77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impacts of geometric configurations on performance of discharge coefficient and wall pressure of Venturi meter under high Reynolds number

, &
Received 20 Aug 2022, Accepted 09 Apr 2024, Published online: 25 Apr 2024

References

  • Abbasi, E., Saadat, S., Karimi Jashni, A., & Shafaei, M. H. (2020). A novel method for optimization of slit Venturi dimensions through CFD simulation and RSM design. Ultrasonics Sonochemistry, 67, 105088. https://doi.org/10.1016/j.ultsonch.2020.105088
  • Abd, H. M., Alomar, O. R., & Mohamed, I. A. (2019). Effects of varying orifice diameter and Reynolds number on discharge coefficient and wall pressure. Flow Measurement and Instrumentation, 65, 219–226. https://doi.org/10.1016/j.flowmeasinst.2019.01.004
  • Arun, R., Yogesh Kumar, K. J., & Seshadri, V. (2015). Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical and CFD method. International Journal Of Engineering Science Research and Technology, 3, 168–173.
  • Ashrafizadeh, S. M., & Ghassemi, H. (2015). Experimental and numerical investigation on the performance of small-sized cavitating venturis. Flow Measurement and Instrumentation, 42, 6–15. https://doi.org/10.1016/j.flowmeasinst.2014.12.007
  • Babakhani Dehkordi, P., Colombo, L. P. M., Guilizzoni, M., & Sotgia, G. (2017). CFD simulation with experimental validation of oil-water core-annular flows through Venturi and Nozzle flow meters. Journal of Petroleum Science and Engineering, 149, 540–552. https://doi.org/10.1016/j.petrol.2016.10.058
  • Basu, S. (2019). Plant flow measurement and control handbook. Fluid, Solid, Slurry and Multiphase Flow, Elsevier. https://doi.org/10.1016/c2016-0-03750-6
  • Benard, C. (1986). Liquid flow measurement. Engineering Measurements: Methods and Intrinsic Errors. https://doi.org/10.1002/9781118903148.ch6
  • Brinkhorst, S., von Lavante, E, & Wendt, G. (2015). Numerical investigation of cavitating Herschel Venturi-Tubes applied to liquid flow metering. Flow Measurement and Instrumentation, 43, 23–33. https://doi.org/10.1016/j.flowmeasinst.2015.03.004
  • Brinkhorst, S., von Lavante, E, & Wendt, G. (2017). Experimental and numerical investigation of the cavitation-induced choked flow in a Herschel Venturi-tube. Flow Measurement and Instrumentation, 54, 56–67. https://doi.org/10.1016/j.flowmeasinst.2016.12.006
  • Coleman, W. H. W. (2009). Experimentation, validation, and uncertainty analysis for engineers (3rd ed.). https://doi.org/10.1017/CBO9781107415324.004
  • Dastane, G. G., Thakkar, H., Shah, R., Perala, S., Raut, J., & Pandit, A. B. (2019). Single and multiphase CFD simulations for designing cavitating venturi. Chemical Engineering Research and Design, 149, 1–12. https://doi.org/10.1016/j.cherd.2019.06.036
  • Decaix, J., & Goncalvès, E. (2013). Investigation of three-dimensional effects on a cavitating Venturi flow. International Journal of Heat and Fluid Flow, 44, 576–595. https://doi.org/10.1016/j.ijheatfluidflow.2013.08.013
  • Elobeid, M. O., Ahmad, A., Al-Sarkhi, A., Alhems, L. M., Shaahid, S. M., Basha, M., Xiao, J. J., Lastra, R., & Ejim, C. E. (2018). Pressure drop measurements in venturi meters of different beta ratios for oil–water flow experiments. Arabian Journal for Science and Engineering, 43(11), 6355–6374. https://doi.org/10.1007/s13369-017-3019-8
  • Fang, L., Li, W., Li, Q., & Wang, Z. (2020). Numerical investigation of the cavity shedding mechanism in a Venturi reactor. International Journal of Heat and Mass Transfer, 156, 119835. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119835
  • Ghassemi, H., & Fasih, H. F. (2011). Application of small size cavitating venturi as flow controller and flow meter. Flow Measurement and Instrumentation, 22(5), 406–412. https://doi.org/10.1016/j.flowmeasinst.2011.05.001
  • Gupta, B., Nayak, A. K., Kandar, T. K., & Nair, S. (2016). Investigation of air-water two phase flow through a venturi. Experimental Thermal and Fluid Science. 70, 148–154. https://doi.org/10.1016/j.expthermflusci.2015.07.012
  • Hollingshead, C. L., Johnson, M. C., Barfuss, S. L., & Spall, R. E. (2011). Discharge coefficient performance of Venturi, standard concentric orifice plate, V-cone and wedge flow meters at low Reynolds numbers. Journal of Petroleum Science and Engineering, 78(3-4), 559–566. https://doi.org/10.1016/j.petrol.2011.08.008
  • Huang, J., Sun, L., Du, M., Liang, Z., Mo, Z., Tang, J., & Xie, G. (2019). An investigation on the performance of a micro-scale Venturi bubble generator. Chemical Engineering Journal and the Biochemical Engineering Journal, 386, 120980. https://doi.org/10.1016/j.cej.2019.02.068
  • Hutagalung, S. S. (2019). Estimation optimal value of discharge coefficient in a venturi tubes. Journal of Physics: Conference Series, 1230, 012087. https://doi.org/10.1088/1742-6596/1230/1/012087
  • Jahangir, S., Hogendoorn, W., & Poelma, C. (2018). Dynamics of partial cavitation in an axisymmetric converging-diverging nozzle. International Journal of Multiphase Flow, 106, 34–45. https://doi.org/10.1016/j.ijmultiphaseflow.2018.04.019
  • Kuldeep, & Saharan, V. K. (2016). Computational study of different venturi and orifice type hydrodynamic cavitating devices, Journal of Hydrodynamics, 28, 293–305. https://doi.org/10.1016/S1001-6058(16)60631-5
  • Li, X., Ma, X., Zhang, L., & Zhang, H. (2016). Dynamic characteristics of ventilated bubble moving in micro scale venturi. Chemical Engineering and Processing: Process Intensification, 100, 79–86. https://doi.org/10.1016/j.cep.2015.11.009
  • Long, X., Zhang, J., Wang, J., Xu, M., Lyu, Q., & Ji, B. (2017). Experimental investigation of the global cavitation dynamic behavior in a venturi tube with special emphasis on the cavity length variation. International Journal of Multiphase Flow, 89, 290–298. https://doi.org/10.1016/j.ijmultiphaseflow.2016.11.004
  • Mena, J. L., Ingle, M. A., Shirsat, V., & Choudhuri, A. (2015). An investigation of a cavitating venturi flow control feature in a cryogenic propellant delivery system. Flow Measurement and Instrumentation, 41, 97–103. https://doi.org/10.1016/j.flowmeasinst.2014.09.008
  • Mokrane, W., & Kettab, A. (2019). Flow behaviour analysis through a venturi designed for industrial and environmental processes. Euro-Mediterranean Journal for Environmental Integration, 4, 1–8. https://doi.org/10.1007/s41207-018-0093-6
  • Nithin, T., Jain, N., & Hiriyannaiah, A. (2012). Optimization of Venturi flow meter model for the angle of divergence with minimal pressure drop by computational fluid dynamics method. Int. Conf. Challenges Oppor. Mech. Eng. Ind. Eng. Manag. Stud, 11–13.
  • Prasanna, Y. K. K. J., Dr, M. A., & Seshadri, V. (2016). Numerical analysis of compressible effect in the flow metering. International Journal Of Engineering Science Research and Technology, 5, 603–616.
  • Reader-Harris, M. (2015). Orifice plates and venturi tubes. Experimental Fluid Mechanics. Springer Cham. https://doi.org/10.1007/978-3-319-16880-7
  • Reader-Harris, M. J., Brunton, W. C., Gibson, J. J., Hodges, D., & Nicholson, I. G. (2001). Discharge coefficients of venturi tubes with standard and non-standard convergent angles, Flow. Flow Measurement and Instrumentation, 12(2), 135–145. https://doi.org/10.1016/S0955-5986(01)00007-3
  • Rebassa, A., Bhatnagar, L., & Paniagua, G. (2023). Parametric evaluation of compact truncated Venturi flow meters. Flow Measurement and Instrumentation, 94, 102475. https://doi.org/10.1016/j.flowmeasinst.2023.102475
  • Sanghani, C. R., Jayani, D. C., Jadvani, N. R., Dobariya, H. N., & Jasoliya, K. R. (2016). Effect of geometrical parameters of venturimeter on pressure drop. International Journal of Scientific Research in Science, Engineering and Technology, 2, 865–868.
  • Sanghani, C., & Jayani, D. (2016). Optimization of Venturimeter Geometry for Minimum Pressure Drop using CFD Analysis Recent Trends in Fluid Mechanics Optimization of Venturimeter Geometry for Minimum Pressure Drop using CFD Analysis, 31–35.
  • Shi, H., Li, M., Liu, Q., & Nikrityuk, P. (2020). Experimental and numerical study of cavitating particulate flows in a Venturi tube. Chemical Engineering Sciences, 219, 115598. https://doi.org/10.1016/j.ces.2020.115598
  • Shi, H., Li, M., Nikrityuk, P., & Liu, Q. (2019). Experimental and numerical study of cavitation flows in venturi tubes: From CFD to an empirical model. Chemical Engineering Sciences, 207, 672–687. https://doi.org/10.1016/j.ces.2019.07.004
  • Song, Y., Shentu, Y., Qian, Y., Yin, J., & Wang, D. (2020). Experiment and modeling of liquid-phase flow in a venturi tube using stereoscopic PIV. Nuclear Engineering and Technology. 53(1), 79–92. https://doi.org/10.1016/j.net.2020.06.027
  • Soyama, H., & Hoshino, J. (2016). Enhancing the aggressive intensity of hydrodynamic cavitation through a Venturi tube by increasing the pressure in the region where the bubbles collapse. AIP Advances, 6(4), 045113. https://doi.org/10.1063/1.4947572
  • Sun, Y., & Niu, W. (2012). Simulating the effects of structural parameters on the hydraulic performances of venturi tube. Modelling and Simulation in Engineering, 2012, 1–7. https://doi.org/10.1155/2012/458368
  • Swamee, P. K. (2005). Discharge equations for venturimeter and orificemeter. Journal of Hydraulic Research, 43(4), 417–420. https://doi.org/10.1080/00221680509500137
  • Tang, P., Juárez, J. M., & Li, H. (2019). Investigation on the effect of structural parameters on cavitation characteristics for the venturi tube using the CFD method. Water, 11(10), 2194. https://doi.org/10.3390/w11102194
  • Tukimin, A., Zuber, M., & Ahmad, K. A. (2016). CFD analysis of flow through Venturi tube and its discharge coefficient. IOP Conference Series: Materials Science and Engineering, 152, 012062. https://doi.org/10.1088/1757-899X/152/1/012062
  • Venkata, S. K., & Roy, B. K. (2016). A practically validated intelligent calibration circuit using optimized ANN for flow measurement by venturi. Journal of the Institution of Engineers (India): Series B, 97(1), 31–39. https://doi.org/10.1007/s40031-015-0187-3
  • von Lavante, E., Kaya, H., Winzösch, F., Brinkhorst, S., & Mickan, B. (2015). Flow structure in critical flow Venturi nozzle and its effect on the flow rate. Flow Measurement and Instrumentation, 44, 97–106. https://doi.org/10.1016/j.flowmeasinst.2014.12.003
  • Wang, H., Zhu, Z., Zhang, M., & Han, J. (2020). Numerical investigation of the large over-reading of Venturi flow rate in ARE of nuclear power plant. Nuclear Engineering and Technology, 53(1), 69–78. https://doi.org/10.1016/j.net.2020.06.018
  • Wang, J., Wang, L., Xu, S., Ji, B., & Long, X. (2019). Experimental investigation on the cavitation performance in a venturi reactor with special emphasis on the choking flow. Experimental Thermal and Fluid Science, 106, 215–225. https://doi.org/10.1016/j.expthermflusci.2019.05.003
  • Wang, J., Xu, Y., Zhang, T., Wu, H., Wang, H., & Huo, X. (2020). A pressure drop model for the annular-mist flow in vertical Venturi. Journal of Natural Gas Science and Engineering. 76, 103168. https://doi.org/10.1016/j.jngse.2020.103168
  • Wang, L., Li, S., Yuan, Y., Sun, Z., & Zhou, T. (2019). Measurement of flow rate in solid-liquid two-phase flow in pipes at low volume concentration with venturimeter. Measurement, 138, 409–415. https://doi.org/10.1016/j.measurement.2019.01.084
  • Xu, S., Wang, J., Cheng, H., Ji, B., & Long, X. (2020). Experimental study of the cavitation noise and vibration induced by the choked flow in a Venturi reactor. Ultrasonics Sonochemistry, 67, 105183. https://doi.org/10.1016/j.ultsonch.2020.105183
  • Yin, J., Li, J., Li, H., Liu, W., & Wang, D. (2015). Experimental study on the bubble generation characteristics for an venturi type bubble generator. International Journal of Heat and Mass Transfer, 91, 218–224. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.076
  • Yongwei, C., & Yongjing, X. (2018). NPP main feedwater flow Venturi tube erosion characteristics study and improvement. Annals of Nuclear Energy. 120, 828–834. https://doi.org/10.1016/j.anucene.2018.07.003
  • Zhang, J. X. (2017). Analysis on the effect of venturi tube structural parameters on fluid flow. AIP Advances, 7(6), 065315. https://doi.org/10.1063/1.4991441
  • Zhang, J., Yuan, W., Chen, Z., & Wang, Z. (2019). Experimental and numerical study on the drainage performance and fluid flow of Venturi tubes. AIP Advances, 9(6), 065003. https://doi.org/10.1063/1.5099420
  • Zhao, L., Sun, L., Mo, Z., Tang, J., Hu, L., & Bao, J. (2018). An investigation on bubble motion in liquid flowing through a rectangular Venturi channel. Experimental Thermal and Fluid Science. 97, 48–58. https://doi.org/10.1016/j.expthermflusci.2018.04.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.