594
Views
8
CrossRef citations to date
0
Altmetric
Review

Apoferritin: a potential nanocarrier for cancer imaging and drug delivery

, , &
Pages 901-913 | Received 03 Nov 2020, Accepted 10 Mar 2021, Published online: 12 Apr 2021

References

  • Laura J-A, Brenda Vianey G-B, Enrique M-A, et al. Polymer-based drug delivery systems, development and pre-clinical status. Curr Pharm Des. 2016;22(19):2886–2903
  • Ahmadi A, Arami S. Potential applications of nanoshells in biomedical sciences. J Drug Target. 2014;22(3):175–190.
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.
  • Lynch I, Salvati A, Dawson KA. What does the cell see? Nat Nanotechnol. 2009;4(9):546–547.
  • Liang R, Wei M, Evans DG, et al. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem Commun. 2014;50(91):14071–14081
  • Gomhor J. AH, Kashanian S, Rafipour R. A review on targeting nanoparticles for breast cancer. Curr Pharm Biotechnol. 2019;20(13):1087-1107.
  • Hofmann C, Duerkop A, Baeumner AJ. Nanocontainers for analytical applications. Angew Chem Int Ed. 2019;58(37):12840–12860
  • Dostalova S, Vasickova K, Hynek D, et al. Apoferritin as an ubiquitous nanocarrier with excellent shelf life. Int J Nanomedicine. 2017;12:2265.
  • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–782.
  • Iskandar F. Nanoparticle processing for optical applications–a review. Adv Powder Technol. 2009;20(4):283–292.
  • Alkhateeb AA, Connor JR. The significance of ferritin in cancer: anti-oxidation, inflammation and tumorigenesis. Biochim Biophys Acta (BBA)-Rev Cancer. 2013;1836(2):245–254.
  • Wang W, Knovich MA, Coffman LG, et al. Serum ferritin: past, present and future. Biochim Biophys Acta. 2010;1800(8):760–769
  • Bellini M, Mazzucchelli S, Galbiati E, et al. Protein nanocages for self-triggered nuclear delivery of DNA-targeted chemotherapeutics in cancer cells. J Control Release. 2014;196:184–196.
  • Ruozi B, Veratti P, Vandelli MA, et al. Apoferritin nanocage as streptomycin drug reservoir: technological optimization of a new drug delivery system. Int J Pharm. 2017;518(1–2):281–288
  • Valle-Delgado JJ, Molina-Bolívar JA, Galisteo-González F, et al. Existence of hydration forces in the interaction between apoferritin molecules adsorbed on silica surfaces. Langmuir. 2005;21(21):9544–9554
  • Surguladze N, Patton S, Cozzi A, et al. Characterization of nuclear ferritin and mechanism of translocation. Biochem J. 2005;388(3):731–740
  • Li L, Fang CJ, Ryan JC, et al. Binding and uptake of h-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci. 2010;107(8):3505–3510
  • Fan K, Xi J, Fan L, et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun. 2018;9(1): 1440
  • Damiani V, Falvo E, Fracasso G, et al. Therapeutic efficacy of the novel stimuli-sensitive nano-ferritins containing doxorubicin in a head and neck cancer model. Int J Mol Sci. 2017;18(7):1555
  • Falvo E, Malagrinò F, Arcovito A, et al. The presence of glutamate residues on the pas sequence of the stimuli-sensitive nano-ferritin improves in vivo biodistribution and mitoxantrone encapsulation homogeneity. J Control Release. 2018;275:177–185.
  • Pan X, Su N, Li J, et al. Tetralysine modified h-chain apoferritin mediated nucleus delivery of chemotherapy drugs synchronized with passive diffusion. J Drug Delivery Sci Technol. 2021;61:102132.
  • Duclairoir C, Orecchioni A, Depraetere P, et al. Α-tocopherol encapsulation and in vitro release from wheat gliadin nanoparticles. J Microencapsulation. 2002;19(1):53–60
  • Langer K, Balthasar S, Vogel V, et al. Optimization of the preparation process for human serum albumin (hsa) nanoparticles. Int J Pharm. 2003;257(1–2):169–180
  • Steinhauser IM, Langer K, Strebhardt KM, et al. Effect of trastuzumab-modified antisense oligonucleotide-loaded human serum albumin nanoparticles prepared by heat denaturation. Biomaterials. 2008;29(29):4022–4028
  • Breen AF, Wells G, Turyanska L, et al. Development of novel apoferritin formulations for antitumour benzothiazoles. Cancer Rep. 2019;2(4):e1155.
  • Jutz GN, Van Rijn P, Santos MB, et al. Ferritin: a versatile building block for bionanotechnology. Chem Rev. 2015;115(4):1653–1701.
  • Tan T, Wang Y, Wang H, et al. Apoferritin nanocages loading mertansine enable effective eradiation of cancer stem-like cells in vitro. Int J Pharm. 2018;553(1–2):201–209
  • Pandolfi L, Bellini M, Vanna R, et al. H-ferritin enriches the curcumin uptake and improves the therapeutic efficacy in triple negative breast cancer cells. Biomacromolecules. 2017;18(10):3318–3330
  • Du B, Jia S, Wang Q, et al. A self-targeting, dual ros/ph-responsive apoferritin nanocage for spatiotemporally controlled drug delivery to breast cancer. Biomacromolecules. 2018;19(3):1026–1036
  • Mazzucchelli S, Truffi M, Baccarini F, et al. H-ferritin-nanocaged olaparib: a promising choice for both brca-mutated and sporadic triple negative breast cancer. Sci Rep. 2017;7(1):1–15.
  • Luo Y, Wang X, Du D, et al. Hyaluronic acid-conjugated apoferritin nanocages for lung cancer targeted drug delivery. Biomater Sci. 2015;3(10):1386–1394
  • Molino NM, Wang S-W. Caged protein nanoparticles for drug delivery. Curr Opin Biotechnol. 2014;28:75–82.
  • Tacchini L, Bianchi L, Bernelli-Zazzera A, et al. Transferrin receptor induction by hypoxia hif-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem. 1999;274(34):24142–24146
  • Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012;1820(3):291–317
  • Ghosh S, Mohapatra S, Thomas A, et al. Apoferritin nanocage delivers combination of microtubule and nucleus targeting anticancer drugs. ACS Appl Mater Interfaces. 2016;8(45):30824–30832
  • Chen Z, Zhai M, Xie X, et al. Apoferritin nanocage for brain targeted doxorubicin delivery. Mol Pharm. 2017;14(9):3087–3097
  • Li M, Wu D, Chen Y, et al. Apoferritin nanocages with au nanoshell coating as drug carrier for multistimuli-responsive drug release. Mater Sci Eng C Mater Biol Appl. 2019;95:11–18.
  • Lin C-Y, Javadi M, Belnap DM, et al. Ultrasound sensitive eliposomes containing doxorubicin for drug targeting therapy. Nanomedicine. 2014;10(1):67–76
  • Du J, Lane LA, Nie S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release. 2015;219:205–214.
  • Huang P, Rong P, Jin A, et al. Dye‐loaded ferritin nanocages for multimodal imaging and photothermal therapy. Adv Mater. 2014;26(37):6401–6408
  • Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation. IUBMB Life. 2017;69(6):414–422.
  • Kidane TZ, Sauble E, Linder MC. Release of iron from ferritin requires lysosomal activity. Am J Physiol Cell Physiol. 2006;291(3):C445–C455.
  • Simsek E, Kilic MA. Magic ferritin: a novel chemotherapeutic encapsulation bullet. J Magn Magn Mater. 2005;293(1):509–513.
  • Chiou B, Connor JR. Emerging and dynamic biomedical uses of ferritin. Pharmaceuticals. 2018;11(4):124.
  • Fan K, Cao C, Pan Y, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol. 2012;7(7):459–464
  • Truffi M, Fiandra L, Sorrentino L, et al. Ferritin nanocages: a biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol Res. 2016;107:57–65.
  • Ahmadi A, Hosseini-Nami S, Abed Z, et al. Recent advances in ultrasound-triggered drug delivery through lipid-based nanomaterials. Drug Discov Today. 2020;25(12):2182–2200
  • He L, Duan Y, Feng J, et al. Apoferritin-based tunable nano-indicator for intracellular ph sensing: regulating response performances and minimizing effects of system fluctuations. Sens Actuators B Chem. 2020;323:128661.
  • Cai Y, Wang Y, Zhang T, et al. Gadolinium-labeled ferritin nanoparticles as t 1 contrast agents for magnetic resonance imaging of tumors. ACS Appl Nano Mater. 2020;3(9):8771–8783
  • Bitonto V, Alberti D, Ruiu R, et al. L-ferritin: a theranostic agent of natural origin for MRI visualization and treatment of breast cancer. J Control Release. 2020;319:300–310.
  • Bellini M, Riva B, Tinelli V, et al. Engineered ferritin nanoparticles for the bioluminescence tracking of nanodrug delivery in cancer. Small. 2020;16(39): 2001450
  • Enrique MA, Mariana OR, Mirshojaei SF, et al. Multifunctional radiolabeled nanoparticles: strategies and novel classification of radiopharmaceuticals for cancer treatment. J Drug Target. 2015;23(3):191–201
  • Mirshojaei SF, Ahmadi A, Morales-Avila E, et al. Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer. J Drug Target. 2016;24(2):91–101
  • Tesarova B, Charousova M, Dostalova S, et al. Folic acid-mediated re-shuttling of ferritin receptor specificity towards a selective delivery of highly cytotoxic nickel(ii) coordination compounds. Int J Biol Macromol. 2019;126:1099–1111.
  • Du K, Xia Q, Heng H, et al. Temozolomide–doxorubicin conjugate as a double intercalating agent and delivery by apoferritin for glioblastoma chemotherapy. ACS Appl Mater Interfaces. 2020;12(31):34599–34609
  • Indra R, Cerna T, Heger Z, et al. Ellipticine-loaded apoferritin nanocarrier retains DNA adduct-based cytochrome p450-facilitated toxicity in neuroblastoma cells. Toxicology. 2019;419:40–54.
  • Biamonte F, Battaglia AM, Zolea F, et al. Ferritin heavy subunit enhances apoptosis of non-small cell lung cancer cells through modulation of mir-125b/p53 axis. Cell Death Dis. 2018;9(12):1174
  • J. Alqaraghuli HG, Kashanian S, Rafipour R, et al. Dopamine-conjugated apoferritin protein nanocage for the dual-targeting delivery of epirubicin. Nanomed J. 2019;6(4):250–257.
  • Breen AF, Scurr D, Cassioli ML, et al. Protein encapsulation of experimental anticancer agents 5f 203 and phortress: towards precision drug delivery. Int J Nanomedicine. 2019;14:9525–9534.
  • Huang W, Zhan Y, Zheng Y, et al. Up-regulated ferritin in periodontitis promotes inflammatory cytokine expression in human periodontal ligament cells through transferrin receptor via erk/p38 mapk pathways. Clin Sci. 2019;133(1):135–148
  • Falvo E, Malagrino F, Arcovito A, et al. The presence of glutamate residues on the pas sequence of the stimuli-sensitive nano-ferritin improves in vivo biodistribution and mitoxantrone encapsulation homogeneity. J Control Release. 2018;275:177–185.
  • Mazzucchelli S, Truffi M, Baccarini F, et al. H-ferritin-nanocaged olaparib: a promising choice for both brca-mutated and sporadic triple negative breast cancer. Sci Rep. 2017;7(1):7505
  • Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157–170.
  • Ji P, Huang H, Yuan S, et al. Ros‐mediated apoptosis and anticancer effect achieved by artesunate and auxiliary fe (ii) released from ferriferous oxide‐containing recombinant apoferritin. Adv Healthcare Mater. 2019;8(23):1900911
  • Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1/A):363–398.
  • Chen H, Zhang W, Zhu G, et al. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017;2(7):1–18
  • Lei Y, Hamada Y, Li J, et al. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. J Control Release. 2016;232:131–142.
  • Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–1134.
  • Shibata M, Hoque MO. Targeting cancer stem cells: a strategy for effective eradication of cancer. Cancers (Basel). 2019;11(5):732.
  • Stuckey DW, Shah K. Stem cell-based therapies for cancer treatment: separating hope from hype. Nat Rev Cancer. 2014;14(10):683–691.
  • Li Y, Rogoff HA, Keates S, et al. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci. 2015;112(6):1839–1844
  • Yang R, Li Y, Wang X, et al. Doxorubicin loaded ferritin nanoparticles for ferroptosis enhanced targeted killing of cancer cells. RSC Adv. 2019;9(49):28548–28553
  • Lin CY, Yang SJ, Peng CL, et al. Panitumumab-conjugated and platinum-cored ph-sensitive apoferritin nanocages for colorectal cancer-targeted therapy. ACS Appl Mater Interfaces. 2018;10(7):6096–6106
  • Zhai M, Wang Y, Zhang L, et al. Glioma targeting peptide modified apoferritin nanocage. Drug Deliv. 2018;25(1):1013–1024
  • Gomhor J. AH, Kashanian S, Rafipour R, et al. Development and characterization of folic acid-functionalized apoferritin as a delivery vehicle for epirubicin against mcf-7 breast cancer cells. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S847–S854.
  • Zhang B, Shen S, Liao Z, et al. Targeting fibronectins of glioma extracellular matrix by clt1 peptide-conjugated nanoparticles. Biomaterials. 2014;35(13):4088–4098
  • Ridha AA, Kashanian S, Azandaryani AH, et al. New folate-modified human serum albumin conjugated to cationic lipid carriers for dual targeting of mitoxantrone against breast cancer. Curr Pharm Biotechnol. 2020;21(4):305–315
  • Thepphankulngarm N, Wonganan P, Sapcharoenkun C, et al. Combining vitamin B 12 and cisplatin-loaded porous silica nanoparticles via coordination: a facile approach to prepare a targeted drug delivery system. New J Chem. 2017;41(22):13823–13829
  • Islam MS, Haque P, Rashid TU, et al. Core–shell drug carrier from folate conjugated chitosan obtained from prawn shell for targeted doxorubicin delivery. J Mater Sci. 2017;28(4):55
  • Heger Z, Polanska H, Merlos Rodrigo MA, et al. Prostate tumor attenuation in the nu/nu murine model due to anti-sarcosine antibodies in folate-targeted liposomes. Sci Rep. 2016;6(1):33379
  • Gomhor JAH, Kashanian S, Rafipour R, et al. Development and characterization of folic acid-functionalized apoferritin as a delivery vehicle for epirubicin against mcf-7 breast cancer cells. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S847–s854
  • Dostalova S, Polanska H, Svobodova M, et al. Prostate-specific membrane antigen-targeted site-directed antibody-conjugated apoferritin nanovehicle favorably influences in vivo side effects of doxorubicin. Sci Rep. 2018;8(1):1–13
  • Huang H, Yuan S, Ma Z, et al. Genetic recombination of poly(l-lysine) functionalized apoferritin nanocages that resemble viral capsid nanometer-sized platforms for gene therapy. Biomater Sci. 2020;8(6):1759–1770
  • Huang H, Sha K, Veroniaina H, et al. Ca 2+ participating self-assembly of an apoferritin nanostructure for nucleic acid drug delivery. Nanoscale. 2020;12:7347-7357.
  • Jiang Y, Pang X, Wang X, et al. Preparation of hypocrellin b nanocages in self-assembled apoferritin for enhanced intracellular uptake and photodynamic activity. J Mat Chem B. 2017;5(10):1980–1987
  • Shakeri-Zadeh A, Kamrava SK, Farhadi M, et al. A scientific paradigm for targeted nanophotothermolysis; the potential for nanosurgery of cancer. Lasers Med Sci. 2014;29(2):847–853
  • He Y, Shen Y, Zhou S, et al. Near infrared dye loaded copper sulfide-apoferritin for tumor imaging and photothermal therapy. RSC Adv. 2018;8(26):14268–14279
  • Sozmen F, Kucukoflaz M, Ergul M, et al. Nanoparticles with pdt and ptt synergistic properties working with dual nir-light source simultaneously. RSC Adv. 2021;11(4):2383–2389
  • Azarnezhad A, Samadian H, Jaymand M, et al. Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? Crit Rev Toxicol. 2020;50(2):148–176
  • Samadian H, Salami MS, Jaymand M, et al. Genotoxicity assessment of carbon-based nanomaterials; have their unique physicochemical properties made them double-edged swords? Mutat Res. 2020;783:108296.
  • Mortezaee K, Najafi M, Samadian H, et al. Redox interactions and genotoxicity of metal-based nanoparticles: a comprehensive review. Chem Biol Interact. 2019;312:108814.
  • Barabadi H, Najafi M, Samadian H, et al. A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: are green nanoparticles safe enough for clinical marketing? Med (Kaunas). 2019;55(8)
  • Magdolenova Z, Collins A, Kumar A, et al. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014;8(3):233–278
  • Summ O, Evers S. Mechanism of action of indomethacin in indomethacin-responsive headaches. Curr Pain Headache Rep. 2013;17(4):327.
  • Njaria PM, Okombo J, Njuguna NM, et al. Chloroquine-containing compounds: a patent review (2010-2014). Expert Opin Ther Pat. 2015;25(9):1003–1024
  • Kubecova M, Kolostova K, Pinterova D, et al. Cimetidine: an anticancer drug? Eur J Pharm Sci. 2011;42(5):439–444
  • El-Ashmawy NE, Khedr EG, El-Bahrawy HA, et al. Chemopreventive effect of omega-3 polyunsaturated fatty acids and atorvastatin in rats with bladder cancer. Tumour Biol. 2017;39(2):1010428317692254
  • Morales DR, Morris AD. Metformin in cancer treatment and prevention. Annu Rev Med. 2015;66(1):17–29.
  • Drew DA, Cao Y, Chan AT. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat Rev Cancer. 2016;16(3):173–186.
  • Chamba A, Holder MJ, Jarrett RF, et al. Slc6a4 expression and anti-proliferative responses to serotonin transporter ligands chlomipramine and fluoxetine in primary b-cell malignancies. Leuk Res. 2010;34(8):1103–1106
  • Park H, Lim W, You S, et al. Fenbendazole induces apoptosis of porcine uterine luminal epithelial and trophoblast cells during early pregnancy. Sci Total Environ. 2019;681:28–38.
  • Skibinski CG, Williamson T, Riggins GJ. Mebendazole and radiation in combination increase survival through anticancer mechanisms in an intracranial rodent model of malignant meningioma. J Neurooncol. 2018;140(3):529–538.
  • Markowska A, Kaysiewicz J, Markowska J, et al. Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorg Med Chem Lett. 2019;29(13):1549–1554
  • Barbosa EJ, Lobenberg R, De Araujo GLB, et al. Niclosamide repositioning for treating cancer: challenges and nano-based drug delivery opportunities. Eur J Pharm Biopharm. 2019;141:58–69.
  • Lee WH, Loo CY, Ghadiri M, et al. The potential to treat lung cancer via inhalation of repurposed drugs. Adv Drug Deliv Rev. 2018;133:107–130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.