amhamed, A. (2021). Addressing COVID-19 contagion through the HVAC systems by reviewing indoor airborne nature of infectious microbes: Will an innovative air recirculation concept provide a practical solution? Environmental Research, 199, 111329.
  • Stamp, S., Burman, E., Shrubsole, C., Chatzidiakou, L., Mumovic, D., & Davies, M. (2020). Long-term, continuous air quality monitoring in a cross-sectional study of three UK non-domestic buildings. Building and Environment, 180, 107071.
  • Taj, T., Jakobsson, K., Stroh, E., & Oudin, A. (2016). Air pollution is associated with primary health care visits for asthma in Sweden: A case-crossover design with a distributed lag non-linear model. Spatial and Spatio-Temporal Epidemiology, 17, 37–44.
  • Tian, L., & Ahmadi, G. (2007). Particle deposition in turbulent duct flows—Comparisons of different model predictions. Journal of Aerosol Science, 38(4), 377–397.
  • Toyinbo, O., Phipatanakul, W., Shaughnessy, R., & Haverinen-Shaughnessy, U. (2019). Building and indoor environmental quality assessment of Nigerian primary schools: A pilot study. Indoor Air, 29(3), 510–520. https://doi.org/10.1111/ina.12547
  • Turunen, M., Toyinbo, O., Putus, T., Nevalainen, A., Shaughnessy, R., & Haverinen-Shaughnessy, U. (2014). Indoor environmental quality in school buildings, and the health and wellbeing of students. International Journal of Hygiene and Environmental Health, 217(7), 733–739.
  • US EPA. (2021). IAQ guidelines. https://www.epa.gov/
  • van Doremalen, N., Bushmaker, T., Morris, D., Holbrook, M., Gamble, A., Williamson, B., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., Munster, V. J. (2020). Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1. medRxiv [Preprint].2020.03.09.20033217. https://doi.org/10.1101/2020.03.09.20033217. Update in: N Engl J Med. 2020 Apr 16;382(16):1564–1567. PMID: 32511427; PMCID: PMC7217062.
  • Wang, H., & Zhou, Y. (2009). The finite-length square cylinder near wake. Journal of Fluid Mechanics, 638, 453–490. https://doi.org/10.1017/S0022112009990693
  • Wang, T.-Y., & Tsai, K.-C. (2021). Effects of air inlet or outlet position of a fan coil unit ventilation system on smoke movement and fire severity. International Journal of Ventilation, 20(2), 103–117.
  • Wang, X., Bi, X., Sheng, G., & Fu, J. (2006). Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China. The Science of the Total Environment, 366(1), 124–135.
  • Whyte, J., Falcomer, R., & Chen, J. (2019). A comparative study of radon levels in federal buildings and residential homes in Canada. Health Physics, 117(3), 242–247. https://doi.org/10.1097/HP.0000000000001057
  • Wong, T. W., Tam, W. W. S., Yu, I. T. S., Lau, A. K. H., Pang, S. W., & Wong, A. H. S. (2013). Developing a risk-based air quality health index. Atmospheric Environment, 76, 52–58.
  • Woolley, K., Bartington, S. E., Pope, F. D., Price, M. J., Thomas, G. N., & Kabera, T. (2021). Biomass cooking carbon monoxide levels in commercial canteens in Kigali, Rwanda. Archives of Environmental & Occupational Health, 76(2), 75–85. https://doi.org/10.1080/19338244.2020.1761279
  • World Health Organization. (2010). WHO guidelines for indoor air quality: Selected pollutants. The WHO European Center for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. WHO. http://www.euro.who.int/pubrequest
  • Wu, J., Zheng, H., Zhe, F., Xie, W., & Song, J. (2018). Study on the relationship between urbanization and fine particulate matter (PM2.5) concentration and its implication in China. Journal of Cleaner Production, 182, 872–882.
  • Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics , 4(7), 1510–1520.
  • Yam, R., Yuen, P. L., Yung, R., & Choy, T. (2011). Rethinking hospital general ward ventilation design using computational fluid dynamics. The Journal of Hospital Infection, 77(1), 31–36.
  • Yang, J., Sekhar, C., Wai, D. C. K., & Raphael, B. (2013). Computational fluid dynamics study and evaluation of different personalized exhaust devices. HVAC&R Research, 19(8), 934–946.
  • Yip, F., Christensen, B., Sircar, K., Naeher, L., Bruce, N., Pennise, D., Lozier, M., Pilishvili, T., Loo Farrar, J., Stanistreet, D., Nyagol, R., Muoki, J., de Beer, L., Sage, M., & Kapil, V. (2017). Assessment of traditional and improved stove use on household air pollution and personal exposures in rural western Kenya. Environment International, 99, 185–191.
  • Zhang, J., Shao, Y., & Huang, N. (2014). Measurements of dust deposition velocity in a wind-tunnel experiment. Atmospheric Chemistry and Physics, 14(17), 8869–8882. https://doi.org/10.5194/acp-14-8869-2014
  • Zhang, F., Xu, J., Zhang, Z., Meng, H., Wang, L., Lu, J., Wang, W., & Krafft, T. (2015). Ambient air quality and the effects of air pollutants on otolaryngology in Beijing. Environmental Monitoring and Assessment, 187(8), 495. https://doi.org/10.1007/s10661-015-4711-3
  • Zhang, H., & Ahmadi, G. (2000). Aerosol particle transport and deposition in vertical and horizontal turbulent duct flows. Journal of Fluid Mechanics, 406, 55–80. https://doi.org/10.1017/S0022112099007284
  • Zhang, Z., & Chen, Q. (2009). Prediction of particle deposition onto indoor surfaces by CFD with a modified Lagrangian method. Atmospheric Environment, 43(2), 319–328.
  • Zhao, B., Yang, C., Yang, X., & Liu, S. (2008). Particle dispersion and deposition in ventilated rooms: Testing and evaluation of different Eulerian and Lagrangian models. Building and Environment, 43(4), 388–397.
  • Zhao, B., Zhang, Y., Li, X., Yang, X., & Huang, D. (2004). Comparison of indoor aerosol particle concentration and deposition in different ventilated rooms by numerical method. Building and Environment, 39(1), 1–8.
  • Zhou, Y., Deng, Y., Wu, P., & Cao, S.-J. (2017). The effects of ventilation and floor heating systems on the dispersion and deposition of fine particles in an enclosed environment. Building and Environment, 125, 192–205.
  • Zhuang, C., Yang, G., Long, T., & Hu, D. (2017). Numerical comparison of removal and deposition for fully-distributed particles in central- and split-type air-conditioning rooms. Building and Environment, 112, 17–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.