677
Views
2
CrossRef citations to date
0
Altmetric
Review

Current research into novel therapeutic vaccines against cervical cancer

, , , , , ORCID Icon & show all
Pages 365-376 | Received 08 Nov 2017, Accepted 22 Feb 2018, Published online: 13 Mar 2018

References

  • Hoption Cann SA, van Netten JP, van Netten C. Dr William Coley and tumour regression: a place in history or in the future. Postgrad Med J. 2003;79(938):672-680.
  • Coleman N, Birley HD, Renton AM, et al. Immunological events in regressing genital warts. Am J Clin Pathol. 1994;102(6):768–774.
  • Haupt K, Roggendorf M, Mann K. The potential of DNA vaccination against tumor-associated antigens for antitumor therapy. Exp Biol Med Maywood NJ. 2002;227(4):227–237.
  • Harper DM, De Mars LR. HPV vaccines – a review of the first decade. Gynecol Oncol. 2017;146(1):196–204.
  • Varmus H. The new era in cancer research. Science. 2006;312(5777):1162–1165.
  • Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–1468.
  • Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992;356(6365):152–154.
  • Liu MA. DNA vaccines: a review. J Intern Med. 2003;253(4):402–410.
  • Lee SH, Danishmalik SN, Sin JI. DNA vaccines, electroporation and their applications in cancer treatment. Hum Vaccines Immunother. 2015;11(8):1889–1900.
  • Trimble C, Lin CT, Hung CF, et al. Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine. 2003;21(25–26):4036–4042.
  • Van Den Berg JH, Nujien B, Beijnen JH, et al. Optimization of intradermal vaccination by DNA tattooing in human skin. Hum Gene Ther. 2009;20(3):181–189.
  • Pearton M, Saller V, Coulman SA, et al. Microneedle delivery of plasmid DNA to living human skin: formulation coating, skin insertion and gene expression. J Control Release Off J Control Release Soc. 2012;160(3):561–569.
  • Tezel A, Paliwal S, Shen Z, et al. Low-frequency ultrasound as a transcutaneous immunization adjuvant. Vaccine. 2005;23(29):3800–3807.
  • Norbury CC, Princiotta MF, Bacik I, et al. Multiple antigen-specific processing pathways for activating naive CD8+ T cells in vivo. J Immunol. 2001;1950(166):4355–4362.
  • Von Herrath MG, Yokoyama M, Dockter J, et al. CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J Virol. 1996;70(2):1072–1079.
  • Wang B, Ugen KE, Srikantan V, et al. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci USA. 1993;90(9):4156–4160.
  • Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993;259(5102):1745–1749.
  • Ljungberg K, Liljeström. P. Self-replicating alphavirus RNA vaccines. J Expert Rev Vaccines. 2015;14(2):177–194.
  • Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396–411.
  • Welters MJ, Kenter GG, De Vos Van Steenwijk PJ, et al. Success or failure of vaccination for HPV16 positive vulvar lesions correlates with kinetics and phenotype of induced T cell responses. Proc. Natl Acad. Sci. USA. 2010;107:11895–11899.
  • De Vos Van Steenwijk PJ, Van Poelgeest MI, Ramwadhdoebe TH, et al. The long-term immune response after HPV16 peptide vaccination in women with low-grade pre-malignant disorders of the uterine cervix: a placebo-controlled phase II study. Cancer Immunol Immunother. 2014;63:147–160.
  • Gubin MM, Artyomov MN, Mardis ER. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest. 2015;125(9):3413–3421.
  • Weon JL, Potts PR. The MAGE protein family and cancer. Curr Opin Cell Biol. 2015;37:1–8.
  • Caballero OL, Chen YT. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci. 2009;100(11):2014–2021.
  • Parmiani G, De Filippo A, Novellino L, et al. Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol. 2007;1950(178):1975–1979.
  • Kawakami Y, Eliyahu S, Delgado CH, et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA. 1994;91(14):6458–6462.
  • Fujio K, Watanabe M, Ueki H, et al. A vaccine strategy with multiple prostatic acid phosphatase-fused cytokines for prostate cancer treatment. Oncol Rep. 2015;33(4):1585–1592.
  • Tagliamonte M, Petrizzo A, Tornesello ML, et al. Antigen-specific vaccines for cancer treatment. Hum Vaccine Immunother. 2014;10(11):3332–3346.
  • Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–350.
  • Vici P, Mariani L, Pizzuti L, et al. Immunologic treatments for precancerous lesions and uterine cervical cancer. J Exp Clin Cancer Res. 201426;33:29.
  • Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.
  • Jit M, Chapman R, Hughes O, et al. Comparing bivalent and quadrivalent human papillomavirus vaccines: economic evaluation based on transmission model. BMJ. 2011;343:d5775.
  • Lin Z, Yemelyanova AV, Gambhira R, et al. Expression pattern and subcellular localization of human papillomavirus minor capsid protein L2. Am J Pathol. 2009;174(1):136–143.
  • Johansson C, Somberg M, Li X, et al. HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation. Embo J. 2012;31(14):3212–3227.
  • Peng S, Ji H, Trimble C, et al. Development of a DNA vaccine targeting human papillomavirus type 16 oncoprotein E6. J Virol. 2004;78(16):8468–8476.
  • Bagarazzi ML, Yan J, Morrow MP, et al. Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses. Sci Transl Med. 2012;4(155):155ra138.
  • Diniz MO, Cariri FA, Aps LR, et al. Enhanced therapeutic effects conferred by an experimental DNA vaccine targeting human papillomavirus-induced tumors. Hum Gene Ther. 2013;24(10):861–870.
  • Liao S, Deng DR, Zeng D, et al. HPV16 E5 peptide vaccine in treatment of cervical cancer in vitro and in vivo. J Huazhong Univ Sci. 2013;33(5):735–742.
  • Rotondo JC, Bosi S, Bassi C, et al. Gene expression changes in progression of cervical neoplasia revealed by microarray analysis of cervical neoplastic keratinocytes. J Cell Physiol. 2015;230(4):806–812.
  • Modis Y, Trus BL, Harrison SC. Atomic model of the papillomavirus capsid. Embo J. 2002;21(18):4754–4762.
  • Bernard HU. Regulatory elements in the viral genome. Virology. 2013;445(1–2):197–204.
  • Schwarz E, Freese UK, Gissman L, et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314:111–114.
  • World Health Organization. Electronic Human papillomavirus vaccines: WHO position paper, May 2017-Recommendations. Vaccine. 2017;35(43):5753–5755.
  • Wang JW, Jagu S, Wu W-H, et al. Seroepidemiology of Human Papillomavirus 16 (HPV16) L2 and generation of l2-specific human chimeric monoclonal antibodies. Clin Vaccine Immunol. 2015;22(7):806–816.
  • Brichard VG, Godechal Q. MAGE-A3-specific anticancer immunotherapy in the clinical practice. Oncoimmunology. 2013;2(10):e25995.
  • Braun RP, Dong L, Jerome S, et al. Multi-antigenic DNA immunization using herpes simplex virus type 2 genomic fragments. Hum Vaccin. 2008;4(1):36–43.
  • Bourgault Villada I, Barracco MM, Berville S, et al. Human papillomavirus 16-specific T cell responses in classic HPV-related vulvar intra-epithelial neoplasia. Determination of strongly immunogenic regions from E6 and E7 proteins. Clin Exp Immunol. 2010;159(1):45–56.
  • Oosterhuis K, Ohlschläger P, Van Den Berg JH, et al. Preclinical development of highly effective and safe DNA vaccines directed against HPV 16 E6 and E7. Int J Cancer J Int Cancer. 2011;129(2):397–406.
  • Liu Y, Chen JJ, Gao Q, et al. Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. J Virol. 1999;73(9):7297–7307.
  • Bissa M, Illiano E, Pacchioni S, et al. A prime/boost strategy using DNA/fowlpox recombinants expressing the genetically attenuated E6 protein as a putative vaccine against HPV-16-associated cancers. J Transl Med. 2015;13:80.
  • Welters MJP, Kenter GG, Piersma SJ, et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res. 2008;14(1):178–187.
  • Zhang GL, Srinivasan KN, Veeramani A, et al. PREDBALB/c: a system for the prediction of peptide binding to H2d molecules, a haplotype of the BALB/c mouse. Nucleic Acids Res. 2005;33:W180–183.
  • Mitaksov V, Fremont DH. Structural definition of the H-2Kd peptide-binding motif. J Biol Chem. 2006;281(15):10618–10625.
  • Forger JM, Bronson RT, Huang AS, et al. Murine infection by vesicular stomatitis virus: initial characterization of the H-2d system. J Virol. 1991;65(9):4950–4958.
  • Levy RB, Richardson JC, Marqulies DH, et al. The products of transferred H-2 genes express determinants that restrict hapten-specific cytotoxic T cells. J Immunol. 1983;130(6):2514–2618.
  • Monteiro MC, Couceiro S, Penha-Gonçalves C. The multigenic structure of the MHC locus contributes to positive selection efficiency: a role for MHC class II gene-specific restriction. Eur J Immunol. 2005;35(12):3622–3630.
  • Sasagawa T, Takagi H, Makinoda S. Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer. J Infect Chemother. 2012;18(6):807–815.
  • Smahel M, Síma P, Ludvíková V, et al. Modified HPV16 E7 Genes as DNA Vaccine against E7-Containing Oncogenic Cells. Virology. 2001;281(2):231–238.
  • Cordeiro MN, Paolini F, Massa S, et al. Anti-tumor effects of genetic vaccines against HPV major oncogenes. Hum Vaccines Immunother. 2015;11(1):45–52.
  • Peng S, Trimble C, He L, et al. Characterization of HLA-A2-restricted HPV-16 E7-specific CD8(+) T-cell immune responses induced by DNA vaccines in HLA-A2 transgenic mice. Gene Ther. 2006;13(1):67–77.
  • Engelhard VH, Lacy E, Ridge JP. Influenza A-specific, HLA-A2.1-restricted cytotoxic T lymphocytes from HLA-A2.1 transgenic mice recognize fragments of the M1 protein. J Immunol. 1991;146(4):1226–1232.
  • Zwaveling S, Ferreira MSC, Nouta J, et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol. 2002;169(1):350–358.
  • Yao Y, Huang W, Yang X, et al. HPV-16 E6 and E7 protein T cell epitopes prediction analysis based on distributions of HLA-A loci across populations: an in silico approach. Vaccine. 2013;31(18):2289–2294.
  • Jang S, Kim YT, Chung HW, et al. Identification of novel immunogenic human leukocyte antigen-A 2402-binding epitopes of human papillomavirus type 16 E7 for immunotherapy against human cervical cancer. Cancer. 2012;118(8):2173–2183.
  • Kim S, Chung HW, Lee KR, et al. Identification of novel epitopes from human papillomavirus type 18 E7 that can sensitize PBMCs of multiple HLA class I against human cervical cancer. J Transl Med. 2014;12:229.
  • Henken FE, Oosterhuis K, Öhlschläger P, et al. Preclinical safety evaluation of DNA vaccines encoding modified HPV16 E6 and E7. Vaccine. 2012;30(28):4259–4266.
  • Schoenberg DR, Maquat LE. Regulation of cytoplasmic mRNA decay. Nat Rev Genet. 2012;13(4):246–259.
  • Varshavsky A. The N-end rule. Cell. 1992;69(5):725–735.
  • Dolenc I, Seemüller E, Baumeister W. Decelerated degradation of short peptides by the 20S proteasome. FEBS Lett. 1998;434(3):357–361.
  • Procko E, Gaudet R. Antigen processing and presentation: tAPping into ABC transporters. Curr Opin Immunol. 2009;21(1):84–91.
  • Venuti A, Paolini F, Nasir L, et al. Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer. 2011;10:140.
  • Suprynowicz FA, Disbrow GL, Krawczyk E, et al. HPV-16 E5 oncoprotein upregulates lipid raft components caveolin-1 and ganglioside GM1 at the plasma membrane of cervical cells. Oncogene. 2008;27(8):1071–1078.
  • Barbaresi S, Cortese MS, Quinn J, et al. Effects of human papillomavirus type 16 E5 deletion mutants on epithelial morphology: functional characterization of each transmembrane domain. J Gen Virol. 2010;91(Pt 2):521–530.
  • Schiffman M, Herrero R, Desalle R, et al. The carcinogenicity of human papillomavirus types reflects viral evolution. Virology. 2005;337(1):76–84.
  • Wetherill LF, Holmes KK, Verow M, et al. High-risk human papillomavirus E5 oncoprotein displays channel-forming activity sensitive to small-molecule inhibitors. J Virol. 2012;86(9):5341–5351.
  • Chang JL, Tsao YP, Liu DW, et al. The expression of HPV-16 E5 protein in squamous neoplastic changes in the uterine cervix. J Biomed Sci. 2001;8(2):206–213.
  • Disbrow GL, Sunitha I, Baker CC, et al. Codon optimization of the HPV-16 E5 gene enhances protein expression. Virology. 2003;311(1):105–114.
  • Chen Y-F, Lin C-W, Tsao Y-P, et al. Cytotoxic-T-lymphocyte human papillomavirus type 16 E5 peptide with CpG-oligodeoxynucleotide can eliminate tumor growth in C57BL/6 mice. J Virol. 2004;78(3):1333–1343.
  • Lin KY, Guarnieri FG, Staveley-O’Carroll KF, et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res. 1996;56(1):21–26.
  • Liao S, Zhang W, Hu X, et al. A novel ‘priming-boosting’ strategy for immune interventions in cervical cancer. Mol Immunol. 2015;64(2):295–305.
  • Paolini F, Curzio G, Cordeiro MN, et al. HPV 16 E5 oncoprotein is expressed in early stage carcinogenesis and can be a target of immunotherapy. Hum Vaccin Immunother. 2017;13(2):291–297.
  • Matijevic M, Hedley ML, Urban RG, et al. Immunization with a poly (lactide co-glycolide) encapsulated plasmid DNA expressing antigenic regions of HPV 16 and 18 results in an increase in the precursor frequency of T cells that respond to epitopes from HPV 16, 18, 6 and 11. Cell Immunol. 2011;270(1):62–69.
  • Lin CT, Yen CF, Shaw SW, et al. Gene gun administration of therapeutic HPV DNA vaccination restores the efficacy of prolonged defrosted viral based vaccine. Vaccine. 2009;27(52):7352–7358.
  • Peng S, Trimble C, Alvarez RD, et al. Cluster intradermal DNA vaccination rapidly induces E7-specific CD8+ T-cell immune responses leading to therapeutic antitumor effects. Gene Ther. 2008;15(16):1156–1166.
  • Verstrepen BE, Bins AD, Rollier CS, et al. Improved HIV-1 specific T-cell responses by short-interval DNA tattooing as compared to intramuscular immunization in non-human primates. Vaccine. 2008;26(26):3346–3351.
  • Cukjati D, Batiuskaite D, André F, et al. Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry. 2007;70(2):501–507.
  • Best SR, Peng S, Juang CM, et al. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine. 2009;27(40):5450–5459.
  • Trimble CL, Morrow MP, Kraynyak KA, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015;386(10008):2078–2088.
  • Sun YY, Peng S, Han L, et al. Local HPV recombinant vaccinia boost following priming with an HPV DNA vaccine enhances local HPV-specific CD8+ T-cell-mediated tumor control in the genital tract. Clin Cancer Res. 2016;22(3):657–669.
  • Kim TJ, Jin HT, Hur SY, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun. 2014;5:5317.
  • Coban C, Kobiyama K, Aoshi T, et al. Novel strategies to improve DNA vaccine immunogenicity. Curr Gene Ther. 2011;11(6):479–484.
  • Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4:a006049.
  • Ohlschläger P, Spies E, Alvarez G, et al. The combination of TLR-9 adjuvantation and electroporation-mediated delivery enhances in vivo antitumor responses after vaccination with HPV-16 E7 encoding DNA. Int J Cancer. 2011;128(2):473–481.
  • Sajadian A, Tabarraei A, Soleimanjahi H, et al. Comparing the effect of Toll-like receptor agonist adjuvants on the efficiency of a DNA vaccine. Arch Virol. 2014;159(8):1951–1960.
  • Gableh F, Saeidi M, Hemati S, et al. Combination of the toll like receptor agonist and α Galactosylceramide as an efficient adjuvant for cancer vaccine. J Biomed Sci. 2016;23:16.
  • Massa S, Simeone P, Muller A, et al. Antitumor activity of DNA vaccines based on the human papillomavirus-16 E7 protein genetically fused to a plant virus coat protein. Hum Gene Ther. 2008;19(4):354–364.
  • Wang H, Yu J, Li L. A DNA vaccine encoding mutated HPV58 mE6E7-Fc-GPI fusion antigen and GM-CSF and B7.1. Onco Targets Ther. 2015;8:3067–3077.
  • Yángüez E, García-Culebras A, Frau A, et al. ISG15 regulates peritoneal macrophages functionality against viral infection. PLoS Pathog. 2013;9(10):e1003632.
  • Villarreal DO, Wise MC, Siefert RJ, et al. Ubiquitin-like molecule ISG15 acts as an immune adjuvant to enhance antigen-specific CD8 T cell tumor immunity. Mol Ther. 2015;23(10):1653–1662.
  • De Freitas AC, De Oliveira THA, Barros MR Jr, et al. hrHPV E5 oncoprotein: immune evasion and related immunotherapies. J Exp Clin Cancer Res. 2017;36(1):71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.