400
Views
3
CrossRef citations to date
0
Altmetric
Review

Anticancer therapy and lung injury: molecular mechanisms

, , , , , , & show all
Pages 1041-1057 | Received 11 Oct 2017, Accepted 04 Jul 2018, Published online: 23 Jul 2018

References

  • Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;294:L152–60.
  • Tashiro M, Izumikawa K, Yoshioka D, et al. Lung fibrosis 10 years after cessation of bleomycin therapy. Tohoku J Exp Med. 2008;216:77–80.
  • Hecht SM. Bleomycin: new perspectives on the mechanism of action. J Nat Prod. 2000;63:158–168.
  • Hoshino T, Nakamura H, Okamoto M, et al. Redox-active protein thioredoxin prevents proinflammatory cytokine- or bleomycin-induced lung injury. Am J Respir Crit Care Med. 2003;168:1075–1083.
  • Piguet PF, Collart MA, Grau GE, et al. Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis. J Exp Med. 1989;170:655–663.
  • Lin PS, Kwock L, Hefter K, et al. Effects of iron, copper, cobalt, and their chelators on the cytotoxicity of bleomycin. Cancer Res. 1983;43:1049–1053.
  • Carver JR, Shapiro CL, Ng A, et al. American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol. 2007;25:3991–4008.
  • Moeller A, Ask K, Warburton D, et al. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol. 2008;40:362–382.
  • Tomasz M. Mitomycin C: small, fast and deadly (but very selective). Chem Biol. 1995;2:575–579.
  • Shi K, Wang D, Cao X, et al. Endoplasmic reticulum stress signaling is involved in mitomycin C (MMC)-induced apoptosis in human fibroblasts via PERK pathway. PLoS One. 2013;8:e59330.
  • Perros F, Gunther S, Ranchoux B, et al. Mitomycin-induced pulmonary veno-occlusive disease: evidence from human disease and animal models. Circulation. 2015;132:834–847.
  • Eyries M, Montani D, Girerd B, et al. EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat Genet. 2014;46:65–69.
  • D’Angio GJ, Evans A, Breslow N, et al. The treatment of Wilms’ tumor: results of the Second National Wilms’ Tumor study. Cancer. 1981;47:2302–2311.
  • Cohen IJ, Loven D, Schoenfeld T, et al. Dactinomycin potentiation of radiation pneumonitis: a forgotten interaction. Pediatr Hematol Oncol. 1991;8:187–192.
  • Sobell HM. Actinomycin and DNA transcription. Proc Natl Acad Sci U S A. 1985;82:5328–5331.
  • Mazzotta M, Giusti R, Iacono D, et al. Pulmonary fibrosis after pegylated liposomal doxorubicin in elderly patient with cutaneous angiosarcoma. Case Rep Oncol Med. 2016;2016:8034832.
  • Vahid B, Marik PE. Pulmonary complications of novel antineoplastic agents for solid tumors. Chest. 2008;133:528–538.
  • Malik SW, Myers JL, DeRemee RA, et al. Lung toxicity associated with cyclophosphamide use. Two Distinct Patterns. Am J Respir Crit Care Med. 1996;154:1851–1856.
  • Ochoa R, Bejarano PA, Gluck S, et al. Pneumonitis and pulmonary fibrosis in a patient receiving adjuvant docetaxel and cyclophosphamide for stage 3 breast cancer: a case report and literature review. J Med Case Rep. 2012;6:413.
  • Segura A, Yuste A, Cercos A, et al. Pulmonary fibrosis induced by cyclophosphamide. Ann Pharmacother. 2001;35:894–897.
  • Hoyt DG, Lazo JS. Acute pneumocyte injury, poly(ADP-ribose) polymerase activity, and pyridine nucleotide levels after in vitro exposure of murine lung slices to cyclophosphamide. Biochem Pharmacol. 1994;48:1757–1765.
  • Mohr M, Kingreen D, Ruhl H, et al. Interstitial lung disease–an underdiagnosed side effect of chlorambucil? Ann Hematol. 1993;67:305–307.
  • Crestani B, Jaccard A, Israel-Biet D, et al. Chlorambucil-associated pneumonitis. Chest. 1994;105:634–636.
  • Khong HT, McCarthy J. Chlorambucil-induced pulmonary disease: a case report and review of the literature. Ann Hematol. 1998;77:85–87.
  • Cooper JA Jr., White DA, Matthay RA. Drug-induced pulmonary disease. Part 1: cytotoxic drugs. Am Rev Respir Dis. 1986;133:321–340.
  • Matsuno O. Drug-induced interstitial lung disease: mechanisms and best diagnostic approaches. Respir Res. 2012;13:39.
  • Akasheh MS. Freytes CO and Vesole DH. Melphalan-associated pulmonary toxicity following high-dose therapy with autologous hematopoietic stem cell transplantation. Bone Marrow Transplant. 2000;26:1107–1109.
  • Ekstrand-Hammarstrom B. Wigenstam E and Bucht A. Inhalation of alkylating mustard causes long-term T cell-dependent inflammation in airways and growth of connective tissue. Toxicology. 2011;280:88–97.
  • Kolb M, Margetts PJ, Anthony DC, et al. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest. 2001;107:1529–1536.
  • Ringden O, Remberger M, Ruutu T, et al. Increased risk of chronic graft-versus-host disease, obstructive bronchiolitis, and alopecia with busulfan versus total body irradiation: long-term results of a randomized trial in allogeneic marrow recipients with leukemia. Nordic Bone Marrow Transplantation Group. Blood. 1999;93:2196–2201.
  • Johnstone TC, Alexander SM, Lin W, et al. Effects of monofunctional platinum agents on bacterial growth: a retrospective study. J Am Chem Soc. 2014;136:116–118.
  • Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–378.
  • Ideguchi H, Kojima K, Hirosako S, et al. Cisplatin-induced eosinophilic pneumonia. Case Rep Pulmonol. 2014;2014:209732.
  • Kirkbride P, Hatton M, Lorigan P, et al. Fatal pulmonary fibrosis associated with induction chemotherapy with carboplatin and vinorelbine followed by CHART radiotherapy for locally advanced non-small cell lung cancer. Clin Oncol (R Coll Radiol). 2002;14:361–366.
  • Dimopoulou I, Galani H, Dafni U, et al. A prospective study of pulmonary function in patients treated with paclitaxel and carboplatin. Cancer. 2002;94:452–458.
  • Barrera P, Laan RF, Van Riel PL, et al. Methotrexate-related pulmonary complications in rheumatoid arthritis. Ann Rheum Dis. 1994;53:434–439.
  • Jakubovic BD, Donovan A, Webster PM, et al. Methotrexate-induced pulmonary toxicity. Can Respir J. 2013;20:153–155.
  • Salehi M, Miller R, Khaing M. Methotrexate-induced hypersensitivity pneumonitis appearing after 30 years of use: a case report. J Med Case Rep. 2017;11:174.
  • Ohbayashi M, Suzuki M, Yashiro Y, et al. Induction of pulmonary fibrosis by methotrexate treatment in mice lung in vivo and in vitro. J Toxicol Sci. 2010;35:653–661.
  • Kim YJ. Song M and Ryu JC. Inflammation in methotrexate-induced pulmonary toxicity occurs via the p38 MAPK pathway. Toxicology. 2009;256:183–190.
  • Garg S, Garg MS and Basmaji N. Multiple pulmonary nodules: an unusual presentation of fludarabine pulmonary toxicity: case report and review of literature. Am J Hematol. 2002;70:241–245.
  • Stoica GS. Greenberg HE and Rossoff LJ. Corticosteroid responsive fludarabine pulmonary toxicity. Am J Clin Oncol. 2002;25:340–341.
  • Turco C, Jary M, Kim S, et al. Gemcitabine-induced pulmonary toxicity: a case report of pulmonary veno-occlusive disease. Clin Med Insights Oncol. 2015;9:75–79.
  • Bredenfeld H, Franklin J, Nogova L, et al. Severe pulmonary toxicity in patients with advanced-stage Hodgkin’s disease treated with a modified bleomycin, doxorubicin, cyclophosphamide, vincristine, procarbazine, prednisone, and gemcitabine (BEACOPP) regimen is probably related to the combination of gemcitabine and bleomycin: a report of the German Hodgkin’s Lymphoma Study Group. J Clin Oncol. 2004;22:2424–2429.
  • Belknap SM, Kuzel TM, Yarnold PR, et al. Clinical features and correlates of gemcitabine-associated lung injury: findings from the RADAR project. Cancer. 2006;106:2051–2057.
  • Levitt ML, Kassem B, Gooding WE, et al. Phase I study of gemcitabine given weekly as a short infusion for non-small cell lung cancer: results and possible immune system-related mechanisms. Lung Cancer. 2004;43:335–344.
  • Pavlakis N, Bell DR, Millward MJ, et al. Fatal pulmonary toxicity resulting from treatment with gemcitabine. Cancer. 1997;80:286–291.
  • Vander Els NJ, Miller V. Successful treatment of gemcitabine toxicity with a brief course of oral corticosteroid therapy. Chest. 1998;114:1779–1781.
  • Alessandrino EP, Bernasconi P, Colombo A, et al. Pulmonary toxicity following carmustine-based preparative regimens and autologous peripheral blood progenitor cell transplantation in hematological malignancies. Bone Marrow Transplant. 2000;25:309–313.
  • Lohani S. O’Driscoll BR and Woodcock AA. 25-year study of lung fibrosis following carmustine therapy for brain tumor in childhood. Chest. 2004;126:1007.
  • Kehrer JP, Klein-Szanto AJ. Enhanced acute lung damage in mice following administration of 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res. 1985;45:5707–5713.
  • Cao TM, Negrin RS, Stockerl-Goldstein KE, et al. Pulmonary toxicity syndrome in breast cancer patients undergoing BCNU-containing high-dose chemotherapy and autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2000;6:387–394.
  • Smith AC, Boyd MR. Preferential effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) on pulmonary glutathione reductase and glutathione/glutathione disulfide ratios: possible implications for lung toxicity. J Pharmacol Exp Ther. 1984;229:658–663.
  • Shen YC, Chiu CF, Chow KC, et al. Fatal pulmonary fibrosis associated with BCNU: the relative role of platelet-derived growth factor-B, insulin-like growth factor I, transforming growth factor-beta1 and cyclooxygenase-2. Bone Marrow Transplant. 2004;34:609–614.
  • Lee W. Moore RP and Wampler GL. Interstitial pulmonary fibrosis as a complication of prolonged methyl-CCNU therapy. Cancer Treat Rep. 1978;62:1355–1358.
  • Tucci E, Verdiani P, Di Carlo S, et al. Lomustine (CCNU)-induced pulmonary fibrosis. Tumori. 1986;72:95–98.
  • Shah RR. Tyrosine kinase inhibitor-induced interstitial lung disease: clinical features, diagnostic challenges, and therapeutic dilemmas. Drug Saf. 2016;39:1073–1091.
  • Kataoka K, Taniguchi H, Hasegawa Y, et al. Interstitial lung disease associated with gefitinib. Respir Med. 2006;100:698–704.
  • Hong D, Zhang G, Zhang X, et al. Pulmonary toxicities of gefitinib in patients with advanced non-small-cell lung cancer: a meta-analysis of randomized controlled trials. Medicine (Baltimore). 2016;95:e3008.
  • Madtes DK, Busby HK, Strandjord TP, et al. Expression of transforming growth factor-alpha and epidermal growth factor receptor is increased following bleomycin-induced lung injury in rats. Am J Respir Cell Mol Biol. 1994;11:540–551.
  • Liu V, White DA, Zakowski MF, et al. Pulmonary toxicity associated with erlotinib. Chest. 2007;132:1042–1044.
  • Chua W, Peters M, Loneragan R, et al. Cetuximab-associated pulmonary toxicity. Clin Colorectal Cancer. 2009;8:118–120.
  • Ma CX, Hobday TJ, Jett JR. Imatinib mesylate-induced interstitial pneumonitis. Mayo Clin Proc. 2003;78:1578–1579.
  • Ohnishi K, Sakai F, Kudoh S, et al. Twenty-seven cases of drug-induced interstitial lung disease associated with imatinib mesylate. Leukemia. 2006;20:1162–1164.
  • Wagner U, Staats P, Moll R, et al. Imatinib-associated pulmonary alveolar proteinosis. Am J Med. 2003;115:674.
  • Rajda J, Phatak PD. Reversible drug-induced interstitial pneumonitis following imatinib mesylate therapy. Am J Hematol. 2005;79:80–81.
  • Lin JT, Yeh KT, Fang HY, et al. Fulminant, but reversible interstitial pneumonitis associated with imatinib mesylate. Leuk Lymphoma. 2006;47:1693–1695.
  • Sakao S, Tatsumi K. Molecular mechanisms of lung-specific toxicity induced by epidermal growth factor receptor tyrosine kinase inhibitors. Oncol Lett. 2012;4:865–867.
  • Guan Y, Meng J, Zhao H, et al. Fatal interstitial lung disease after addition of sorafenib to a patient with lung adenocarcinoma who had failed to improve with erlotinib alone. Case Rep Oncol. 2014;7:273–276.
  • Yamaguchi T, Seki T, Miyasaka C, et al. Interstitial pneumonia induced by sorafenib in a patient with hepatocellular carcinoma: an autopsy case report. Oncol Lett. 2015;9:1633–1636.
  • Prieto-Dominguez N, Ordonez R, Fernandez A, et al. Modulation of autophagy by sorafenib: effects on treatment response. Front Pharmacol. 2016;7:151.
  • Zhang J, Chen YL, Ji G, et al. Sorafenib inhibits epithelial-mesenchymal transition through an epigenetic-based mechanism in human lung epithelial cells. PLoS One. 2013;8:e64954.
  • Meyer KC. Cardoni A and Xiang ZZ. Vascular endothelial growth factor in bronchoalveolar lavage from normal subjects and patients with diffuse parenchymal lung disease. J Lab Clin Med. 2000;135:332–338.
  • Hanaoka M, Droma Y, Naramoto A, et al. Vascular endothelial growth factor in patients with high-altitude pulmonary edema. J Appl Physiol (1985). 2003;94:1836–1840.
  • Abadie Y, Bregeon F, Papazian L, et al. Decreased VEGF concentration in lung tissue and vascular injury during ARDS. Eur Respir J. 2005;25:139–146.
  • Seidel C, Janssen S, Karstens JH, et al. Recall pneumonitis during systemic treatment with sunitinib. Ann Oncol. 2010;21:2119–2120.
  • Dajczman E, Srolovitz H, Kreisman H, et al. Fatal pulmonary toxicity following oral etoposide therapy. Lung Cancer. 1995;12:81–86.
  • Gurjal A, An T, Valdivieso M, et al. Etoposide-induced pulmonary toxicity. Lung Cancer. 1999;26:109–112.
  • Pitot HC, Wender DB, O’Connell MJ, et al. Phase II trial of irinotecan in patients with metastatic colorectal carcinoma. J Clin Oncol. 1997;15:2910–2919.
  • Yamada K, Ikehara M, Tanaka G, et al. Dose escalation study of paclitaxel in combination with fixed-dose irinotecan in patients with advanced non-small cell lung cancer (JCOG 9807). Oncology. 2004;66:94–100.
  • Yamada M, Kudoh S, Hirata K, et al. Risk factors of pneumonitis following chemoradiotherapy for lung cancer. Eur J Cancer. 1998;34:71–75.
  • Madarnas Y, Webster P, Shorter AM, et al. Irinotecan-associated pulmonary toxicity. Anticancer Drugs. 2000;11:709–713.
  • Michielin O, Udry E, Periard D, et al. Irinotecan-induced interstitial pneumonia. Lancet Oncol. 2004;5:322–324.
  • Maitland ML, Wilcox R, Hogarth DK, et al. Diffuse alveolar damage after a single dose of topotecan in a patient with pulmonary fibrosis and small cell lung cancer. Lung Cancer. 2006;54:243–245.
  • Miyakoshi S, Kami M, Yuji K, et al. Severe pulmonary complications in Japanese patients after bortezomib treatment for refractory multiple myeloma. Blood. 2006;107:3492–3494.
  • Zappasodi P, Dore R, Castagnola C, et al. Rapid response to high-dose steroids of severe bortezomib-related pulmonary complication in multiple myeloma. J Clin Oncol. 2007;25:3380–3381.
  • Yamaguchi T, Sasaki M and Itoh K. Bortezomib-induced pneumonitis during bortezomib retreatment in multiple myeloma. Jpn J Clin Oncol. 2012;42:637–639.
  • Dhakal A, Belur AA and Chandra AB. Bortezomib induced pulmonary toxicity. Blood. 2014;124:5731.
  • Pitini V, Arrigo C, Altavilla G, et al. Severe pulmonary complications after bortezomib treatment for multiple myeloma: an unrecognized pulmonary vasculitis? Leuk Res. 2007;31:1027–1028.
  • McCormack FX, Inoue Y, Moss J, et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med. 2011;364:1595–1606.
  • Pham PT, Pham PC, Danovitch GM, et al. Sirolimus-associated pulmonary toxicity. Transplantation. 2004;77:1215–1220.
  • Ussavarungsi K, Elsanjak A, Laski M, et al. Sirolimus induced granulomatous interstitial pneumonitis. Respir Med Case Rep. 2012;7:8–11.
  • Morelon E, Stern M, Israel-Biet D, et al. Characteristics of sirolimus-associated interstitial pneumonitis in renal transplant patients. Transplantation. 2001;72:787–790.
  • Fielhaber JA, Carroll SF, Dydensborg AB, et al. Inhibition of mammalian target of rapamycin augments lipopolysaccharide-induced lung injury and apoptosis. J Immunol. 2012;188:4535–4542.
  • Junpaparp P, Sharma B, Samiappan A, et al. Everolimus-induced severe pulmonary toxicity with diffuse alveolar hemorrhage. Ann Am Thorac Soc. 2013;10:727–729.
  • Iacovelli R, Palazzo A, Mezi S, et al. Incidence and risk of pulmonary toxicity in patients treated with mTOR inhibitors for malignancy. A meta-analysis of published trials. Acta Oncol. 2012;51:873–879.
  • Frija J, Joly D, Knebelmann B, et al. Everolimus-related organizing pneumonia: a report establishing causality. Invest New Drugs. 2012;30:1244–1247.
  • Duran I, Siu LL, Oza AM, et al. Characterisation of the lung toxicity of the cell cycle inhibitor temsirolimus. Eur J Cancer. 2006;42:1875–1880.
  • Abal M. Andreu JM and Barasoain I. Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets. 2003;3:193–203.
  • Goldberg HL, Vannice SB. Pneumonitis related to treatment with paclitaxel. J Clin Oncol. 1995;13:534–535.
  • Ostoros G, Pretz A, Fillinger J, et al. Fatal pulmonary fibrosis induced by paclitaxel: a case report and review of the literature. Int J Gynecol Cancer. 2006;16(Suppl 1):391–393.
  • Thomas AL, Cox G, Sharma RA, et al. Gemcitabine and paclitaxel associated pneumonitis in non-small cell lung cancer: report of a phase I/II dose-escalating study. Eur J Cancer. 2000;36:2329–2334.
  • Abulkhair O, El Melouk W. Delayed paclitaxel-trastuzumab-induced interstitial pneumonitis in breast cancer. Case Rep Oncol. 2011;4:186–191.
  • Reckzeh B, Merte H, Pfluger KH, et al. Severe lymphocytopenia and interstitial pneumonia in patients treated with paclitaxel and simultaneous radiotherapy for non-small-cell lung cancer. J Clin Oncol. 1996;14:1071–1076.
  • Fujimori K, Yokoyama A, Kurita Y, et al. Paclitaxel-induced cell-mediated hypersensitivity pneumonitis. Diagnosis using leukocyte migration test, bronchoalveolar lavage and transbronchial lung biopsy. Oncology. 1998;55:340–344.
  • Robert F, Childs HA, Spencer SA, et al. Phase I/IIa study of concurrent paclitaxel and cisplatin with radiation therapy in locally advanced non-small cell lung cancer: analysis of early and late pulmonary morbidity. Semin Radiat Oncol. 1999;9:136–147.
  • Semb KA. Aamdal S and Oian P. Capillary protein leak syndrome appears to explain fluid retention in cancer patients who receive docetaxel treatment. J Clin Oncol. 1998;16:3426–3432.
  • Read WL. Mortimer JE and Picus J. Severe interstitial pneumonitis associated with docetaxel administration. Cancer. 2002;94:847–853.
  • Tamiya A, Naito T, Miura S, et al. Interstitial lung disease associated with docetaxel in patients with advanced non-small cell lung cancer. Anticancer Res. 2012;32:1103–1106.
  • Morris MJ, Santamauro J, Shia J, et al. Fatal respiratory failure associated with treatment of prostate cancer using docetaxel and estramustine. Urology. 2002;60:1111.
  • Genestreti G, Di Battista M, Trisolini R, et al. A commentary on interstitial pneumonitis induced by docetaxel: clinical cases and systematic review of the literature. Tumori. 2015;101:e92–5.
  • Scott AM. Allison JP and Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012;12:14.
  • Hoag JB, Azizi A, Doherty TJ, et al. Association of cetuximab with adverse pulmonary events in cancer patients: a comprehensive review. J Exp Clin Cancer Res. 2009;28:113.
  • Harding J, Burtness B. Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc). 2005;41:107–127.
  • Yamada T, Moriwaki T, Matsuda K, et al. Panitumumab-induced interstitial lung disease in a case of metastatic colorectal cancer. Onkologie. 2013;36:209–212.
  • Osawa M, Kudoh S, Sakai F, et al. Clinical features and risk factors of panitumumab-induced interstitial lung disease: a postmarketing all-case surveillance study. Int J Clin Oncol. 2015;20:1063–1071.
  • Gemmete JJ, Mukherji SK. Panitumumab (vectibix). AJNR Am J Neuroradiol. 2011;32:1002–1003.
  • Nissen NN, Polverini PJ, Koch AE, et al. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol. 1998;152:1445–1452.
  • Erinjeri JP, Fong AJ, Kemeny NE, et al. Timing of administration of bevacizumab chemotherapy affects wound healing after chest wall port placement. Cancer. 2011;117:1296–1301.
  • Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–2550.
  • Lind JS. Senan S and Smit EF. Pulmonary toxicity after bevacizumab and concurrent thoracic radiotherapy observed in a phase I study for inoperable stage III non-small-cell lung cancer. J Clin Oncol. 2012;30:e104–8.
  • Senan S, Smit EF. Design of clinical trials of radiation combined with antiangiogenic therapy. Oncologist. 2007;12:465–477.
  • Koukourakis MI, Giatromanolaki A, Sheldon H, et al. Phase I/II trial of bevacizumab and radiotherapy for locally advanced inoperable colorectal cancer: vasculature-independent radiosensitizing effect of bevacizumab. Clin Cancer Res. 2009;15:7069–7076.
  • Burton C, Kaczmarski R, Jan-Mohamed R. Interstitial pneumonitis related to rituximab therapy. N Engl J Med. 2003;348: 2690–2691. discussion −1
  • Swords R, Power D, Fay M, et al. Interstitial pneumonitis following rituximab therapy for immune thrombocytopenic purpura (ITP). Am J Hematol. 2004;77:103–104.
  • Bienvenu J, Chvetzoff R, Salles G, et al. Tumor necrosis factor alpha release is a major biological event associated with rituximab treatment. Hematol J. 2001;2:378–384.
  • Hiraga J, Kondoh Y, Taniguchi H, et al. A case of interstitial pneumonia induced by rituximab therapy. Int J Hematol. 2005;81:169–170.
  • Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–182.
  • Le XF, Pruefer F, Bast RC Jr. HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kip1 via multiple signaling pathways. Cell Cycle. 2005;4:87–95.
  • Radzikowska E, Szczepulska E, Chabowski M, et al. Organising pneumonia caused by transtuzumab (Herceptin) therapy for breast cancer. Eur Respir J. 2003;21:552–555.
  • Costa R, Costa-Filho RB, Talamantes SM, et al. Interstitial pneumonitis secondary to trastuzumab: a case report and literature review. Case Rep Oncol. 2017;10:524–530.
  • Vahid B, Mehrotra A. Trastuzumab (Herceptin)-associated lung injury. Respirology. 2006;11:655–658.
  • Lin TS, Penza SL, Avalos BR, et al. Diffuse alveolar hemorrhage following gemtuzumab ozogamicin. Bone Marrow Transplant. 2005;35:823–824.
  • Li H, Ma W, Yoneda KY, et al. Severe nivolumab-induced pneumonitis preceding durable clinical remission in a patient with refractory, metastatic lung squamous cell cancer: a case report. J Hematol Oncol. 2017;10:64.
  • Abdel-Rahman O, ElHalawani H, Fouad M. Risk of elevated transaminases in cancer patients treated with immune checkpoint inhibitors: a meta-analysis. Expert Opin Drug Saf. 2015;14:1507–1518.
  • Nishino M, Sholl LM, Hodi FS, et al. Anti-PD-1-related pneumonitis during cancer immunotherapy. N Engl J Med. 2015;373:288–290.
  • Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26:2375–2391.
  • McNally B, Ye F, Willette M, et al. Local blockade of epithelial PDL-1 in the airways enhances T cell function and viral clearance during influenza virus infection. J Virol. 2013;87:12916–12924.
  • Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–1846.
  • Barjaktarevic IZ, Qadir N, Suri A, et al. Organizing pneumonia as a side effect of ipilimumab treatment of melanoma. Chest. 2013;143:858–861.
  • Franzen D, Schad K, Dummer R, et al. Severe acute respiratory distress syndrome due to ipilimumab. Eur Respir J. 2013;42:866–868.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2017;67:7–30.
  • Schaake-Koning C, Van Den Bogaert W, Dalesio O, et al. Effects of concomitant cisplatin and radiotherapy on inoperable non-small-cell lung cancer. N Engl J Med. 1992;326:524–530.
  • Ettinger DS, Wood DE, Aisner DL, et al. Non-Small Cell Lung Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2017;15:504–535.
  • Tyldesley S, Boyd C, Schulze K, et al. Estimating the need for radiotherapy for lung cancer: an evidence-based, epidemiologic approach. Int J Radiat Oncol Biol Phys. 2001;49:973–985.
  • Chun SG, Hu C, Choy H, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol. 2017;35:56–62.
  • Auperin A, Le Pechoux C, Rolland E, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010;28:2181–2190.
  • Bradley JD, Paulus R, Komaki R, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16:187–199.
  • Geara FB, Komaki R, Tucker SL, et al. Factors influencing the development of lung fibrosis after chemoradiation for small cell carcinoma of the lung: evidence for inherent interindividual variation. Int J Radiat Oncol Biol Phys. 1998;41:279–286.
  • Kong FM, Wang S. Nondosimetric risk factors for radiation-induced lung toxicity. Semin Radiat Oncol. 2015;25:100–109.
  • McDonald S, Rubin P, Phillips TL, et al. Injury to the lung from cancer therapy: clinical syndromes, measurable endpoints, and potential scoring systems. Int J Radiat Oncol Biol Phys. 1995;31:1187–1203.
  • Guerrero T, Johnson V, Hart J, et al. Radiation pneumonitis: local dose versus [18F]-fluorodeoxyglucose uptake response in irradiated lung. Int J Radiat Oncol Biol Phys. 2007;68:1030–1035.
  • Choi YW, Munden RF, Erasmus JJ, et al. Effects of radiation therapy on the lung: radiologic appearances and differential diagnosis. Radiographics. 2004;24:985–997, discussion 98
  • Nozaki Y, Hasegawa Y, Takeuchi A, et al. Nitric oxide as an inflammatory mediator of radiation pneumonitis in rats. Am J Physiol. 1997;272:L651–8.
  • Daba MH, El-Tahir KE, Al-Arifi MN, et al. Drug-induced pulmonary fibrosis. Saudi Med J. 2004;25:700–706.
  • Raghu G, Rochwerg B, Zhang Y, et al. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update 2011 clinical practice guideline. Am J Respir Crit Care Med. 2015;192:e3–e19.
  • Rubin P, Johnston CJ, Williams JP, et al. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys. 1995;33:99–109.
  • Hallahan D, Kuchibhotla J and Wyble C. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res. 1996;56:5150–5155.
  • Provatopoulou X. Athanasiou E and Gounaris A. Predictive markers of radiation pneumonitis. Anticancer Res. 2008;28:2421–2432.
  • Wang S, Campbell J, Stenmark MH, et al. Plasma levels of IL-8 and TGF-beta1 predict radiation-induced lung toxicity in non-small cell lung cancer: a validation study. Int J Radiat Oncol Biol Phys. 2017;98:615–621.
  • Ghebre YT, Raghu G. Idiopathic pulmonary fibrosis: novel concepts of proton pump inhibitors as antifibrotic drugs. Am J Respir Crit Care Med. 2016;193:1345–1352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.