634
Views
34
CrossRef citations to date
0
Altmetric
Review

An update on current and future treatment options for chondrosarcoma

, , , & ORCID Icon
Pages 773-786 | Received 14 May 2019, Accepted 20 Aug 2019, Published online: 06 Sep 2019

References

  • Chen JC, Fong YC, Tang CH. Novel strategies for the treatment of chondrosarcomas: targeting integrins. Biomed Res Int. 2013;396839:2013.
  • Peterse EFP, van Den Akker B, Niessen B, et al. NAD synthesis pathway interference is a viable therapeutic strategy for chondrosarcoma. Mol Cancer Res. 2017;15(12):1714–1721.
  • Su C-M, Fong Y-C, Tang C-H. An overview of current and future treatment options for chondrosarcoma. Expert Opin Orphan Drugs. 2014;2(3):217–227.
  • Fromm J, Klein A, Baur-Melnyk A, et al. Survival and prognostic factors in conventional central chondrosarcoma. BMC Cancer. 2018;18(1):849.
  • Angelini A, Guerra G, Mavrogenis AF, et al. Clinical outcome of central conventional chondrosarcoma. J Surg Oncol. 2012;106(8):929–937.
  • Strotman PK, Reif TJ, Kliethermes SA, et al. Dedifferentiated chondrosarcoma: A survival analysis of 159 cases from the SEER database (2001–2011). J Surg Oncol. 2017;116(2):252–257.
  • Xu J, Li D, Xie L, et al. Mesenchymal chondrosarcoma of bone and soft tissue: a systematic review of 107 patients in the past 20 years. PloS One. 2015;10(4):e0122216.
  • Abbas K, Siddiqui AT. Evaluation of different treatment and management options for chondrosarcoma; the prognostic factors determining the outcome of the disease. Int J Surg Oncol. 2018;3(3):e58.
  • Gelderblom H, Hogendoorn PC, Dijkstra SD, et al. The clinical approach towards chondrosarcoma. Oncologist. 2008;13(3):320–329.
  • Frezza AM, Cesari M, Baumhoer D, et al. Mesenchymal chondrosarcoma: prognostic factors and outcome in 113 patients. A European musculoskeletal oncology society study. Eur J Cancer. 2015;51(3):374–381.
  • van Maldegem AM, Bovee JV, Gelderblom H. Comprehensive analysis of published studies involving systemic treatment for chondrosarcoma of bone between 2000 and 2013. Clinical sarcoma research, 4, 11 (2014).
  • Grignani G, Palmerini E, Stacchiotti S, et al. A phase 2 trial of imatinib mesylate in patients with recurrent nonresectable chondrosarcomas expressing platelet-derived growth factor receptor-alpha or -beta: an Italian Sarcoma group study. Cancer. 2011;117(4):826–831.
  • Schuetze SM, Bolejack V, Choy E, et al. Phase 2 study of dasatinib in patients with alveolar soft part sarcoma, chondrosarcoma, chordoma, epithelioid sarcoma, or solitary fibrous tumor. Cancer. 2017;123(1):90–97.
  • Bernstein-Molho R, Kollender Y, Issakov J, et al. Clinical activity of mTOR inhibition in combination with cyclophosphamide in the treatment of recurrent unresectable chondrosarcomas. Cancer Chemother Pharmacol. 2012;70(6):855–860.
  • Meijer D, Gelderblom H, Karperien M, et al. Expression of aromatase and estrogen receptor alpha in chondrosarcoma, but no beneficial effect of inhibiting estrogen signaling both in vitro and in vivo. Clin Sarcoma Res. 2011;1(1):5.
  • Zhu Z, Wang CP, Zhang YF, et al. MicroRNA-100 resensitizes resistant chondrosarcoma cells to cisplatin through direct targeting of mTOR. Asian Pac J Cancer Prev. 2014;15(2):917–923.
  • Huang K, Chen J, Yang MS, et al. Inhibition of Src by microRNA-23b increases the cisplatin sensitivity of chondrosarcoma cells. Cancer Biomarkers. 2017;18(3):231–239.
  • Fukumoto S, Kanbara K, Neo M. Synergistic anti-proliferative effects of mTOR and MEK inhibitors in high-grade chondrosarcoma cell line OUMS-27. Acta Histochem. 2018;120(2):142–150.
  • Li J, Wang L, Liu Z, et al. MicroRNA-494 inhibits cell proliferation and invasion of chondrosarcoma cells in vivo and in vitro by directly targeting SOX9. Oncotarget. 2015;6(28):26216–26229.
  • Jiang D, Zheng X, Shan W, et al. The overexpression of miR-30a affects cell proliferation of chondrosarcoma via targeting Runx2. Tumour Biol. 2016;37(5):5933–5940.
  • Lu Y, Li F, Xu T, et al. miRNA-497 negatively regulates the growth and motility of chondrosarcoma cells by targeting Cdc25A. Oncol Res. 2016;23(4):155–163.
  • Tang XY, Zheng W, Ding M, et al. miR-125b acts as a tumor suppressor in chondrosarcoma cells by the sensitization to doxorubicin through direct targeting the ErbB2-regulated glucose metabolism. Drug Des Devel Ther. 2016;10:571–583.
  • Song YD, Zhang KF, Liu D, et al. Inhibition of EGFR-induced glucose metabolism sensitizes chondrosarcoma cells to cisplatin. Tumour Biol. 2014;35(7):7017–7024.
  • Hua G, Liu Y, Li X, et al. Targeting glucose metabolism in chondrosarcoma cells enhances the sensitivity to doxorubicin through the inhibition of lactate dehydrogenase-A. Oncol Rep. 2014;31(6):2727–2734.
  • Lohberger B, Leithner A, Stuendl N, et al. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer. 2015;15:891.
  • Jiao G, Ren T, Guo W, et al. Arsenic trioxide inhibits growth of human chondrosarcoma cells through G2/M arrest and apoptosis as well as autophagy. Tumour Biol. 2015;36(5):3969–3977.
  • Ouyang Z, Wang S, Zeng M, et al. Therapeutic effect of palbociclib in chondrosarcoma: implication of cyclin-dependent kinase 4 as a potential target. Cell Commun Signal. 2019;17(1):17.
  • Xu W, Wan Q, Na S, et al. Suppressed invasive and migratory behaviors of SW1353 chondrosarcoma cells through the regulation of Src, Rac1 GTPase, and MMP13. Cell Signal. 2015;27(12):2332–2342.
  • Higuchi T, Takeuchi A, Munesue S, et al. Anti-tumor effects of a nonsteroidal anti-inflammatory drug zaltoprofen on chondrosarcoma via activating peroxisome proliferator-activated receptor gamma and suppressing matrix metalloproteinase-2 expression. Cancer Med. 2018;7(5):1944–1954.
  • Song J, Zhu J, Zhao Q, et al. Gefitinib causes growth arrest and inhibition of metastasis in human chondrosarcoma cells. J Buon. 2015;20(3):894–901.
  • Miladi I, Vivier M, Dauplat MM, et al. Doxycycline and its quaternary ammonium derivative for adjuvant therapies of chondrosarcoma. Cancer Chemother Pharmacol. 2017;80(3):517–526.
  • Su CM, Chen CY, Lu T, et al. A novel benzofuran derivative, ACDB, induces apoptosis of human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress. Oncotarget. 2016;7(50):83530–83543.
  • Wu MH, Lee CY, Huang TJ, et al. MLN4924, a protein neddylation inhibitor, suppresses the growth of human chondrosarcoma through inhibiting cell proliferation and inducing endoplasmic reticulum stress-related apoptosis. Int J Mol Sci. 2018;20:1.
  • de Jong Y, Monderer D, Brandinelli E, et al. Bcl-xl as the most promising Bcl-2 family member in targeted treatment of chondrosarcoma. Oncogenesis. 2018;7(9):74.
  • Zhu JX, Xiao JR. SF2523 inhibits human chondrosarcoma cell growth in vitro and in vivo. Biochem Biophys Res Commun. 2019;511(3):559–565.
  • Suijker J, Oosting J, Koornneef A, et al. Inhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines. Oncotarget. 2015;6(14):12505–12519.
  • Li L, Paz AC, Wilky BA, et al. Treatment with a small molecule mutant IDH1 inhibitor suppresses tumorigenic activity and decreases production of the oncometabolite 2-hydroxyglutarate in human chondrosarcoma cells. PloS One. 2015;10(9):e0133813.
  • Poster session presented at: 2017 ASCO Annual Meeting I; 2017 Jun 01-06; Chicago, IL, USA.
  • Fan B, Mellinghoff IK, Wen PY, et al. Clinical pharmacokinetics and pharmacodynamics of ivosidenib, an oral, targeted inhibitor of mutant IDH1, in patients with advanced solid tumors. Invest New Drugs. 2019 Apr 26. doi: 10.1007/s10637-019-00771-x. [Epub ahead of print].
  • Intlekofer AM, Shih AH, Wang B, et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature. 2018;559(7712):125–129.
  • Roberts A. Acquired clinical resistance to IDH2 inhibitors: leukemia finds multiple avenues for escape. The Hematologist: ASH News and Reports [Internet]. 2017 Nov-Dec, 15(6) cited 2019 Jul 14; Diffusion;[about 4 screens]. Available from: https://www.hematology.org/Thehematologist/Diffusion/9020.aspx
  • Paoluzzi L, Cacavio A, Ghesani M, et al. Response to anti-PD1 therapy with nivolumab in metastatic sarcomas. Clin Sarcoma Res. 2016;6:24.
  • Tawbi HA, Burgess M, Bolejack V, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017;18(11):1493–1501.
  • Wagner MJ, Ricciotti RW, Mantilla J, et al. Response to PD1 inhibition in conventional chondrosarcoma. J Immunother Cancer. 2018;6(1):94.
  • Papadopoulos KP, Romero RS, Gonzalez G, et al. Anti-hu-associated autoimmune limbic encephalitis in a patient with PD-1 inhibitor-responsive myxoid chondrosarcoma. Oncologist. 2018;23(1):118–120.
  • Zhu J, Gu J, Ma J, et al. Histone deacetylase inhibitors repress chondrosarcoma cell proliferation. J Buon. 2015;20(1):269–274.
  • Sheikh TN, Patwardhan P, Schwartz GK. Abstract A30: preclinical study of a combination of mocetinostat (HDAC inhibitor) and 5-AZA-dC (decitabine) in chondrosarcoma. Clin Cancer Res. 2018;24(2 Supplement):A30.
  • Tonak M, Becker M, Graf C, et al. HDAC inhibitor-loaded bone cement for advanced local treatment of osteosarcoma and chondrosarcoma. Anticancer Res. 2014;34(11):6459–6466.
  • Sun Y, Guo W, Ren T, et al. Gli1 inhibition suppressed cell growth and cell cycle progression and induced apoptosis as well as autophagy depending on ERK1/2 activity in human chondrosarcoma cells. Cell Death Dis. 2014;5:e979.
  • Campbell VT, Nadesan P, Ali SA, et al. Hedgehog pathway inhibition in chondrosarcoma using the smoothened inhibitor IPI-926 directly inhibits sarcoma cell growth. Mol Cancer Ther. 2014;13(5):1259–1269.
  • Hanna A, Shevde LA. Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment. Mol Cancer. 2016;15:24.
  • Xiang W, Jiang T, Guo F, et al. Hedgehog pathway inhibitor-4 suppresses malignant properties of chondrosarcoma cells by disturbing tumor ciliogenesis. Oncol Rep. 2014;32(4):1622–1630.
  • Infinity stops phase 2 trials of saridegib in chondrosarcoma and myelofibrosis [press release]. Business Wire, Cambridge, MA, USA, 18 Jun 2012. Available from: https://www.businesswire.com/news/home/20120618005411/en/Infinity-Stops-Phase-2-Trials-Saridegib-Chondrosarcoma
  • Gweon EJ, Kim SJ. Resveratrol attenuates matrix metalloproteinase-9 and -2-regulated differentiation of HTB94 chondrosarcoma cells through the p38 kinase and JNK pathways. Oncol Rep. 2014;32(1):71–78.
  • Dai Z, Lei P, Xie J, et al. Antitumor effect of resveratrol on chondrosarcoma cells via phosphoinositide 3-kinase/AKT and p38 mitogen-activated protein kinase pathways. Mol Med Rep. 2015;12(2):3151–3155.
  • Jin H, Chen H, Yu K, et al. Resveratrol inhibits phosphorylation within the signal transduction and activator of transcription 3 signaling pathway by activating sirtuin 1 in SW1353 chondrosarcoma cells. Mol Med Rep. 2016;14(3):2685–2690.
  • Chao SC, Chen YJ, Huang KH, et al. Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Sci Rep. 2017;7(1):3180.
  • Liang W, Li X, Li Y, et al. Gallic acid induces apoptosis and inhibits cell migration by upregulating miR-518b in SW1353 human chondrosarcoma cells. Int J Oncol. 2014;44(1):91–98.
  • Zhu M, Ying J, Lin C, et al. baicalin induces apoptotic death of human chondrosarcoma cells through mitochondrial dysfunction and downregulation of the PI3K/Akt/mTOR pathway. Planta Med. 2019;85(5):360–369.
  • Horng CT, Shieh PC, Tan TW, et al. Paeonol suppresses chondrosarcoma metastasis through up-regulation of miR-141 by modulating PKCdelta and c-Src signaling pathway. Int J Mol Sci. 2014;15(7):11760–11772.
  • Tan TW, Chou YE, Yang WH, et al. Naringin suppress chondrosarcoma migration through inhibition vascular adhesion molecule-1 expression by modulating miR-126. Int Immunopharmacol. 2014;22(1):107–114.
  • Eo SH, Kim JH, Kim SJ. Induction of G(2)/M arrest by berberine via activation of PI3K/Akt and p38 in human chondrosarcoma cell line. Oncol Res. 2014;22(3):147–157.
  • Zhang C, Yang L, Geng YD, et al. Icariside II, a natural mTOR inhibitor, disrupts aberrant energy homeostasis via suppressing mTORC1-4E-BP1 axis in sarcoma cells. Oncotarget. 2016;7(19):27819–27837.
  • Wu J, Ding M, Mao N, et al. Celastrol inhibits chondrosarcoma proliferation, migration and invasion through suppression CIP2A/c-MYC signaling pathway. J Pharmacol Sci. 2017;134(1):22–28.
  • Zhang HT, Yang J, Liang GH, et al. Andrographolide induces cell cycle arrest and apoptosis of chondrosarcoma by targeting TCF-1/SOX9 axis. J Cell Biochem. 2017;118(12):4575–4586.
  • Huang L, Cao J, Cao L, et al. Puerarin induces cell apoptosis in human chondrosarcoma cell line SW1353 via inhibition of the PI3K/Akt signaling pathway. Oncol Lett. 2017;14(5):5585–5590.
  • Kalinski T, Sel S, Hutten H, et al. Curcumin blocks interleukin-1 signaling in chondrosarcoma cells. PloS One. 2014;9(6):e99296.
  • Tsai CH, Tsai HC, Huang HN, et al. Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells. Oncotarget. 2015;6(1):258–270.
  • Su CM, Tang CH, Chi MJ, et al. Resistin facilitates VEGF-C-associated lymphangiogenesis by inhibiting miR-186 in human chondrosarcoma cells. Biochem Pharmacol. 2018;154:234–242.
  • Chen SS, Tang CH, Chie MJ, et al. Resistin facilitates VEGF-A-dependent angiogenesis by inhibiting miR-16-5p in human chondrosarcoma cells. Cell Death Dis. 2019;10(1):31.
  • Yang WH, Chen JC, Hsu KH, et al. Leptin increases VEGF expression and enhances angiogenesis in human chondrosarcoma cells. Biochim Biophys Acta. 2014;1840(12):3483–3493.
  • Yang WH, Chang AC, Wang SW, et al. Leptin promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-27b in human chondrosarcoma cells. Sci Rep. 2016;6:28647.
  • Lee HP, Lin CY, Shih JS, et al. Adiponectin promotes VEGF-A-dependent angiogenesis in human chondrosarcoma through PI3K, Akt, mTOR, and HIF-alpha pathway. Oncotarget. 2015;6(34):36746–36761.
  • Huang CY, Chang AC, Chen HT, et al. Adiponectin promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-27b through a CaMKII/AMPK/p38 signaling pathway in human chondrosarcoma cells. Clin Sci. 2016;130(17):1523–1533.
  • Chen PC, Cheng HC, Yang SF, et al. The CCN family proteins: modulators of bone development and novel targets in bone-associated tumors. Biomed Res Int. 2014;437096:2014.
  • Lin CY, Tzeng HE, Li TM, et al. WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis. Oncotarget. 2017;8(24):39571–39581.
  • Tzeng HE, Tang CH, Wu SH, et al. CCN6-mediated MMP-9 activation enhances metastatic potential of human chondrosarcoma. Cell Death Dis. 2018;9(10):955.
  • Liu GT, Chen HT, Tsou HK, et al. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells. Oncotarget. 2014;5(21):10718–10731.
  • Liu GT, Huang YL, Tzeng HE, et al. CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells. Cancer Lett. 2015;357(2):476–487.
  • Wang LH, Lin CY, Liu SC, et al. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells. Oncotarget. 2016;7(24):36896–36908.
  • Chen JC, Chen YJ, Lin CY, et al. Amphiregulin enhances alpha6beta1 integrin expression and cell motility in human chondrosarcoma cells through Ras/Raf/MEK/ERK/AP-1 pathway. Oncotarget. 2015;6(13):11434–11446.
  • Wang CQ, Huang YW, Wang SW, et al. Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCdelta pathway. Cancer Lett. 2017;385:261–270.
  • Huang YW, Tsai HC, Wang SW, et al. Amphiregulin promotes vascular endothelial growth factor-C expression and lymphangiogenesis through STAT3 activation in human chondrosarcoma cells. Cell Physiol Biochem. 2019;52(1):1–15.
  • Chen JC, Huang C, Lee IN, et al. Amphiregulin enhances cell migration and resistance to doxorubicin in chondrosarcoma cells through the MAPK pathway. Mol Carcinog. 2018;57(12):1816–1824.
  • Lin CY, Chen HJ, Li TM, et al. beta5 integrin up-regulation in brain-derived neurotrophic factor promotes cell motility in human chondrosarcoma. PloS One. 2013;8(7):e67990.
  • Lin CY, Chang SL, Fong YC, et al. Apoptosis signal-regulating kinase 1 is involved in brain-derived neurotrophic factor (BDNF)-enhanced cell motility and matrix metalloproteinase 1 expression in human chondrosarcoma cells. Int J Mol Sci. 2013;14(8):15459–15478.
  • Lin CY, Hung SY, Chen HT, et al. Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells. Biochem Pharmacol. 2014;91(4):522–533.
  • Lin CY, Wang SW, Chen YL, et al. Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells. Cell Death Dis. 2017;8(8):e2964.
  • Aili A, Chen Y, Zhang H. MicroRNA10b suppresses the migration and invasion of chondrosarcoma cells by targeting brainderived neurotrophic factor. Mol Med Rep. 2016;13(1):441–446.
  • Tzeng HE, Chen PC, Lin KW, et al. Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis. Clin Sci. 2015;129(2):147–158.
  • Tsai CH, Yang DY, Lin CY, et al. Sphingosine-1-phosphate suppresses chondrosarcoma metastasis by upregulation of tissue inhibitor of metalloproteinase 3 through suppressing miR-101 expression. Mol Oncol. 2017;11(10):1380–1398.
  • Wu MH, Huang PH, Hsieh M, et al. Endothelin-1 promotes epithelial-mesenchymal transition in human chondrosarcoma cells by repressing miR-300. Oncotarget. 2016;7(43):70232–70246.
  • Wu MH, Chen LM, Hsu HH, et al. Endothelin-1 enhances cell migration through COX-2 up-regulation in human chondrosarcoma. Biochim Biophys Acta. 2013;1830(6):3355–3364.
  • Wu MH, Huang CY, Lin JA, et al. Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells. Oncogene. 2014;33(13):1725–1735.
  • Chen JC, Yang ST, Lin CY, et al. BMP-7 enhances cell migration and alphavbeta3 integrin expression via a c-Src-dependent pathway in human chondrosarcoma cells. PloS One. 2014;9(11):e112636.
  • Boehme KA, Schleicher SB, Traub F, et al. A rare misfortune in aging human cartilage? the role of stem and progenitor cells in proliferation, malignant degeneration and therapeutic resistance. Int J Mol Sci. 2018;19:1.
  • Tsavaris O, Economopoulou P, Kotsantis I, et al. clinical benefit of pazopanib in a patient with metastatic chondrosarcoma: a case report and review of the literature. Front Oncol. 2018;8:45.
  • Jones RL, Katz D, Loggers ET, et al. Clinical benefit of antiangiogenic therapy in advanced and metastatic chondrosarcoma. Med Oncol. 2017;34(10):167.
  • Duffaud F, Mir O, Boudou-Rouquette P, et al. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2019;20(1):120–133.
  • Moroncini G, Maccaroni E, Fiordoliva I, et al. Developments in the management of advanced soft-tissue sarcoma - olaratumab in context. Onco Targets Ther. 2018;11:833–842.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.