369
Views
8
CrossRef citations to date
0
Altmetric
Review

Novel anticancer therapy in BCG unresponsive non-muscle-invasive bladder cancer

, , , &
Pages 965-983 | Received 21 Jun 2020, Accepted 03 Sep 2020, Published online: 20 Sep 2020

References

  • DeGeorge KC, Holt HR, Hodges SC. Bladder cancer: diagnosis and treatment. Am Fam Physician. 2017;96(8):507‐514.
  • Cumberbatch MGK, Noon AP. Epidemiology, aetiology and screening of bladder cancer. Transl Androl Urol. 2019;8(1):5‐11.
  • Un M, Trinh QD. Diagnosis and staging of bladder cancer. Hematol Oncol Clin North Am. 2015;29(2):205‐vii.
  • Cassell A, Yunusa B, Jalloh M, et al. Non-muscle invasive bladder cancer: a review of the current trend in Africa. World J Oncol. 2019;10(3):123‐131.
  • Sexton WJ, Wiegand LR, Correa JJ, et al. Bladder cancer: a review of non-muscle invasive disease. Cancer Control. 2010;17(4):256‐268.
  • Alhunaidi O, Zlotta AR. The use of intravesical BCG in urothelial carcinoma of the bladder. Ecancermedicalscience. 2019;13:905.
  • Moschini M, Zamboni S, Mattei A, et al. Bacillus Calmette-Guérin unresponsiveness in non-muscle-invasive bladder cancer patients: what the urologists should know. Minerva Urol Nefrol. 2019;71(1):17‐30.
  • Zlotta AR, Fleshner NE, Jewett MA. The management of BCG failure in non-muscle-invasive bladder cancer: an update. Can Urol Assoc J. 2009;3(6 Suppl 4):S199–S205.
  • Gual Frau J, Palou J, Rodríguez O, et al. Failure of Bacillus Calmette-Guérin therapy in non-muscle-invasive bladder cancer: definition and treatment options. Fracaso del tratamiento con Bacilo de Calmette-Guérin en cáncer de vejiga sin invasión muscular: definición y opciones de tratamiento. Arch Esp Urol. 2016;69(7):423–433.
  • Werntz RP, Adamic B, Steinberg GD. Emerging therapies in the management of high-risk non-muscle invasive bladder cancer (HRNMIBC). World J Urol. 2019;37(10):2031‐2040.
  • Meng MV, Gschwend JE, Shore N, et al. Emerging immunotherapy options for bacillus Calmette-Guérin unresponsive nonmuscle invasive bladder cancer. J Urol. 2019;202(6):1111‐1119.
  • Anastasiadis A, de Reijke TM. Best practice in the treatment of nonmuscle invasive bladder cancer. Ther Adv Urol. 2012;4(1):13‐32.
  • Taylor J, Becher E, Steinberg GD. Update on the guideline of guidelines: non-muscle-invasive bladder cancer. BJU Int. 2020;125(2):197‐205.
  • Soukup V, Čapoun O, Cohen D, et al. Risk stratification tools and prognostic models in non-muscle-invasive bladder cancer: a critical assessment from the European association of urology non-muscle-invasive bladder cancer guidelines panel. Eur Urol Focus. 2020;6(3):479‐489.
  • Isharwal S, Konety B. Non-muscle invasive bladder cancer risk stratification. Indian J Urol. 2015;31(4):289‐296.
  • Seo KW, Kim BH, Park CH, et al. The efficacy of the EORTC scoring system and risk tables for the prediction of recurrence and progression of non-muscle-invasive bladder cancer after intravesical bacillus calmette-guerin instillation. Korean J Urol. 2010;51(3):165‐170.
  • Fernandez-Gomez J, Madero R, Solsona E, et al. Predicting nonmuscle invasive bladder cancer recurrence and progression in patients treated with bacillus Calmette-Guerin: the CUETO scoring model. J Urol. 2009;182(5):2195‐2203.
  • Cambier S, Sylvester RJ, Collette L, et al. EORTC nomograms and risk groups for predicting recurrence, progression, and disease-specific and overall survival in non-muscle-invasive stage Ta-T1 urothelial bladder cancer patients treated with 1–3 years of maintenance bacillus Calmette-Guérin. Eur Urol. 2016;69(1):60‐69.
  • van Rhijn BW, Zuiverloon TC, Vis AN, et al. Molecular grade (FGFR3/MIB-1) and EORTC risk scores are predictive in primary non-muscle-invasive bladder cancer. Eur Urol. 2010;58(3):433‐441.
  • Passoni N, Gayed B, Kapur P, et al. Cell-cycle markers do not improve discrimination of EORTC and CUETO risk models in predicting recurrence and progression of non-muscle-invasive high-grade bladder cancer. Urol Oncol. 2016;34(11):485.e7‐485.e14.
  • Shiota M, Fujimoto N, Yamamoto Y, et al. Genome-wide association study of genetic variations associated with treatment failure after intravesical bacillus Calmette-Guérin therapy for non-muscle invasive bladder cancer [published online ahead of print, 2020 Mar 2]. Cancer Immunol Immunother. 2020;69:1155–1163.
  • Kamat AM, Li R, O’Donnell MA, et al. Predicting response to intravesical bacillus Calmette-Guérin immunotherapy: are we there yet? A systematic review. Eur Urol. 2018;73(5):738‐748.
  • Woldu SL, Bagrodia A, Lotan Y. Guideline of guidelines: non-muscle-invasive bladder cancer. BJU Int. 2017;119(3):371‐380.
  • Flaig TW, Spiess PE, Agarwal N, et al. Bladder cancer, version 3.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2020;18(3):329‐354.
  • Babjuk M, Burger M, Compérat EM, et al. European association of urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma In Situ) - 2019 update. Eur Urol. 2019;76(5):639‐657.
  • Lerner SP, Dinney C, Kamat A, et al. Clarification of bladder cancer disease states following treatment of patients with intravesical BCG. Bladder Cancer. 2015;1(1):29‐30.
  • Li R, Tabayoyong WB, Guo CC, et al. Prognostic implication of the united states food and drug administration-defined BCG-unresponsive disease. Eur Urol. 2019;75(1):8‐10.
  • Kamat AM, Sylvester RJ, Böhle A, et al. Definitions, end points, and clinical trial designs for non-muscle-invasive bladder cancer: recommendations from the international bladder cancer group. J Clin Oncol. 2016;34(16):1935‐1944.
  • Kamat AM, Lerner S, Black P, et al. Once BCG unresponsive, always BCG unresponsive: an open letter to the FDA to enhance recruitment into clinical trials in bladder cancer. Bladder Cancer. 2017;3(3):145‐146.
  • Kamat AM, Gontero P, Palou J. How should I manage a patient with tumor recurrence despite adequate bacille Calmette-Guérin? Eur Urol Oncol. 2020;3(2):252‐257.
  • Giannarini G, Birkhäuser FD, Recker F, et al. Bacillus Calmette-Guérin failure in patients with non-muscle-invasive urothelial carcinoma of the bladder may be due to the urologist’s failure to detect urothelial carcinoma of the upper urinary tract and urethra. Eur Urol. 2014;65(4):825‐831.
  • von Rundstedt FC, Lerner SP. Bacille-Calmette-Guerin non-responders: how to manage. Transl Androl Urol. 2015;4(3):244‐253.
  • Hassler MR, Shariat SF, Soria F. Salvage therapeutic strategies for bacillus Calmette-Guerin failure. Curr Opin Urol. 2019;29(3):239‐246.
  • Porten SP, Leapman MS, Greene KL. Intravesical chemotherapy in non-muscle-invasive bladder cancer. Indian J Urol. 2015;31(4):297‐303.
  • Williams SK, Hoenig DM, Ghavamian R, et al. Intravesical therapy for bladder cancer. Expert Opin Pharmacother. 2010;11(6):947‐958.
  • Skinner EC, Goldman B, Sakr WA, et al. SWOG S0353: phase II trial of intravesical gemcitabine in patients with nonmuscle invasive bladder cancer and recurrence after 2 prior courses of intravesical bacillus Calmette-Guérin. J Urol. 2013;190(4):1200‐1204.
  • Dalbagni G, Russo P, Sheinfeld J, et al. Phase I trial of intravesical gemcitabine in bacillus Calmette-Guérin-refractory transitional-cell carcinoma of the bladder. J Clin Oncol. 2002;20(15):3193‐3198.
  • Dalbagni G, Russo P, Bochner B, et al. Phase II trial of intravesical gemcitabine in bacille Calmette-Guérin-refractory transitional cell carcinoma of the bladder. J Clin Oncol. 2006;24(18):2729‐2734.
  • Bassi P, De Marco V, Tavolini IM, et al. Pharmacokinetic study of intravesical gemcitabine in carcinoma in situ of the bladder refractory to bacillus Calmette-Guérin therapy. Urol Int. 2005;75(4):309‐313.
  • Gacci M, Bartoletti R, Cai T, et al. Intravesical gemcitabine in BCG-refractory T1G3 transitional cell carcinoma of the bladder: a pilot study. Urol Int. 2006;76(2):106‐111.
  • Gunelli R, Bercovich E, Nanni O, et al. Activity of endovesical gemcitabine in BCG-refractory bladder cancer patients: a translational study. Br J Cancer. 2007;97(11):1499‐1504.
  • Mohanty NK, Nayak RL, Vasudeva P, et al. Intravesicle gemcitabine in management of BCG refractory superficial TCC of urinary bladder-our experience. Urol Oncol. 2008;26(6):616‐619.
  • Di Lorenzo G, Perdonà S, Damiano R, et al. Gemcitabine versus bacille Calmette-Guérin after initial bacille Calmette-Guérin failure in non-muscle-invasive bladder cancer: a multicenter prospective randomized trial. Cancer. 2010;116(8):1893‐1900.
  • Addeo R, Caraglia M, Bellini S, et al. Randomized phase III trial on gemcitabine versus mytomicin in recurrent superficial bladder cancer: evaluation of efficacy and tolerance. J Clin Oncol. 2010;28(4):543‐548.
  • Perdonà S, Di Lorenzo G, Cantiello F, et al. Is gemcitabine an option in BCG-refractory nonmuscle-invasive bladder cancer? A single-arm prospective trial. Anticancer Drugs. 2010;21(1):101‐106.
  • McKiernan JM, Masson P, Murphy AM, et al. Phase I trial of intravesical docetaxel in the management of superficial bladder cancer refractory to standard intravesical therapy. J Clin Oncol. 2006;24(19):3075‐3080.
  • Laudano MA, Barlow LJ, Murphy AM, et al. Long-term clinical outcomes of a phase I trial of intravesical docetaxel in the management of non-muscle-invasive bladder cancer refractory to standard intravesical therapy. Urology. 2010;75(1):134‐137.
  • Barlow LJ, McKiernan JM, Benson MC. The novel use of intravesical docetaxel for the treatment of non-muscle invasive bladder cancer refractory to BCG therapy: a single institution experience. World J Urol. 2009;27(3):331‐335.
  • Bassi PF, Volpe A, D’Agostino D, et al. Paclitaxel-hyaluronic acid for intravesical therapy of bacillus Calmette-Guérin refractory carcinoma in situ of the bladder: results of a phase I study. J Urol. 2011;185(2):445‐449.
  • McKiernan JM, Barlow LJ, Laudano MA, et al. A phase I trial of intravesical nanoparticle albumin-bound paclitaxel in the treatment of bacillus Calmette-Guérin refractory nonmuscle invasive bladder cancer. J Urol. 2011;186(2):448‐451.
  • McKiernan JM, Holder DD, Ghandour RA, et al. Phase II trial of intravesical nanoparticle albumin bound paclitaxel for the treatment of nonmuscle invasive urothelial carcinoma of the bladder after bacillus Calmette-Guérin treatment failure. J Urol. 2014;192(6):1633‐1638.
  • Dinney CP, Greenberg RE, Steinberg GD. Intravesical valrubicin in patients with bladder carcinoma in situ and contraindication to or failure after bacillus Calmette-Guérin. Urol Oncol. 2013;31(8):1635‐1642.
  • Luo Y, Chen X, Downs TM, et al. IFN-alpha 2B enhances Th1 cytokine responses in bladder cancer patients receiving Mycobacterium bovis bacillus Calmette-Guérin immunotherapy. J Immunol. 1999;162(4):2399‐2405.
  • Joudi FN, Smith BJ, O’Donnell MA, et al. Final results from a national multicenter phase II trial of combination bacillus Calmette-Guérin plus interferon alpha-2B for reducing recurrence of superficial bladder cancer. Urol Oncol. 2006;24(4):344‐348.
  • Nepple KG, Lightfoot AJ, Rosevear HM, et al. Bladder cancer genitourinary oncology study group. Bacillus Calmette-Guérin with or without interferon α-2b and megadose versus recommended daily allowance vitamins during induction and maintenance intravesical treatment of nonmuscle invasive bladder cancer. J Urol. 2010;184(5):1915‐1919.
  • Rosevear HM, Lightfoot AJ, Birusingh KK, et al. Factors affecting response to bacillus Calmette-Guérin plus interferon for urothelial carcinoma in situ. J Urol. 2011;186(3):817‐823.
  • Hadaschik BA, Ter Borg MG, Jackson J, et al. Paclitaxel and cisplatin as intravesical agents against non-muscle-invasive bladder cancer. BJU Int. 2008;101(11):1347‐1355.
  • Chen CH, Yang HJ, Shun CT, et al. A cocktail regimen of intravesical mitomycin-C, doxorubicin, and cisplatin (MDP) for non-muscle-invasive bladder cancer. Urol Oncol. 2012;30(4):421‐427.
  • Breyer BN, Whitson JM, Carroll PR, et al. Sequential intravesical gemcitabine and mitomycin C chemotherapy regimen in patients with non-muscle invasive bladder cancer. Urol Oncol. 2010;28(5):510‐514.
  • Huang D, Jin YH, Weng H, et al. Combination of intravesical Bacille Calmette-Guérin and chemotherapy vs. bacille Calmette-Guérin alone in non-muscle invasive bladder cancer: a meta-analysis. Front Oncol. 2019;9:121.
  • Tan WS, Kelly JD. Intravesical device-assisted therapies for non-muscle-invasive bladder cancer. Nat Rev Urol. 2018;15(11):667‐685.
  • Liu K, Zhu J, Song YX, et al. Thermal intravesical chemotherapy reduce recurrence rate for non-muscle invasive bladder cancer patients: a meta-analysis. Front Oncol. 2020;10:29.
  • Liem EI, Crezee H, de la Rosette JJ, et al. Chemohyperthermia in non-muscle-invasive bladder cancer: an overview of the literature and recommendations. Int J Hyperthermia. 2016;32:363–373.
  • Tan WS, Panchal A, Buckley L, et al. Radiofrequency-induced thermo-chemotherapy effect versus a second course of bacillus Calmette-Guérin or institutional standard in patients with recurrence of non-muscle-invasive bladder cancer following induction or maintenance bacillus Calmette-Guérin Therapy (HYMN): a phase III, open-label, randomised controlled trial. Eur Urol. 2019;75(1):63‐71.
  • Alfred Witjes J, Hendricksen K, Gofrit O, et al. Intravesical hyperthermia and mitomycin-C for carcinoma in situ of the urinary bladder: experience of the European Synergo working party. World J Urol. 2009;27(3):319‐324.
  • Lammers RJ, Witjes JA, Inman BA, et al. The role of a combined regimen with intravesical chemotherapy and hyperthermia in the management of non-muscle-invasive bladder cancer: a systematic review. Eur Urol. 2011;60(1):81‐93.
  • Volpe A, Racioppi M, Bongiovanni L, et al. Thermochemotherapy for non-muscle-invasive bladder cancer: is there a chance to avoid early cystectomy? Urol Int. 2012;89(3):311‐318.
  • de Jong JJ, Hendricksen K, Rosier M, et al. Hyperthermic intravesical chemotherapy for BCG unresponsive non-muscle invasive bladder cancer patients. Bladder Cancer. 2018;4(4):395‐401.
  • Racioppi M, Di Gianfrancesco L, Ragonese M, et al. ElectroMotive drug administration (EMDA) of Mitomycin C as first-line salvage therapy in high risk “BCG failure” non muscle invasive bladder cancer: 3 years follow-up outcomes. BMC Cancer. 2018;18(1):1224.
  • Di Stasi SM, Giannantoni A, Stephen RL, et al. Intravesical electromotive mitomycin C versus passive transport mitomycin C for high risk superficial bladder cancer: a prospective randomized study. J Urol. 2003;170(3):777‐782.
  • Manyak MJ, Ogan K. Photodynamic therapy for refractory superficial bladder cancer: long-term clinical outcomes of single treatment using intravesical diffusion medium. J Endourol. 2003;17(8):633‐639.
  • Bader MJ, Stepp H, Beyer W, et al. Photodynamic therapy of bladder cancer - a phase I study using hexaminolevulinate (HAL). Urol Oncol. 2013;31(7):1178‐1183.
  • Waidelich R, Stepp H, Baumgartner R, et al. Clinical experience with 5-aminolevulinic acid and photodynamic therapy for refractory superficial bladder cancer. J Urol. 2001;165(6 Pt 1):1904‐1907.
  • Farina MS, Lundgren KT, Bellmunt J. Immunotherapy in urothelial cancer: recent results and future perspectives. Drugs. 2017;77(10):1077‐1089.
  • Hurwitz AA, Watkins SK. Immune suppression in the tumor microenvironment: a role for dendritic cell-mediated tolerization of T cells. Cancer Immunol Immunother. 2012;61(2):289‐293.
  • Fu C, Jiang A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front Immunol. 2018;9:3059.
  • Chen Y, Song Y, Du W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci. 2019;26(1):78.
  • Chi LJ, Lu HT, Li GL, et al. Involvement of T helper type 17 and regulatory T cell activity in tumour immunology of bladder carcinoma. Clin Exp Immunol. 2010;161(3):480‐489.
  • Knochelmann HM, Dwyer CJ, Bailey SR, et al. When worlds collide: th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol. 2018;15(5):458–469.
  • Mukherjee N, Ji N, Hurez V, et al. Intratumoral CD56bright natural killer cells are associated with improved survival in bladder cancer. Oncotarget. Published 2018 Nov 23;9(92):36492‐36502.
  • Zhou J, Tang Z, Gao S, et al. Tumor-associated macrophages: recent insights and therapies. Front Oncol. 2020;10:188.
  • Bohner P, Chevalier MF, Cesson V, et al. Double positive CD4+CD8+ T cells are enriched in urological cancers and favor T helper-2 polarization. Front Immunol. 2019;10:622.
  • Joseph M, Enting D. Immune responses in bladder cancer-role of immune cell populations, prognostic factors and therapeutic implications. Front Oncol. 2019;9:1270.
  • Crispen PL, Kusmartsev S. Mechanisms of immune evasion in bladder cancer. Cancer Immunol Immunother. 2020;69(1):3‐14.
  • Barclay J, Creswell J, León J. Cancer immunotherapy and the PD-1/PD-L1 checkpoint pathway. Inmunoterapia contra el cáncer y la ruta del punto de control PD-1/PD-L1. Arch Esp Urol. 2018;71(4):393‐399.
  • Francisco LM, Sage PT, Sharpe AH, et al. pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219‐242.
  • Thibult ML, Mamessier E, Gertner-Dardenne J, et al. PD-1 is a novel regulator of human B-cell activation. Int Immunol. 2013;25(2):129‐137.
  • Nakanishi J, Wada Y, Matsumoto K, et al. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother. 2007;56(8):1173‐1182.
  • Fukumoto K, Kikuchi E, Mikami S, et al. Clinical role of programmed cell death-1 expression in patients with non-muscle-invasive bladder cancer recurring after initial bacillus Calmette-Guérin therapy. Ann Surg Oncol. 2018;25(8):2484‐2491.
  • Inman BA, Sebo TJ, Frigola X, et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer. 2007;109(8):1499‐1505.
  • Biot C, Rentsch CA, Gsponer JR, et al. Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Sci Transl Med. 2012;4(137):137ra72.
  • Pichler R, Fritz J, Zavadil C, et al. Tumor-infiltrating immune cell subpopulations influence the oncologic outcome after intravesical bacillus Calmette-Guérin therapy in bladder cancer. Oncotarget. 2016;7(26):39916‐39930.
  • Miyake M, Tatsumi Y, Gotoh D, et al. Regulatory T cells and tumor-associated macrophages in the tumor microenvironment in non-muscle invasive bladder cancer treated with intravesical bacille Calmette-Guérin: a long-term follow-up study of a Japanese cohort. Int J Mol Sci. 2017;18(10):2186.
  • Stenehjem DD, Tran D, Nkrumah MA, et al. PD1/PDL1 inhibitors for the treatment of advanced urothelial bladder cancer. Onco Targets Ther. Published 2018 Sep 19;11:5973‐5989.
  • Balar AV, Kulkarni GS, Uchio EM, et al. Keynote 057: phase II trial of pembrolizumab (pembro) for patients (pts) with high-risk (HR) nonmuscle invasive bladder cancer (NMIBC) unresponsive to bacillus calmette-guerin (BCG). J Clin Oncol. 2019;37:350.
  • Merck Sharp & Dohme Corp. Efficacy and safety of pembrolizumab (MK-3475) in combination with bacillus Calmette-Guerin (BCG) in high-risk non-muscle invasive bladder cancer (HR NMIBC) (MK-3475-676/KEYNOTE-676). NLM identifier: NCT03711032. [ cited 2020 May 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT03711032
  • University of Oxford. Pembrolizumab in intermediate risk recurrent non-muscle invasive bladder cancer (NMIBC) (PemBla). NLM identifier: NCT03167151. [ cited 2020 May 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT03167151
  • National Cancer Institute (NCI). Atezolizumab in treating patients with recurrent BCG-unresponsive non-muscle invasive bladder cancer. NLM identifier: NCT02844816. [ cited 2020 May 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT02844816
  • Roche H-L. Safety and pharmacology study of atezolizumab alone and in combination with bacille Calmette-Guérin (BCG) in high-risk non-muscle-invasive bladder cancer (NMIBC) participants. NLM identifier: NCT02792192. [ cited 2020 May 29]. Available from: https://clinicaltrials.gov/ct2/show/NCT02792192
  • Lee Moffitt H Cancer center and research institute. Phase 2 durvalumab (Medi4736) for bacillus calmette-guérin (BCG) refractory urothelial carcinoma in situ of the bladder. NLM identifier: NCT02901548. [ cited 2020 May 29]. Available from: https://clinicaltrials.gov/ct2/show/NCT02901548
  • Hellenic GenitoUrinary Cancer Group. Efficacy of durvalumab in non-muscle-invasive bladder cancer. NLM identifier: NCT03759496. [ cited 2020 May 29]. Available from: https://clinicaltrials.gov/ct2/show/NCT03759496
  • Noah Hahn MD. ADAPT-BLADDER: modern immunotherapy in BCG-relapsing urothelial carcinoma of the bladder. NLM identifier: NCT03317158. [ cited 2020 May 29]. Available from: https://clinicaltrials.gov/ct2/show/NCT03317158
  • Squibb B-M. A study of nivolumab or nivolumab plus experimental medication BMS-986205 with or without bacillus calumette-guerin (BCG) in BCG unresponsive bladder cancer that has not invaded into the muscle wall of the bladder (CheckMate 9UT). NLM identifier: NCT03519256. [ cited 2020 May 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT03519256
  • University of Oklahoma. Avelumab plus bacille calmette-guerin (BCG) in patients with non-muscle invasive bladder cancer. NLM identifier: NCT03892642. [ cited 2020 May 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT03892642
  • Institut Paoli-Calmettes. Bladder PREserVation by radiotherapy and immunotherapy in BCG unresponsive non-muscle invasive bladder cancer (PREVERT). NLM identifier: NCT03950362. [ cited 2020 May 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT03950362
  • Yentz S, Smith D. Indoleamine 2,3-dioxygenase (IDO) inhibition as a strategy to augment cancer immunotherapy. BioDrugs. 2018;32(4):311‐317.
  • Prendergast GC, Malachowski WP, DuHadaway JB, et al. Discovery of IDO1 inhibitors: from bench to bedside. Cancer Res. 2017;77(24):6795‐6811.
  • Prendergast GC, Malachowski WJ, Mondal A, et al. Indoleamine 2,3-dioxygenase and its therapeutic inhibition in cancer. Int Rev Cell Mol Biol. 2018;336:175‐203.
  • Moon YW, Hajjar J, Hwu P, et al. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J Immunother Cancer. 2015;3:51.
  • Zhang W, Zhang J, Zhang Z, et al. Overexpression of indoleamine 2,3-dioxygenase 1 promotes epithelial-mesenchymal transition by activation of the IL-6/STAT3/PD-L1 pathway in bladder cancer. Transl Oncol. 2019;12(3):485‐492.
  • Hornyák L, Dobos N, Koncz G, et al. The role of indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy. Front Immunol. 2018;9:151.
  • Mitchell TC, Hamid O, Smith DC, et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). J Clin Oncol. 2018;36(32):3223‐3230.
  • Fishman MN, Thompson JA, Pennock GK, et al. Phase I trial of ALT-801, an interleukin-2/T-cell receptor fusion protein targeting p53 (aa264-272)/HLA-A*0201 complex, in patients with advanced malignancies. Clin Cancer Res. 2011;17(24):7765‐7775.
  • Wen J, Zhu X, Liu B, et al. Targeting activity of a TCR/IL-2 fusion protein against established tumors. Cancer Immunol Immunother. 2008;57(12):1781‐1794.
  • Altor BioScience. A study of ALT-801 in patients with bacillus calmette-guerin (BCG) failure non-muscle invasive bladder cancer. NLM identifier: NCT01625260. [ cited 2020 May 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT01625260
  • Kim PS, Kwilas AR, Xu W, et al. IL-15 superagonist/IL-15RαSushi-Fc fusion complex (IL-15SA/IL-15RαSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget. 2016;7(13):16130‐16145.
  • Gomes-Giacoia E, Miyake M, Goodison S, et al. Intravesical ALT-803 and BCG treatment reduces tumor burden in a carcinogen induced bladder cancer rat model; a role for cytokine production and NK cell expansion. PLoS One. 2014;9(6):e96705.
  • Altor BioScience. QUILT-3.032: A multicenter clinical trial of intravesical bacillus calmette-guerin (BCG) in combination with ALT-803 in patients with BCG unresponsive high grade non-muscle invasive bladder cancer. NLM identifier: NCT03022825. [ cited 2020 May 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT03022825
  • Lee J, Soon-Shiong P, Chamie K, et al. Early phase 2 clinical results of IL-15RaFc superagonist N-803 with BCG in BCG-unresponsive non-muscle invasive bladder cancer (NMIBC) patients demonstrating 86% CR of carcinoma in situ (CIS) (abstract P712). J Immunother Cancer Suppl. 2018;6:117.
  • Madan RA, Arlen PM, Gulley JLPAN-VAC-VF. poxviral-based vaccine therapy targeting CEA and MUC1 in carcinoma. Expert Opin Biol Ther. 2007;7(4):543‐554.
  • Gulley JL, Arlen PM, Tsang KY, et al. Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin Cancer Res. 2008;14(10):3060‐3069.
  • Weintraub MD, Li QQ, Agarwal PK. Advances in intravesical therapy for the treatment of non-muscle invasive bladder cancer (Review). Mol Clin Oncol. 2014;2(5):656‐660.
  • Cardillo MR, Castagna G, Memeo L, et al. Epidermal growth factor receptor, MUC-1 and MUC-2 in bladder cancer. J Exp Clin Cancer Res. 2000;19(2):225‐233.
  • National Cancer Institute (NCI). Study of bacillus calmette-guerin (BCG) combined with PANVAC versus BCG alone in adults with high grade non-muscle invasive bladder cancer who failed at least 1 course of BCG. NLM identifier: NCT02015104. [ cited 2020 May 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT02015104
  • Howells A, Marelli G, Lemoine NR, et al. Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol. 2017;7:195.
  • Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy [published correction appears in cancer immunol res. 2014 Jul;2(7):699]. Cancer Immunol Res. 2014;2(4):295‐300.
  • Benedict WF, Tao Z, Kim CS, et al. Intravesical Ad-IFNalpha causes marked regression of human bladder cancer growing orthotopically in nude mice and overcomes resistance to IFN-alpha protein. Mol Ther. 2004;10(3):525‐532.
  • Dinney CP, Fisher MB, Navai N, et al. Phase I trial of intravesical recombinant adenovirus mediated interferon-α2b formulated in Syn3 for bacillus calmette-guérin failures in nonmuscle invasive bladder cancer. J Urol. 2013;190(3):850‐856.
  • Navai N, Benedict WF, Zhang G, et al. Phase 1b trial to evaluate tissue response to a second dose of intravesical recombinant adenoviral interferon α2b formulated in Syn3 for failures of bacillus calmette-guerin (BCG) therapy in nonmuscle invasive bladder cancer. Ann Surg Oncol. 2016;23(12):4110‐4114.
  • Shore ND, Boorjian SA, Canter DJ, et al. Intravesical rAd-IFNα/Syn3 for patients with high-grade, bacillus calmette-guerin-refractory or relapsed non-muscle-invasive bladder cancer: a phase ii randomized study [published correction appears in J Clin Oncol. 2019 Aug 20;37(24):2187]. J Clin Oncol. 2017;35(30):3410–3416.
  • FKD Therapies Oy. INSTILADRIN® in patients with bacillus calmette-guerin (BCG) unresponsive non-muscle invasive bladder cancer (NMIBC). NLM identifier: NCT02773849. [ cited 2020 May 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT02773849
  • Potts KG, Hitt MM, Moore RB. Oncolytic viruses in the treatment of bladder cancer. Adv Urol. 2012;2012:404581.
  • Ramesh N, Ge Y, Ennist DL, et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor–armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res. 2006;12(1):305‐313.
  • Burke JM, Lamm DL, Meng MV, et al. A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol. 2012;188(6):2391‐2397.
  • Packiam VT, Lamm DL, Barocas DA, et al. An open label, single-arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG-unresponsive non-muscle-invasive bladder cancer: interim results. Urol Oncol. 2018;36(10):440‐447.
  • Sverrisson EF, Espiritu PN, Spiess PE. New therapeutic targets in the management of urothelial carcinoma of the bladder. Res Rep Urol. 2013;5:53‐65.
  • Kowalski M, Entwistle J, Cizeau J, et al. A phase I study of an intravesically administered immunotoxin targeting EpCAM for the treatment of nonmuscle-invasive bladder cancer in BCGrefractory and BCG-intolerant patients. Drug Des Devel Ther. 2010;4:313‐320.
  • Kowalski M, Guindon J, Brazas L, et al. A phase II study of oportuzumab monatox: an immunotoxin therapy for patients with noninvasive urothelial carcinoma in situ previously treated with bacillus Calmette-Guérin. J Urol. 2012;188(5):1712‐1718.
  • Viventia Bio. Vicinium treatment for subjects with non-muscle invasive bladder cancer previously treated with BCG. NLM identifier: NCT03258593. [ cited 2020 June 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT02449239
  • National Cancer Institute (NCI). Durvalumab and vicinium in subjects with high-grade non-muscle-invasive bladder cancer previously treated with bacillus calmette-guerin (BCG). NLM identifier: NCT03258593. [ cited 2020 June 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT03258593
  • Tian T, Li X, Zhang J. mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int J Mol Sci. 2019;20(3):755.
  • Douglass L, Schoenberg M. The future of intravesical drug delivery for non-muscle invasive bladder cancer. Bladder Cancer. 2016;2(3):285‐292.
  • Aadi LLC Phase 1/2 study of ABI-009 in nonmuscle invasive bladder cancer. NLM identifier: NCT02009332. [ cited 2020 June 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT02009332
  • Dalbagni G, Benfante N, Sjoberg DD, et al. Single arm phase I/II study of everolimus and intravesical gemcitabine in patients with primary or secondary carcinoma In Situ of the bladder who failed bacillus calmette guerin (NCT01259063). Bladder Cancer. 2017;3(2):113‐119.
  • Junker K, van Oers JM, Zwarthoff EC, et al. Fibroblast growth factor receptor 3 mutations in bladder tumors correlate with low frequency of chromosome alterations. Neoplasia. 2008;10(1):1‐7.
  • Hahn NM, Bivalacqua TJ, Ross AE, et al. A phase II trial of dovitinib in BCG-unresponsive urothelial carcinoma with FGFR3 mutations or overexpression: hoosier cancer research network trial HCRN 12-157. Clin Cancer Res. 2017;23(12):3003‐3011.
  • Noguera-Ortega E, Secanella-Fandos S, Eraña H, et al. Nonpathogenic mycobacterium brumae inhibits bladder cancer growth in vitro, ex vivo, and in vivo. Eur Urol Focus. 2016;2(1):67–76.
  • Noguera-Ortega E, Rabanal RM, Gómez-Mora E, et al. Intravesical mycobacterium brumae triggers both local and systemic immunotherapeutic responses against bladder cancer in mice. Sci Rep. 2018;8(1):15102.
  • Noguera-Ortega E, Blanco-Cabra N, Rabanal RM, et al. Mycobacteria emulsified in olive oil-in-water trigger a robust immune response in bladder cancer treatment. Sci Rep. 2016;6:27232.
  • Morales A, Herr H, Steinberg G, et al. Efficacy and safety of MCNA in patients with nonmuscle invasive bladder cancer at high risk for recurrence and progression after failed treatment with bacillus Calmette-Guérin. J Urol. 2015;193(4):1135–1143.
  • Li R, Amrhein J, Cohen Z, et al. Efficacy of mycobacterium phlei cell wall-nucleic acid complex (MCNA) in BCG-unresponsive patients. Bladder Cancer. 2017;3(1):65–71.
  • Domingos-Pereira S, Hojeij R, Reggi E, et al. Local Salmonella immunostimulation recruits vaccine-specific CD8 T cells and increases regression of bladder tumor. Oncoimmunology. 2015;4(7):e1016697.
  • Domingos-Pereira S, Cesson V, Chevalier MF, et al. Preclinical efficacy and safety of the Ty21a vaccine strain for intravesical immunotherapy of non-muscle-invasive bladder cancer. Oncoimmunology. 2016;6(1):e1265720.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.