50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on the periodic pulsating ventilation by fluidic oscillator on pollutant dispersion and ventilation performance in enclosed environment

, & ORCID Icon
Received 14 Mar 2024, Accepted 15 Jun 2024, Published online: 27 Jun 2024

References

  • Al Assaad, D., Ghali, K., & Ghaddar, N. (2018). Effectiveness of intermittent personalized ventilation assisting a chilled ceiling for enhanced thermal comfort and acceptable indoor air quality. Building and Environment, 144, 9–22. https://doi.org/10.1016/j.buildenv.2018.08.005
  • ASHRAE Handbook-Fundamentals. (2009). American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc. ASHRAE Handbook-Fundamentals.
  • Baghaei, M., & Bergada, J. M. (2020). Fluidic oscillators, the effect of some design modifications. Applied Sciences, 10(6), 2105. https://doi.org/10.3390/app10062105
  • Bobusch, B. C., Woszidlo, R., Krüger, O., & Paschereit, C. O. (2013). Numerical investigations on geometric parameters affecting the oscillation properties of a fluidic oscillator . 21st AIAA Computational Fluid Dynamics Conference . https://doi.org/10.2514/6.2013-2709
  • Cao, S. J., & Meyers, J. (2013). Influence of turbulent boundary conditions on RANS simulations of pollutant dispersion in mechanically ventilated enclosures with transitional slot Reynolds number. Building and Environment, 59, 397–407. https://doi.org/10.1016/j.buildenv.2012.09.004
  • Chen, S. T. (2008). Research on oscillation and refrigeration characteristics of static gas wave refrigerators. Dalian University of Technology.
  • Domingo, J. L., Marquès, M., & Rovira, J. (2020). Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review. Environmental Research, 188, 109861. https://doi.org/10.1016/j.envres.2020.109861
  • Du, C., Liu, H., Yu, W., Ji, Y., Yan, K., & Ruan, L. (2022). Characteristics and comfort evaluation of sinusoidal airflows by regulating motor rotating frequency of a floor fan. Building Simulation, 15, 1035-1049. https://doi.org/10.1007/s12273-021-0843-2
  • Fan, M., Fu, Z., Wang, J., Wang, Z., Suo, H., Kong, X., & Li, H. (2022). A review of different ventilation modes on thermal comfort, air quality and virus spread control. Building and Environment, 212, 108831. https://doi.org/10.1016/j.buildenv.2022.108831
  • Fang, X., Li, X., Yan, Y., Tao, Y., Chen, Z., & Yan, P. (2022). Analysis of occupants’ exposure risk of cough-expelled droplets in the workspace with various mixing ventilation layouts. Experimental and Computational Multiphase Flow, 4(4), 389–398. https://doi.org/10.1007/s42757-022-0142-x
  • Gadgil, A. J., Lobscheid, C., Abadie, M. O., & Finlayson, E. U. (2003). Indoor pollutant mixing time in an isothermal closed room: An investigation using CFD. Atmospheric Environment, 37(39–40), 5577–5586. https://doi.org/10.1016/j.atmosenv.2003.09.032
  • Gao, R., Zhang, W., Zhang, Y., & Li, A. (2015). Statistical characteristics and frequency spectrum analysis of fan induced airflow compared with natural winds. International Journal of Ventilation, 14(3), 255–263. https://doi.org/10.1080/14733315.2015.11684086
  • Gengyin, L., Zhiye, C., & Yihan, Y. (1997). Application of two modified fast Fourier transform algorithms in power system harmonic analysis. IFAC Proceedings Volumes, 30(17), 317–321. https://doi.org/10.1016/S1474-6670(17)46427-5
  • Gregory, J. W., Sullivan, J. P., Raman, G., & Raghu, S. (2007). Characterization of the microfluidic oscillator. AIAA Journal, 45(3), 568–576. https://doi.org/10.2514/1.26127
  • Hsu, C. M., & Kumar, S. (2022). Effect of excitation Strouhal number on velocity field and mixing capability of acoustically excited dual jets. International Journal of Heat and Fluid Flow, 97, 109037. https://doi.org/10.1016/j.ijheatfluidflow.2022.109037
  • Hua, J., Ouyang, Q., Wang, Y., Li, H., & Zhu, Y. (2012). A dynamic air supply device used to produce simulated natural wind in an indoor environment. Building and Environment, 47, 349–356. https://doi.org/10.1016/j.buildenv.2011.07.003
  • Kabanshi, A., Wigö, H., & Sandberg, M. (2016). Experimental evaluation of an intermittent air supply system–Part 1: Thermal comfort and ventilation efficiency measurements. Building and Environment, 95, 240–250. https://doi.org/10.1016/j.buildenv.2015.09.025
  • Kabanshi, A., Wigö, H., Ljung, R., & Sörqvist, P. (2017). Human perception of room temperature and intermittent air jet cooling in a classroom. Indoor and Built Environment, 26(4), 528–537. https://doi.org/10.1177/1420326X16628931
  • Kabanshi, A., Yang, B., Sörqvist, P., & Sandberg, M. (2019). Occupants’ perception of air movements and air quality in a simulated classroom with an intermittent air supply system. Indoor and Built Environment, 28(1), 63–76. https://doi.org/10.1177/1420326X17732613
  • Lee, S., Roh, T. S., & Lee, H. J. (2023). Influence of jet parameters of fluidic oscillator-type fuel injector on the mixing performance in a supersonic flow field. Aerospace Science and Technology, 134, 108154. https://doi.org/10.1016/j.ast.2023.108154
  • Li, C., Yoo, S. J., & Ito, K. (2023, March) Impact of indoor ventilation efficiency on acetone inhalation exposure concentration and tissue dose in respiratory tract. Building Simulation, 16(3), 427–441. https://doi.org/10.1007/s12273-022-0954-4
  • Lipska, B. (2008). Comparison between numerical and observed air and contaminant distribution for mechanical mixing and displacement ventilation coupled with a local exhaust-lessons learnt. International Journal of Ventilation, 7(3), 233–250. https://doi.org/10.1080/14733315.2008.11683815
  • Liu, X., Lv, X., Peng, Z., & Shi, C. (2020). Experimental study of airflow and pollutant dispersion in cross-ventilated multi-room buildings: Effects of source location and ventilation path. Sustainable Cities and Society, 52, 101822. https://doi.org/10.1016/j.scs.2019.101822
  • Mundt, E., Mathisen, H. M., Nielsen, P. V., & Moser, A. (2004). Ventilation effectiveness. REHVA.
  • Charles, K. E., Magee, R. J., Won, D., & Lusztyk, E. (2005). Indoor air quality guidelines and standards. Institute for Research in Construction, National Research Council Canada.
  • National Standardization Administration of China. (2002). GB/T 18883-2002: Indoor air quality standard [Standard]. Standards Press of China.
  • Novoselac, A., & Srebric, J. (2003). Comparison of air exchange efficiency and contaminant removal effectiveness as IAQ indices. Transactions-American Society of Heating Refrigerating and Air Conditioning Engineers, 109(2), 339–349.
  • Nuermaimaiti, W., Liu, X., Yan, P. Y., Wang, Z., & Hu, D. (2023). Research on gas wave refrigeration application of full feedback periodic jet oscillator. International Journal of Refrigeration, 151, 173–183. https://doi.org/10.1016/j.ijrefrig.2023.03.024
  • Park, S., Ko, H., Kang, M., & Lee, Y. (2019). An experimental study of the characteristics of a supersonic fluidic oscillator utilizing the design of experiment . AIAA Aviation 2019 Forum. https://doi.org/10.2514/6.2019-3395
  • Raghu, S. (2013). Fluidic oscillators for flow control. Experiments in Fluids, 54(2), 1455. https://doi.org/10.1007/s00348-012-1455-5
  • Sandberg, M., & Elvsén, P. Å. (2004). Rapid time varying ventilation flow rates as a mean of increasing the ventilation efficiency [Paper presentation]. Roomvent 2004, Coimbra, Portugal, 5–8 September 2004.
  • Sang, Y., Shan, Y., Zhang, J., & Tan, X. (2023). Investigation on flow mechanism and impingement heat transfer performance of combined fluidic oscillators. Thermal Science and Engineering Progress, 37, 101564. https://doi.org/10.1016/j.tsep.2022.101564
  • Sattari, A., & Sandberg, M. (2013). PIV study of ventilation quality in certain occupied regions of a two-dimensional room model with rapidly varying flow rates. International Journal of Ventilation, 12(2), 187–194. https://doi.org/10.1080/14733315.2013.11684015
  • Skotnicka-Siepsiak, A. (2020). The applicability of Coanda effect hysteresis for designing unsteady ventilation systems. Energies, 14(1), 34. https://doi.org/10.3390/en14010034
  • Suárez Martínez, G. (2017). Instability mechanisms of fluidic oscillators. Universitat Politècnica de Catalunya.
  • Sun, C., Cai, Y., Chen, J., Li, J., Su, C., Zou, Z., & Huang, C. (2024). Indoor ammonia concentrations in college dormitories and the health effects. Journal of Building Engineering, 84, 108556. https://doi.org/10.1016/j.jobe.2024.108556
  • Sun, R., Pu, L., He, Y., Yan, T., Tan, H., Lei, G., & Li, Y. (2023). Investigation of the leakage and diffusion characteristics of hydrogen-addition natural gas from indoor pipelines. International Journal of Hydrogen Energy, 48(98), 38922–38934. https://doi.org/10.1016/j.ijhydene.2023.06.204
  • Tavakoli, M., Nili-Ahmadabadi, M., Joulaei, A., & Ha, M. Y. (2023). Enhancing subsonic ejector performance by incorporating a fluidic oscillator as the primary nozzle: A numerical investigation. International Journal of Thermofluids, 20, 100429. https://doi.org/10.1016/j.ijft.2023.100429
  • Thysen, J. (2015). CFD analysis of the mixing in an enclosure under time-periodic inlet conditions. Eindhoven University of Technology.
  • Tian, X., & Lin, Z. (2022). Dynamic modelling of air temperature in breathing zone with stratum ventilation using a pulsating air supply. Building and Environment, 210, 108697. https://doi.org/10.1016/j.buildenv.2021.108697
  • Tian, X., Zhang, S., Lin, Z., Li, Y., Cheng, Y., & Liao, C. (2019). Experimental investigation of thermal comfort with stratum ventilation using a pulsating air supply. Building and Environment, 165, 106416. https://doi.org/10.1016/j.buildenv.2019.106416
  • Tian, X., Zhang, Y., & Lin, Z. (2022). Predicting non-uniform indoor air quality distribution by using pulsating air supply and SVM model. Building and Environment, 219, 109171. https://doi.org/10.1016/j.buildenv.2022.109171
  • Traversari, R. A., Bezemer, R. A., van Heumen, S. P., Kompatscher, K., Hinkema, M. J., & Eekhout, I. (2023). Effect of different setups, protective screens and air supply systems on the exposure to aerosols in a mock-up restaurant. International Journal of Ventilation, 22(3), 245–256. https://doi.org/10.1080/14733315.2022.2064962
  • Van Hooff, T., & Blocken, B. (2020). Mixing ventilation driven by two oppositely located supply jets with a time-periodic supply velocity: A numerical analysis using computational fluid dynamics. Indoor and Built Environment, 29(4), 603–620. https://doi.org/10.1177/1420326X19884667
  • Villafruela, J. M., Castro, F., San José, J. F., & Saint-Martin, J. (2013). Comparison of air change efficiency, contaminant removal effectiveness and infection risk as IAQ indices in isolation rooms. Energy and Buildings, 57, 210–219. https://doi.org/10.1016/j.enbuild.2012.10.053
  • Wang, H., Gao, H., Dai, Y., & Chen, Q. (2023). Investigation on the unsteady ventilation performance of oscillating jet air supply through both spontaneous vortex street effect and active modulation. Journal of Building Engineering, 80, 108028. https://doi.org/10.1016/j.jobe.2023.108028
  • Wang, J. M., Jin, Q. Q., Zhang, Y. Y., Fang, H. C., & Xia, H. M. (2021). Reducing the membrane fouling in cross-flow filtration using a facile fluidic oscillator. Separation and Purification Technology, 272, 118854. https://doi.org/10.1016/j.seppur.2021.118854
  • Wang, Y., Zhai, C., Zhao, T., & Cao, Z. (2020). Numerical study on pollutant removal performance of vortex ventilation with different pollution source locations. Building Simulation, 13(6), 1373–1383. https://doi.org/10.1007/s12273-020-0632-3
  • Wu, C., & Ahmed, N. A. (2012). A novel mode of air supply for aircraft cabin ventilation. Building and Environment, 56, 47–56. https://doi.org/10.1016/j.buildenv.2012.02.025
  • Yang, B., Melikov, A. K., Kabanshi, A., Zhang, C., Bauman, F. S., Cao, G., Awbi, H., Wigö, H., Niu, J., Cheong, K. W. D., Tham, K. W., Sandberg, M., Nielsen, P. V., Kosonen, R., Yao, R., Kato, S., Sekhar, S. C., Schiavon, S., Karimipanah, T., Li, X., & Lin, Z. (2019). A review of advanced air distribution methods-theory, practice, limitations and solutions. Energy and Buildings, 202, 109359. https://doi.org/10.1016/j.enbuild.2019.109359
  • Yang, L., Ye, M., & He, B.-J. (2014). CFD simulation research on residential indoor air quality. The Science of the Total Environment, 472, 1137–1144. https://doi.org/10.1016/j.scitotenv.2013.11.118
  • Zhou, X., Ouyang, Q., Lin, G., & Zhu, Y. (2006). Impact of dynamic airflow on human thermal response. Indoor Air, 16(5), 348–355. https://doi.org/10.1111/j.1600-0668.2006.00430.x
  • Zong, K. D., & Hu, G. S. (1988). Digital signal processing. Tsinghua University Press.
  • Zota, A., Adamkiewicz, G., Levy, J. I., & Spengler, J. D. (2005). Ventilation in public housing: Implications for indoor nitrogen dioxide concentrations. Indoor Air, 15(6), 393–401. https://doi.org/10.1111/j.1600-0668.2005.00375.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.