653
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Eco-efficiency and technical efficiency of different integrated farming systems in eastern India

, , , , , , , , , , , , , , , , , & show all
Article: 2270250 | Received 13 Jul 2021, Accepted 08 Oct 2023, Published online: 27 Oct 2023

References

  • Adhikari, S., Lal, R., & Sahu, B. C. (2013). Carbon footprint of aquaculture in eastern India. Journal of Water and Climate Change, 4(4), 410–421. https://doi.org/10.2166/wcc.2013.028.
  • Ahmadabad, H. F., Mohtasebi, S. S., Mousavi-Avval, S. H., & Marjani, M. R. (2013). Application of data envelopment analysis approach to improve economical productivity of apple fridges. International Research Journal of Applied and Basic Sciences, 4(6), 1603–1607.
  • Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21–37. https://doi.org/10.1016/0304-4076(77)90052-5.
  • Amponsah, N. Y., Troldborg, M., Kington, B., Aalders, I., & Hough, R. L. (2014). Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations. Renewable and Sustainable Energy Reviews, 39, 461–475. https://doi.org/10.1016/j.rser.2014.07.087.
  • Ansari, M. A., Prakash, N., Baishya, L. K., Punitha, P., Sharma, P. K., Yadav, J. S., Kabuei, G. P., & Kllevis, C. H. (2014). Integrated farming system: An ideal approach for developing more economically and environmentally sustainable farming systems for the eastern Himalayan region. Indian Journal of Agricultural Sciences, 84, 356–362.
  • ASG. (2015). Agricultural statistics at a glance 2014. Oxford University Press.
  • Babu, S., Mohapatra, K. P., Das, A., Yadav, G. S., Singh, R., Chandra, P., Avasthe, R. K., Kumar, A., Devi, M. T., Singh, V. K., & Panwar, A. S. (2021). Integrated farming systems: Climate-resilient sustainable food production system in the Indian Himalayan region. In: Venkatramanan, V., Shah, S., Prasad, R. (eds) Exploring synergies and trade-offs between climate change and the sustainable development goals (pp. 119-143)Springer, Singapore. https://doi.org/10.1007/978-981-15-7301-9_6 (pp. 119-143).
  • Barak, P., Jobe, B. O., Krueger, A. R., Peterson, L. A., & Laird, D. A. (1997). Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant and Soil, 197(1), 61–69. https://doi.org/10.1023/A:1004297607070.
  • Basavalingaiah, K., Ramesha, Y. M., Paramesh, V., Rajanna, G. A., Jat, S. L., Dhar Misra, S., Kumar Gaddi, A., Girisha, H. C., Yogesh, G. S., Raveesha, S., & Roopa, T. K. (2020). Energy budgeting, data envelopment analysis and greenhouse gas emission from rice production system: A case study from puddled transplanted rice and direct-seeded rice system of Karnataka, India. Sustainability, 12(16), 6439. https://doi.org/10.3390/su12166439.
  • Battese, G. E. (1992). Frontier production functions and technical efficiency: A survey of empirical applications in agricultural economics. Agricultural Economics, 7(3–4), 185–208. https://doi.org/10.1016/0169-5150(92)90049-5.
  • Baum, R., & Bieńkowski, J. (2020). Eco-efficiency in measuring the sustainable production of agricultural crops. Sustainability, 12(4), 1418. https://doi.org/10.3390/su12041418.
  • Behera, U. K., Rautaray, S. K., & Sahoo, P. K. (2010). Farming system-based composite pisciculture in harvested pond water under eastern Indian situations. Journal of Soil and Water Conservation, 9 (3), 143–147.
  • Bhatt, M. S., & Bhat, S. A. (2014). Technical efficiency and farm size productivity micro level evidence from Jammu & Kashmir. International Journal of Food and Agricultural Economics (IJFAEC), 2(4), 27–49.
  • Bhushan, S. (2005). Total factor productivity growth of wheat in India: A Malmquist approach. Indian Journal of Agricultural Economics, 60(1), 32–48.
  • Binam, J. N., Tonye, J., Nyambi, G., & Akoa, M. (2004). Factors affecting the technical efficiency among smallholder farmers in the slash and burn agriculture zone of Cameroon. Food Policy, 29(5), 531–545. https://doi.org/10.1016/j.foodpol.2004.07.013.
  • Blengini, G. A., & Busto, M. (2009). The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy). Journal of Environmental Management, 90(3), 1512–1522. https://doi.org/10.1016/j.jenvman.2008.10.006.
  • Bonaudo, T., Bendahan, A. B., Sabatier, R., Ryschawy, J., Bellon, S., Leger, F., & Tichit, M. (2014). Agroecological principles for the redesign of integrated crop–livestock systems. European Journal of Agronomy, 57, 43–51. https://doi.org/10.1016/j.eja.2013.09.010.
  • Bos, J. F., de Haan, J., Sukkel, W., & Schils, R. L. (2014). Energy use and greenhouse gas emissions in organic and conventional farming systems in The Netherlands. NJAS: Wageningen Journal of Life Sciences, 68(1), 61–70. https://doi.org/10.1016/j.njas.2013.12.003.
  • Busby, J. W., & Shidore, S. (2017). When decarbonization meets development: The sectoral feasibility of greenhouse gas mitigation in India. Energy Research & Social Science, 23, 60–73. https://doi.org/10.1016/j.erss.2016.11.011.
  • Caffrey, K. R., & Veal, M. W. (2013). Conducting an agricultural life cycle assessment: Challenges and perspectives. The Scientific World Journal, 472431, 1–13. https://doi.org/10.1155/2013/472431.
  • Chapagain, A. K., & Hoekstra, A. Y. (2011). The blue, green and grey water footprint of rice from production and consumption perspectives. Ecological Economics, 70(4), 749–758. https://doi.org/10.1016/j.ecolecon.2010.11.012.
  • ChaudharyKBir. (2010). Climate change and Indian agriculture. Kisan Ki Awaaz - National Magazine of Farmers’ Voice. http://kisankiawaaz.org/Climate%20Change%20and%20Indian%20Agriculture.html. Dated: 3/13/2018.
  • Chhabra, R., Kolli, S., & Bauer, J. H. (2013). Organically grown food provides health benefits to Drosophila melanogaster. PLoS One, 8(1), e52988. https://doi.org/10.1371/journal.pone.0052988.
  • Chien, S. H., Collamer, D. J., & Gearhart, M. M. (2008). The effect of different ammonical nitrogen sources on soil acidification. Soil Science, 173(8), 544–551. https://doi.org/10.1097/SS.0b013e31817d9d17.
  • Coelli, T. J. (1996). A guide to FRONTIER version 4.1: A computer program for stochastic frontier production and cost function estimation. CEPA Working Paper 96/07, Centre for Efficiency and Productivity Analysis, Department of Econometrics, University of New England, Armidale, NSW, Australia.
  • Cooper, J. M., Butler, G., & Leifert, C. (2011). Life cycle analysis of greenhouse gas emissions from organic and conventional food production systems, with and without bio-energy options. NJAS: Wageningen Journal of Life Sciences, 58(3-4), 185–192. https://doi.org/10.1016/j.njas.2011.05.002.
  • Dao, G., & Lewis, P. (2013). Technical efficiency of annual crop farms in northern Vietnam. Working Paper. www.murdoch.edu.au.
  • Devasenapathy, P., Senthilkumar, G., & Shanmugam, P. M. (2009). Energy management in crop production. Indian Journal of Agronomy, 54 (1), 80–90.
  • Dubey, A., & Lal, R. (2009). Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. Journal of Crop Improvement, 23(4), 332–350. https://doi.org/10.1080/15427520902969906.
  • Dwivedi, B. K., & Panday, G. C. (2001). Seasonal dynamics of cynobacterial toxin producing algal species of two water ponds. Aquaculture, 5 (2), 141–146.
  • Eshel. (2021). Small-scale integrated farming systems can abate continental-scale nutrient leakage. PLoS Biology, 19(6), e3001264. https://doi.org/10.1371/journal.pbio.3001264.
  • EtichChepng, E., Bett, E. K., Nyamwaro, S. O., & Kizito, K. (2014). Analysis of technical efficiency of sorghum production in lower eastern Kenya: A data envelopment analysis (DEA) approach. Journal of Economics and Sustainable Development. 5 (4). pp 2222-1700.
  • Fageria, N. K., Santos, A. B., & Moraes, M. F. (2010). Influence of urea and ammonium sulfate on soil acidity indices in lowland rice production. Communications in Soil Science and Plant Analysis, 41(13), 1565–1575. https://doi.org/10.1080/00103624.2010.485237.
  • Garg, M. R., Phondba, B. T., Sherasia, P. L., & Makkar, H. P. (2016). Carbon footprint of milk production under smallholder dairying in Anand district of Western India: A cradle-to-farm gate life cycle assessment. Animal Production Science, 56(3), 423–436. https://doi.org/10.1071/AN15464.
  • Gibbons, J. M., Ramsden, S. J., & Blake, A. (2006). Modelling uncertainty in greenhouse gas emissions from UK agriculture at the farm level. Agriculture, Ecosystems & Environment, 112(4), 347–355. https://doi.org/10.1016/j.agee.2005.08.029.
  • Goglio, P., Grant, B. B., Smith, W. N., Desjardins, R. L., Worth, D. E., Zentner, R., & Malhi, S. S. (2014). Impact of management strategies on the global warming potential at the cropping system level. Science of The Total Environment, 490, 921–933. https://doi.org/10.1016/j.scitotenv.2014.05.070.
  • GOI. (2009). Agricultural statistics at a glance, Government of India Ministry of Agriculture & Farmers Welfare Department of Agriculture, Cooperation & Farmers Welfare. Directorate of Economics and Statistics, Government of India.
  • Goossens, Y., Annaert, B., De Tavernier, J., Mathijs, E., Keulemans, W., & Geeraerd, A. (2017). Life cycle assessment (LCA) for apple orchard production systems including low and high productive years in conventional, integrated and organic farms. Agricultural Systems, 153, 81–93. https://doi.org/10.1016/j.agsy.2017.01.007.
  • Gustafson, D. I., Collins, M., Fry, J., Smith, S., Matlock, M., Zilberman, D., Shryock, J., Doane, M., & Ramsey, N. (2014). Climate adaptation imperatives: Global sustainability trends and eco-efficiency metrics in four major crops–canola, cotton, maize, and soybeans. International Journal of Agricultural Sustainability, 12(2), 146–163.
  • Heidari, M. D., & Omid, M. (2011). Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy, 36(1), 220–225. https://doi.org/10.1016/j.energy.2010.10.048.
  • Heijungs, R., Guinée, J. B., Huppes, G., Lankreijer, R. M., Udo de Haes, H. A., Wegener Sleeswijk, A., Ansems, A. M. M., Eggels, P. G., Duin, R. V., & De Goede, H. P. (1992). Environmental life cycle assessment of products: Guide and backgrounds (part 1) CML.Leiden.
  • Henriksson, P. J. G., Belton, B., Murshed-e-Jahan, K., & Rico, A. (2018). Measuring the potential for sustainable intensification of aquaculture in Bangladesh using life cycle assessment. Proceedings of the National Academy of Sciences, 115(12), 2958–2963. https://doi.org/10.1073/pnas.1716530115.
  • Hillier, J., Hawes, C., Squire, G., Hilton, A., Wale, S., & Smith, P. (2009). The carbon footprints of food crop production. International Journal of Agricultural Sustainability, 7(2), 107–118. https://doi.org/10.3763/ijas.2009.0419.
  • Hoang-Khac, L., Tiet, T., To-The, N., & Nguyen-Anh, T. (2021). Impact of human capital on technical efficiency in sustainable food crop production: A meta-analysis. International Journal of Agricultural Sustainability 20(4), pp.521-542..-.
  • IPCC. (2006). National greenhouse gas inventories: Land use, land use change and forestry. Institute of Global Environmental Strategies.
  • IPCC. (2014). Anthropogenic and natural radiative forcing. In G. Myhre, T. Nakajima, & A. R. (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press. pp. 1132.
  • ISO. (2009a). Environmental management - life cycle assessment: Principles and framework. ISO14040, Geneva.
  • ISO. (2009b). Environmental management - life cycle assessment: Requirements and guidelines. ISO14044, Geneva.
  • Kalhor, T., Rajabipour, A., Akram, A., & Sharifi, M. (2016). Environmental impact assessment of chicken meat production using life cycle assessment. Information Processing in Agriculture, 3 (4), 262–271.
  • Khandwal, R. (2015). Sustainable livelihood security for smallholder farmers. Indian Farming, 64 (12), 1–2.
  • Krasachat, W. (2004). Technical efficiencies of rice farms in Thailand: A non-parametric approach. The Journal of American Academy of Business, Cambridge, 4(1), 64–69.
  • Kumar, A., Nayak, A. K., Mohanty, S., & Das, B. S. (2016). Greenhouse gas emission from direct seeded paddy fields under different soil water potentials in eastern India. Agriculture, Ecosystems & Environment, 228, 111–123. https://doi.org/10.1016/j.agee.2016.05.007.
  • Little, D. C., & Edwards, P. (1999). Alternative strategies for livestock-fish integration with emphasis on Asia. AMBIO A Journal of the Human Environment, 28 (2), 118–124.
  • Malhi, S. S., Harapiak, J. T., Nyborg, M., & Gill, K. S. (2000). Effects of long-term applications of various nitrogen sources on chemical soil properties and composition of bromegrass hay. Journal of Plant Nutrition, 23(7), 903–912. https://doi.org/10.1080/01904160009382069.
  • Manfredi, M., & Vignali, G. (2014). Life cycle assessment of a packaged tomato puree: A comparison of environmental impacts produced by different life cycle phases. Journal of Cleaner Production, 73, 275–284. https://doi.org/10.1016/j.jclepro.2013.10.010.
  • Mango, N., Makate, C., Hanyani-Mlambo, B., Siziba, S., & Lundy, M. (2015). A stochastic frontier analysis of technical efficiency in smallholder maize production in Zimbabwe: The post-fast-track land reform outlook. Cogent Economics & Finance, 3(1), 1117189. https://doi.org/10.1080/23322039.2015.1117189.
  • Meera, A. V., John, J., Sudha, B., Sajeena, A., Jacob, D., & Bindhu, J. S. (2019). Greenhouse gas emission from integrated farming system models: A comparative study. Green Farming, 10(6), 696–701. https://doi.org/10.37322/GreenFarming/10.6.2019.696-701.
  • Meeusen, W., & van Den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas production functions with composed error. International Economic Review, 18(2), 435–444. https://doi.org/10.2307/2525757.
  • Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577–1600. https://doi.org/10.5194/hess-15-1577-2011.
  • Mekonnen, M. M., & Hoekstra, A. Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15(3), 401–415. https://doi.org/10.1007/s10021-011-9517-8.
  • Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S. S., Hosseinzadeh-Bandbafha, H., & Chau, K. W. (2018). Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production. Science of the Total Environment, 631, 1279–1294.
  • Nemecek, T., Jungbluth, N., Canals, L. M., & Schenck, R. (2016). Environmental impacts of food consumption and nutrition: Where are we and what is next? The International Journal of Life Cycle Assessment, 21(5), 607–620. https://doi.org/10.1007/s11367-016-1071-3.
  • Notarnicola, B., Tassielli, G., Renzulli, P. A., & Monforti, F. (2017). Energy flows and greenhouses gases of EU (European Union) national breads using an LCA (life cycle assessment) approach. Journal of Cleaner Production, 140, 455–469. https://doi.org/10.1016/j.jclepro.2016.05.150.
  • Pappa, V. A., Rees, R. M., Walker, R. L., Baddeley, J. A., & Watson, C. A. (2011). Nitrous oxide emissions and nitrate leaching in an arable rotation resulting from the presence of an intercrop. Agriculture, Ecosystems & Environment, 141(1-2), 153–161. https://doi.org/10.1016/j.agee.2011.02.025.
  • Pathak, H., Jain, N., Bhatia, A., Patel, J., & Aggarwal, P. K. (2010). Carbon footprints of Indian food items. Agriculture, Ecosystems & Environment, 139(1-2), 66–73. https://doi.org/10.1016/j.agee.2010.07.002.
  • Pechrová, M. Š., & Šimpach, O. (2020). Do the Subsidies Help the Young Farmers? The Case Study of the Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 68(1).
  • Pradhan, A. K. (2018). Measuring technical efficiency in rice productivity using data envelopment analysis: A Study of Odisha. International Journal of Rural Management, 14(1), 1–21. https://doi.org/10.1177/0973005217750061.
  • Rajendran, S. (2014). Technical efficiency of fruit and vegetable producers in Tamil Nadu, India: A stochastic frontier approach. Asian Journal of Agriculture and Development, 11(1), 77–93. https://doi.org/10.37801/ajad2014.11.1.5.
  • Reddy, G. K., Govardhan, M., Kumari, C. P., Pasha, M. L., Baba, M. A., & Rani, B. (2020). Integrated farming system a promising farmer and eco friendly approach for doubling the farm income in India – A review. International Journal of Current Microbiology and Applied Sciences, 9(1), 2243–2225.
  • Reijntjes, C., Haverkort, B., & Waters, B. (1992). Farming for the future: An introduction to low-external-input and sustainable agriculture. Macmillan, ILEIA.
  • Robertson, G. P., & Vitousek, P. M. (2009). Nitrogen in agriculture: Balancing an essential resource. Annual Review in Environmental Resources, 34 (1), 97–105.
  • Saggar, S. (2010). Estimation of nitrous oxide emission from ecosystems and its mitigation technologies. Agriculture, Ecosystems & Environment, 136(3–4), 189–191. https://doi.org/10.1016/j.agee.2010.01.007.
  • Samra, J. S., Sahoo, N., Roy Chowdhury, S., Mohanty, R. K., Jena, S. K., & Verma, H. N. (2003). Sustainable integrated farming system for waterlogged areas of Eastern India. Research Bulletin No. 14. Water Technology Centre for Eastern Region (ICAR) Chandrasekharpur, Bhubaneswar, Orissa, India.
  • Schroder, J. L., Zhang, H., Girma, K., Raun, W. R., Penn, C. J., & Payton, M. E. (2011). Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Science Society of America Journal, 75(3), 957–964. https://doi.org/10.2136/sssaj2010.0187.
  • Shafiq, M., & Rehman, T. (2000). The extent of resource use inefficiencies in cotton production in Pakistan's Punjab: An application of data envelopment analysis. Agricultural Economics, 22(3), 321–330. https://doi.org/10.1111/j.1574-0862.2000.tb00078.x.
  • Sharma, S. K., Harit, R. C., Kumar, V., Mandal, T. K., & Pathak, H. (2014). Ammonia emission from rice–wheat cropping system in subtropical soil of India. Agricultural Research, 3(2), 175–180. https://doi.org/10.1007/s40003-014-0107-9.
  • Sharpley, A. N., Smith, S. J., Jones, O. R., Berg, W. A., & Coleman, G. A. (1992). The transport of bioavailable phosphorus in agricultural runoff. Journal of Environmental Quality, 21(1), 30–35. https://doi.org/10.2134/jeq1992.00472425002100010003x.
  • Singh, A. K., & Gautam, R. C. (2002). Water: Source of the food security. Indian Farming, 52 (7), 24–28.
  • Singh, K. P., Prakash, V., Srinivas, K., & Srivastva, A. K. (2008). Effect of tillage management on energy-use efficiency and economics of soybean (Glycine max) based cropping systems under the rainfed conditions in north-west Himalayan region. Soil and Tillage Research, 100(1-2), 78–82. https://doi.org/10.1016/j.still.2008.04.011.
  • Singh, S., & Mittal, J. P. (1992). Energy in production agriculture. Mittal Pub.
  • Slattery, W. J., Ridley, A. M., & Windsor, S. M. (1991). Ash alkalinity of animal and plant products. Australian Journal of Experimental Agriculture, 31(3), 321–324. https://doi.org/10.1071/EA9910321.
  • Smith, V. H. (1998). Cultural eutrophication of inland, estuarine, and coastal waters. In M. L. Pace, & P. M. Groffman (Eds.), Successes, limitations and frontiers in ecosystem science (pp. 7–49). Springer.
  • Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10(2), 126–139. https://doi.org/10.1065/espr2002.12.142.
  • Soam, S., Borjesson, P., Sharma, P. K., Gupta, R. P., Tuli, D. K., & Kumar, R. (2017). Life cycle assessment of rice straw utilization practices in India. Bioresource Technology, 228, 89–98. https://doi.org/10.1016/j.biortech.2016.12.082.
  • Soussana, J. F. (2014). Research priorities for sustainable agri-food systems and life cycle assessment. Journal of Cleaner Production, 73, 19–23. https://doi.org/10.1016/j.jclepro.2014.02.061.
  • Thanawong, K., Perret, S. R., & Basset-Mens, C. (2014). Eco-efficiency of paddy rice production in northeastern Thailand: A comparison of rain-fed and irrigated cropping systems. Journal of Cleaner Production, 73, 204–217. https://doi.org/10.1016/j.jclepro.2013.12.067.
  • Tipi, T., Yildiz, N., Nargeleçekenler, M., & Çetin, B. (2009). Measuring the technical efficiency and determinants of efficiency of rice (Oryza sativa) farms in Marmara region, Turkey. New Zealand Journal of Crop and Horticultural Science, 37(2), 121–129. https://doi.org/10.1080/01140670909510257.
  • Tyteca, D. (1996). On the measurement of the environmental performance of firms—A literature review and a productive efficiency perspective. Journal of Environmental Management, 46(3), 281–308. https://doi.org/10.1006/jema.1996.0022.
  • Ullah, R., Shivakoti, G. P., Kamran, A., & Zulfiqar, F. (2016). Farmers versus nature: Managing disaster risks at farm level. Natural Hazards, 82(3), 1931–1945. https://doi.org/10.1007/s11069-016-2278-0.
  • Van der Werf, H. M. G., & Petit, J. (2002). Evaluation of the environmental impact of agriculture at the farm level: A comparison and analysis of 12 indicator-based methods. Agriculture, Ecosystems & Environment, 93(1–3), 131–145. https://doi.org/10.1016/S0167-8809(01)00354-1.
  • Van Passel, S., Nevens, F., Mathijs, E., & Van Huylenbroeck, G. (2007). Measuring farm sustainability and explaining differences in sustainable efficiency. Ecological Economics, 62(1), 149–161. https://doi.org/10.1016/j.ecolecon.2006.06.008.
  • Vijayakumar, S. (2017). Potassium management in aerobic rice-wheat cropping system (Doctoral dissertation). Submitted to Indian Agricultural Research Institute, New Delhi.
  • Wilkins, R. J. (2008). Eco-efficient approaches to land management: A case for increased integration of crop and animal production systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 517–525. https://doi.org/10.1098/rstb.2007.2167.
  • Yan, M., Cheng, K., Luo, T., Yan, Y., Pan, G., & Rees, R. M. (2015). Carbon footprint of grain crop production in China – based on farm survey data. Journal of Cleaner Production, 104, 130–138. https://doi.org/10.1016/j.jclepro.2015.05.058.
  • Yan, X. Y., Cai, Z. C., Ohara, T., & Akimoto, H. (2003). Methane emission from rice fields in mainland China: Amount and seasonal and spatial distribution. Journal of Geophysical Research, 108(D16), 4505. https://doi.org/10.1029/2002JD003182.
  • Yiridoe, E. K., Amon-Armah, F., Hebb, D., & Jamieson, R. (2013). Eco-efficiency of alternative cropping systems managed in an agricultural watershed. Agricultural and Applied Economics Association (AAEA) > Agricultural and Applied Economics Association (AAEA) Conferences > 2013 Annual Meeting, August 4-6, 2013, Washington, DC.
  • Zhang, J. E., Ouyang, Y., Huang, Z. X. H., & Quan, G. M. (2011). Dynamic emission of CH4 from a rice-duck farming ecosystem. Journal of Environmental Protection, 02(05), 537–544. https://doi.org/10.4236/jep.2011.25062.
  • Zou, J. W., Huang, Y., Zheng, X. H., & Wang, Y. S. (2007). Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmospheric Environment, 41(37), 8030–8042. https://doi.org/10.1016/j.atmosenv.2007.06.049.