395
Views
1
CrossRef citations to date
0
Altmetric
Review

Immune checkpoint inhibitors and cardiotoxicity: possible mechanisms, manifestations, diagnosis and management

, &
Pages 1211-1228 | Received 20 May 2021, Accepted 08 Sep 2021, Published online: 21 Sep 2021

References

  • Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science (New York, NY).2018 Mar 23; 359(6382):1350–1355. PubMed PMID: 29567705; PubMed Central PMCID: PMCPMC7391259. eng.
  • Coley WB. Contribution to the Knowledge of Sarcoma. Ann Surg. 1891 Sep;14(3):199–220. PubMed PMID: 17859590; PubMed Central PMCID: PMCPMC1428624. eng
  • Burnet M. Cancer; a biological approach. I. The processes of control. Br Med J.1957 Apr 6; 1(5022):779–786. PubMed PMID: 13404306; PubMed Central PMCID: PMCPMC1973174. eng.
  • Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science (New York, NY).1996 Mar 22; 271(5256):1734–1736. PubMed PMID: 8596936; eng.
  • Boussiotis VA. Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N Engl J Med.2016 Nov 3; 375(18):1767–1778. PubMed PMID: 27806234; PubMed Central PMCID: PMCPMC5575761. eng.
  • Vaddepally RK, Kharel P, Pandey R, et al. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers (Basel). 2020 Mar 20;12(3):738. PubMed PMID: 32245016; PubMed Central PMCID: PMCPMC7140028. eng
  • Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med. 2017 Oct 5;377(14):1345–1356. PubMed PMID: 28889792; PubMed Central PMCID: PMCPMC5706778. eng
  • Michot JM, Bigenwald C, Champiat S, et al.Immune-related adverse events with immune checkpoint blockade: a comprehensive review.Eur J Cancer.2016 Feb 54:139–148 PubMed PMID: 26765102; eng
  • Salem JE, Manouchehri A, Moey M, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018 Dec;19(12):1579–1589. PubMed PMID: 30442497; PubMed Central PMCID: PMCPMC6287923. eng.
  • Johnson DB, Balko JM, Compton ML, et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N Engl J Med. 2016 Nov 3;375(18):1749–1755. PubMed PMID: 27806233; PubMed Central PMCID: PMCPMC5247797. eng
  • Walker LSK, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11(12):852–863.
  • Teft WA, Kirchhof MG, Madrenas J. A MOLECULAR PERSPECTIVE OF CTLA-4 FUNCTION. Annu Rev Immunol. 2006;24(1):65–97.
  • Kuehn HS, Ouyang W, Lo B, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science (New York, NY). 2014 Sep 26;345(6204):1623–1627. PubMed PMID: 25213377; PubMed Central PMCID: PMCPMC4371526. eng
  • Schubert D, Bode C, Kenefeck R, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014 Dec;20(12):1410–1416. PubMed PMID: 25329329; PubMed Central PMCID: PMCPMC4668597. eng.
  • Schwab C, Gabrysch A, Olbrich P, et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J Allergy Clin Immunol. 2018 Dec;142(6):1932–1946. PubMed PMID: 29729943; PubMed Central PMCID: PMCPMC6215742. eng.
  • Grimbacher B, Warnatz K, Yong PFK, et al. The crossroads of autoimmunity and immunodeficiency: lessons from polygenic traits and monogenic defects. J Allergy Clin Immunol. 2016;137(1):3–17.
  • Grant CR, Liberal R, Mieli-Vergani G, et al. Regulatory T-cells in autoimmune diseases: challenges, controversies and—yet—unanswered questions. Autoimmun Rev. 2015;14(2):105–116.
  • Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol. 2001 Dec;1(3):220–228. PubMed PMID: 11905831; eng
  • Mitsuiki N, Schwab C, Grimbacher B. What did we learn from CTLA-4 insufficiency on the human immune system? Immunol Rev. 2019;287(1):33–49.
  • Collins AV, Brodie DW, Gilbert RJ, et al. The interaction properties of costimulatory molecules revisited. Immunity. 2002 Aug;17(2):201–210. PubMed PMID: 12196291; eng.
  • Schneider H, Downey J, Smith A, et al. Reversal of the TCR stop signal by CTLA-4. Science (New York, NY). 2006 Sep 29;313(5795):1972–1975. PubMed PMID: 16931720; eng
  • Munn DH, Sharma MD, Mellor AL. Ligation of B7-1/B7-2 by Human CD4 + T Cells Triggers Indoleamine 2,3-Dioxygenase Activity in Dendritic Cells. The Journal of Immunology.2004 Apr 1; 172(7):4100–4110. PubMed PMID: 15034022; eng.
  • Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med.2001 Sep 3; 194(5):629–644. PubMed PMID: 11535631; PubMed Central PMCID: PMCPMC2195935. eng.
  • Qureshi OS, Zheng Y, Nakamura K, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science (New York, NY). 2011 Apr 29;332(6029):600–603. PubMed PMID: 21474713; PubMed Central PMCID: PMCPMC3198051. eng
  • Kwon ED, Hurwitz AA, Foster BA, et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8099–8103. PubMed PMID: 9223321; PubMed Central PMCID: PMCPMC21563. eng
  • Shrikant P, Khoruts A, Mescher MF. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity. 1999 Oct;11(4):483–493. PubMed PMID: 10549630; eng
  • Gianchecchi E, Delfino DV, Fierabracci A. Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun Rev. 2013 Sep;12(11):1091–1100. PubMed PMID: 23792703; eng
  • Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26(1):677–704. PubMed PMID: 18173375; eng
  • Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000 Oct 2;192(7):1027–1034. PubMed PMID: 11015443; PubMed Central PMCID: PMCPMC2193311. eng
  • Hofmeyer KA, Jeon H, Zang X. The PD-1/PD-L1 (B7-H1) Pathway in Chronic Infection-Induced Cytotoxic T Lymphocyte Exhaustion. J Biomed Biotechnol. 2011 2011 sep 25;2011:451694.
  • Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018 Mar;18(3):153–167. PubMed PMID: 28990585; eng
  • Ohaegbulam KC, Assal A, Lazar-Molnar E, et al. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 2015 Jan;21(1):24–33. PubMed PMID: 25440090; PubMed Central PMCID: PMCPMC4282825. eng.
  • Baas M, Besançon A, Goncalves T, et al. TGFβ-dependent expression of PD-1 and PD-L1 controls CD8(+) T cell anergy in transplant tolerance. eLife. 2016 Jan 29;5. e08133. PubMed PMID: 26824266; PubMed Central PMCID: PMCPMC4749558. eng.
  • Butte MJ, Keir ME, Phamduy TB, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007 Jul;27(1):111–122. PubMed PMID: 17629517; PubMed Central PMCID: PMCPMC2707944. eng.
  • Mahoney KM, Freeman GJ, McDermott DF. The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma. Clin Ther.2015 Apr 1; 37(4):764–782. PubMed PMID: 25823918; PubMed Central PMCID: PMCPMC4497957. eng.
  • Ghebeh H, Tulbah A, Mohammed S, et al. Expression of B7-H1 in breast cancer patients is strongly associated with high proliferative Ki-67-expressing tumor cells. Int J Cancer. 2007 Aug 15;121(4):751–758. PubMed PMID: 17415709; eng
  • Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: american Society of Clinical Oncology Clinical Practice Guideline. J clin oncol. 2018;36(17):1714–1768.
  • Zhang L, Reynolds Kerry L, Lyon Alexander R, et al. The Evolving Immunotherapy Landscape and the Epidemiology, Diagnosis, and Management of Cardiotoxicity.JACC: CardioOncology. 2021 2021 mar 01;31:35–47.
  • Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med. 2018;378(2):158–168.
  • Wolchok JD, Neyns B, Linette G, et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 2010 Feb;11(2):155–164. PubMed PMID: 20004617; eng.
  • Ribas A, Camacho LH, Lopez-Berestein G, et al. Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol. 2005 Dec 10;23(35):8968–8977. PubMed PMID: 16204013; eng
  • Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–562.
  • Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015;372(26):2521–2532.
  • Hamid O, Robert C, Daud A, et al. Safety and Tumor Responses with Lambrolizumab (Anti–PD-1) in Melanoma. N Engl J Med. 2013;369(2):134–144.
  • Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012 Jun 28;366(26):2443–2454. PubMed PMID: 22658127; PubMed Central PMCID: PMCPMC3544539. eng
  • Barroso-Sousa R, Barry WT, Garrido-Castro AC, et al. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: a Systematic Review and Meta-analysis. JAMA Oncol. 2018 Feb 1;4(2):173–182. PubMed PMID: 28973656; PubMed Central PMCID: PMCPMC5838579 Bristol-Myers Squibb and serving as a consultant to MERCK, Novartis, and EMD Serono. Dr Krop reports receiving research support from Genentech. Dr Tolaney reports receiving research support from MERCK, Bristol-Myers Squibb, and Genetech. No other disclosures are reported. eng.
  • Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014 Apr 1;32(10):1020–1030. PubMed PMID: 24590637; PubMed Central PMCID: PMCPMC4811023. eng
  • Zehou O, Leibler C, Arnault J-P, et al. Ipilimumab for the treatment of advanced melanoma in six kidney transplant patients. Am J Transplant. 2018;18(12):3065–3071.
  • De Bruyn P, Van Gestel D, Ost P, et al. Immune checkpoint blockade for organ transplant patients with advanced cancer: how far can we go? Curr Opin Oncol. 2019;31(2):2.
  • Kittai AS, Oldham H, Cetnar J, et al. Immune Checkpoint Inhibitors in Organ Transplant Patients. J Immunother. 2017;40(7):7.
  • Zarifa A, Lopez-Mattei J, Palaskas N, et al. Immune Checkpoint Inhibitors (ICIs)-Related Cardiotoxicity. Adv Exp Med Biol. 2020;1244:277–285. PubMed PMID: 32301022; eng
  • Mahmood SS, Fradley MG, Cohen JV, et al. Myocarditis in Patients Treated With Immune Checkpoint Inhibitors. J Am Coll Cardiol. 2018 Apr 24;71(16):1755–1764. PubMed PMID: 29567210; PubMed Central PMCID: PMCPMC6196725. eng
  • Grabie N, Gotsman I, DaCosta R, et al. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell mediated injury in the heart. Circulation. 2007 Oct 30;116(18):2062–2071. PubMed PMID: 17938288; eng
  • Okazaki T, Tanaka Y, Nishio R, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med. 2003 Dec;9(12):1477–1483. PubMed PMID: 14595408; eng.
  • Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science (New York, NY). 2001 Jan 12;291(5502):319–322. PubMed PMID: 11209085; eng
  • Lucas JA, Menke J, Rabacal WA, et al. Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice. J Immunol. 2008 Aug 15;181(4):2513–2521. PubMed PMID: 18684942; PubMed Central PMCID: PMCPMC2587295. eng
  • Wang J, Okazaki IM, Yoshida T, et al. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol. 2010 Jun;22(6):443–452. PubMed PMID: 20410257; eng.
  • Okazaki T, Okazaki IM, Wang J, et al. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J Exp Med. 2011 Feb 14;208(2):395–407. PubMed PMID: 21300912; PubMed Central PMCID: PMCPMC3039848. eng
  • Woo SR, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012 Feb 15;72(4):917–927. PubMed PMID: 22186141; PubMed Central PMCID: PMCPMC3288154. eng
  • Yamada A, Kishimoto K, Dong VM, et al. CD28-independent costimulation of T cells in alloimmune responses. J Immunol. 2001 Jul 1;167(1):140–146. PubMed PMID: 11418642; eng
  • Tivol EA, Boyd SD, McKeon S, et al. CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice. J Immunol. 1997 Jun 1;158(11):5091–5094. PubMed PMID: 9164923; eng
  • Liu D, Badell IR, Ford ML. Selective CD28 blockade attenuates CTLA-4-dependent CD8+ memory T cell effector function and prolongs graft survival.JCI Insight.2018 Jan 11 3(1)https://doi.org/10.1172/jci.insight.96378 PubMed PMID: 29321374; PubMed Central PMCID: PMCPMC5821191. eng
  • Grabie N, Lichtman AH, Padera R. T cell checkpoint regulators in the heart. Cardiovasc Res. 2019 Apr 15;115(5):869–877. PubMed PMID: 30721928; PubMed Central PMCID: PMCPMC6452292. eng.
  • Varricchi G, Galdiero MR, Marone G, et al. Cardiotoxicity of immune checkpoint inhibitors. ESMO Open. 2017;2(4):e000247. PubMed PMID: 29104763; PubMed Central PMCID: PMCPMC5663252. eng
  • Quagliariello V, Passariello M, Rea D, et al. Evidences of CTLA-4 and PD-1 Blocking Agents-Induced Cardiotoxicity in Cellular and Preclinical Models. J Pers Med. 2020;10(4):4.
  • Quagliariello V, De Laurentiis M, Cocco S, et al. NLRP3 as Putative Marker of Ipilimumab-Induced Cardiotoxicity in the Presence of Hyperglycemia in Estrogen-Responsive and Triple-Negative Breast Cancer Cells. Int J Mol Sci. 2020;21(20):20.
  • Cihakova D, Rose NR. Pathogenesis of myocarditis and dilated cardiomyopathy. Adv Immunol. 2008;99:95–114. PubMed PMID: 19117533; eng
  • Mir H, Alhussein M, Alrashidi S, et al. Cardiac Complications Associated With Checkpoint Inhibition: a Systematic Review of the Literature in an Important Emerging Area. Can J Cardiol. 2018 Aug;34(8):1059–1068. PubMed PMID: 29980467; eng.
  • Göser S, Andrassy M, Buss SJ, et al. Cardiac troponin I but not cardiac troponin T induces severe autoimmune inflammation in the myocardium. Circulation. 2006 Oct 17;114(16):1693–1702. PubMed PMID: 17015788; eng
  • Moreira A, Loquai C, Pföhler C, et al. Myositis and neuromuscular side-effects induced by immune checkpoint inhibitors. Eur J Cancer. 2019 Jan;106:12–23. PubMed PMID: 30453170; eng.
  • Reddy J, Massilamany C, Buskiewicz I, et al. Autoimmunity in viral myocarditis. Curr Opin Rheumatol. 2013 Jul;25(4):502–508. PubMed PMID: 23656709; eng.
  • Gottumukkala RV, Lv H, Cornivelli L, et al. Myocardial infarction triggers chronic cardiac autoimmunity in type 1 diabetes. Sci Transl Med. 2012 Jun 13;4(138):138ra80. PubMed PMID: 22700956; PubMed Central PMCID: PMCPMC4303259. eng.
  • Ji C, Roy MD, Golas J, et al. Myocarditis in Cynomolgus Monkeys Following Treatment with Immune Checkpoint Inhibitors. Clin Cancer Res. 2019;25(15):4735.
  • Zamami Y, Niimura T, Okada N, et al. Factors Associated With Immune Checkpoint Inhibitor–Related Myocarditis. JAMA Oncol. 2019;5(11):1635–1637.
  • Lyon AR, Yousaf N, Battisti NML, et al. Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol. 2018 Sep;19(9):e447–e458. PubMed PMID: 30191849; eng.
  • Escudier M, Cautela J, Malissen N, et al. Clinical Features, Management, and Outcomes of Immune Checkpoint Inhibitor-Related Cardiotoxicity. Circulation. 2017 Nov 21;136(21):2085–2087. PubMed PMID: 29158217; eng
  • Yamaguchi S, Morimoto R, Okumura T, et al. Late-Onset Fulminant Myocarditis With Immune Checkpoint Inhibitor Nivolumab. Can J Cardiol. 2018;34(6):812.e1–812.e3.
  • Zhang L, Awadalla M, Mahmood SS, et al. Cardiovascular magnetic resonance in immune checkpoint inhibitor-associated myocarditis. Eur Heart J. 2020;41(18):1733–1743.
  • Heinzerling L, Ott PA, Hodi FS, et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer. 2016;4(1):50. PubMed PMID: 27532025; PubMed Central PMCID: PMCPMC4986340. eng
  • Caforio AL, Pankuweit S, Arbustini E, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013 Sep;34(33):2636–48, 2648a-2648d. PubMed PMID: 23824828; eng.
  • Norwood TG, Westbrook BC, Johnson DB, et al. Smoldering myocarditis following immune checkpoint blockade. J Immunother Cancer. 2017 Nov 21;5(1):91. PubMed PMID: 29157297; PubMed Central PMCID: PMCPMC5697345. eng
  • Sacolick SL, Stein WG, Friedberg CK. Complete Heart Block with Adams-Stokes Seizures from Ventricular Fibrillation: recovery After Treatment with Repeated External Electrical Defibrillation. Arch Internal Med. 1962;110(3):299–304.
  • Urban H, Willems LM, Ronellenfitsch MW, et al. Increased occurrence of status epilepticus in patients with brain metastases and checkpoint inhibition. Oncoimmunology. 2020;9(1):1851517. PubMed PMID: 33299662; eng
  • Johnson DB, Chandra S, Sosman JA. Immune Checkpoint Inhibitor Toxicity in 2018. Jama.2018 Oct 23; 320(16):1702–1703. PubMed PMID: 30286224; eng.
  • Koelzer VH, Rothschild SI, Zihler D, et al. Systemic inflammation in a melanoma patient treated with immune checkpoint inhibitors-an autopsy study. J Immunother Cancer. 2016;4(1):13. PubMed PMID: 26981243; PubMed Central PMCID: PMCPMC4791920. eng
  • Moslehi JJ, Salem JE, Sosman JA, et al. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet. 2018 Mar 10;391(10124):933. PubMed PMID: 29536852; PubMed Central PMCID: PMCPMC6668330. eng.
  • Touat M, Maisonobe T, Knauss S, et al. Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer. Neurology 2018;91(10):e985.
  • Anquetil C, Salem J-E, Lebrun-Vignes B, et al. Immune Checkpoint Inhibitor–Associated Myositis. Circulation. 2018;138(7):743–745.
  • Atallah-Yunes SA, Kadado AJ, Kaufman GP, et al. Immune checkpoint inhibitor therapy and myocarditis: a systematic review of reported cases. J Cancer Res Clin Oncol. 2019;145(6):1527–1557.
  • Moey MYY, Tomdio AN, McCallen JD, et al. Characterization of Immune Checkpoint Inhibitor-Related Cardiotoxicity in Lung Cancer Patients From a Rural Setting. JACC: CardioOncology. 2020 2020 sep 01;23:491–502.
  • Aras Mandar A, Power John R, Moslehi Javid J. Inflammatory Biomarkers to Detect Immune Checkpoint Inhibitor-Associated Cardiotoxicity in Lung Cancer Patients.JACC: CardioOncology.2020;2020 sep 01 2:(3)503–505
  • Janardhanan R. Myocarditis with very high troponins: risk stratification by cardiac magnetic resonance. J Thorac Dis. 2016 October;Vol 8(No 10):E1333–E1336. Journal of Thoracic Disease. 2016
  • Reddy N, Moudgil R, Lopez-Mattei JC, et al. Progressive and Reversible Conduction Disease With Checkpoint Inhibitors. Can J Cardiol. 2017 Oct;33(10):1335.e13–1335.e15. PubMed PMID: 28822650; eng.
  • Thibault C, Vano Y, Soulat G, et al. Immune checkpoint inhibitors myocarditis: not all cases are clinically patent. Eur Heart J. 2018 Oct 7;39(38):3553. PubMed PMID: 30107497; eng
  • Zlotoff DA, Hassan MZO, Zafar A, et al. Electrocardiographic features of immune checkpoint inhibitor associated myocarditis. Journal for ImmunoTherapy of Cancer. 2021;9(3):e002007.
  • Awadalla M, Mahmood SS, Groarke JD, et al. Global Longitudinal Strain and Cardiac Events in Patients With Immune Checkpoint Inhibitor-Related Myocarditis. J Am Coll Cardiol. 2020;75(5):467–478.
  • Geisler BP, Raad RA, Esaian D, et al. Apical ballooning and cardiomyopathy in a melanoma patient treated with ipilimumab: a case of takotsubo-like syndrome. J Immunother Cancer. 2015;3(1):4. PubMed PMID: 25705383; PubMed Central PMCID: PMCPMC4335413. eng
  • Zhang L, Awadalla M, Mahmood Syed S, et al. LATE GADOLINIUM ENHANCEMENT IN PATIENTS WITH MYOCARDITIS FROM IMMUNE CHECKPOINT INHIBITORS. J Am Coll Cardiol. 2019;73(9_Supplement_1):675.
  • Thavendiranathan P, Zhang L, Zafar A, et al. Myocardial T1 and T2 Mapping by Magnetic Resonance in Patients With Immune Checkpoint Inhibitor–Associated Myocarditis. J Am Coll Cardiol. 2021;77(12):1503–1516.
  • Kindermann I, Barth C, Mahfoud F, et al. Update on Myocarditis. J Am Coll Cardiol. 2012;59(9):779–792.
  • Ibraheim H, Perucha E, Powell N. Pathology of immune-mediated tissue lesions following treatment with immune checkpoint inhibitors. Rheumatology. 2019;58(Supplement_7):vii17–vii28.
  • Mirabel M, Callon D, Bruneval P, et al. Late-Onset Giant Cell Myocarditis Due to Enterovirus During Treatment With Immune Checkpoint Inhibitors. JACC: CardioOncology. 2020 2020 sep 01;23:511–514.
  • Bonaca MP, Olenchock BA, Salem JE, et al. Myocarditis in the Setting of Cancer Therapeutics: proposed Case Definitions for Emerging Clinical Syndromes in Cardio-Oncology. Circulation. 2019 Jul 2;140(2):80–91. PubMed PMID: 31390169; PubMed Central PMCID: PMCPMC6779326. eng.
  • Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010 Jul 1;28(19):3167–3175. PubMed PMID: 20516446; PubMed Central PMCID: PMCPMC4834717. eng
  • Ganatra S, Neilan TG. Immune Checkpoint Inhibitor-Associated Myocarditis. Oncologist. 2018 Aug;23(8):879–886. PubMed PMID: 29802219; PubMed Central PMCID: PMCPMC6156176 article. eng
  • Chatzantonis G, Evers G, Meier C, et al. Immune Checkpoint Inhibitor-Associated Myocarditis: a Run of Bad Luck or Rather Deficient-Monitoring Protocol?JACC: Case Reports. 2020 2020 apr 01;24:630–635.
  • Brahmer JR, Abu-Sbeih H, Ascierto PA, et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J Immunother Cancer. 2021;9(6):e002435.
  • Kwon HJ, Coté TR, Cuffe MS, et al. Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med. 2003 May 20;138(10):807–811. PubMed PMID: 12755552; eng
  • Haanen JBAG, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2017;28:iv119–iv142.
  • Peleg Hasson S, Salwen B, Sivan A, et al. Re-introducing immunotherapy in patients surviving immune checkpoint inhibitors-mediated myocarditis. Clin Res Cardiol. 2021;110(1):50–60.
  • Salem J-E, Allenbach Y, Vozy A, et al. Abatacept for Severe Immune Checkpoint Inhibitor–Associated Myocarditis. N Engl J Med. 2019;380(24):2377–2379.
  • Wei SC, Meijers WC, Axelrod ML, et al. A Genetic Mouse Model Recapitulates Immune Checkpoint Inhibitor–Associated Myocarditis and Supports a Mechanism-Based Therapeutic Intervention. Cancer Discov. 2021;11(3):614.
  • Palaskas N, Morgan J, Daigle T, et al. Targeted Cancer Therapies With Pericardial Effusions Requiring Pericardiocentesis Focusing on Immune Checkpoint Inhibitors. Am J Cardiol. 2019 Apr 15;123(8):1351–1357. PubMed PMID: 30765065; eng.
  • Zhou YW, Zhu YJ, Wang MN, et al. Immune Checkpoint Inhibitor-Associated Cardiotoxicity: current Understanding on Its Mechanism, Diagnosis and Management. Front Pharmacol. 2019;10:1350. PubMed PMID: 31849640; PubMed Central PMCID: PMCPMC6897286. eng
  • Altan M, Toki MI, Gettinger SN, et al. Immune Checkpoint Inhibitor-Associated Pericarditis. J Thorac Oncol. 2019 Jun;14(6):1102–1108. PubMed PMID: 30851443; PubMed Central PMCID: PMCPMC6617516. eng.
  • Khunger A, Battel L, Wadhawan A, et al. New Insights into Mechanisms of Immune Checkpoint Inhibitor-Induced Cardiovascular Toxicity. Curr Oncol Rep. 2020 Jun 8;22(7):65. PubMed PMID: 32514647; eng
  • Mirwais S, Kazmi SH, Hussain SI, et al. Hypothyroidism Causing Pericardial Effusion: a Case Report. Cureus. 2019 Dec 16;11(12):e6393. PubMed PMID: 31938670; PubMed Central PMCID: PMCPMC6957236. eng
  • Kabadi UM, Kumar SP. Pericardial effusion in primary hypothyroidism. Am Heart J. 1990; 1990 dec 01 120 (6, Part 1): 1393–1395.
  • Seethapathy H, Rusibamayila N, Chute DF, et al. Hyponatremia and other electrolyte abnormalities in patients receiving immune checkpoint inhibitors. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 2020 Dec 29. https://doi.org/10.1093/ndt/gfaa272. PubMed PMID: 33374011; eng.
  • Peleg Hasson S, Arnold J, Merdler I, et al. Cancer Therapeutics–related Cardiac Dysfunction in Patients Treated With Immune Checkpoint Inhibitors: an Understudied Manifestation. J Immunother. 2021;44(5):5.
  • Anderson RD, Brooks M. Apical takotsubo syndrome in a patient with metastatic breast carcinoma on novel immunotherapy. Int J Cardiol. 2016 Nov 1;222:760–761. PubMed PMID: 27521552; eng.
  • Ederhy S, Cautela J, Ancedy Y, et al. Takotsubo-Like Syndrome in Cancer Patients Treated With Immune Checkpoint Inhibitors. JACC Cardiovasc Imaging. 2018 Aug;11(8):1187–1190. PubMed PMID: 29550317; eng.
  • Elikowski W, Małek-Elikowska M, Łazowski S, et al. Takotsubo cardiomyopathy in a young male with lung cancer and neoplastic embolization of the coronary microcirculation. Pol Merkur Lekarski. 2018 Feb 23;44(260):54–59. PubMed PMID: 29498367; eng
  • Lyon AR, Bossone E, Schneider B, et al. Current state of knowledge on Takotsubo syndrome: a Position Statement from the Taskforce on Takotsubo Syndrome of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2016 Jan;18(1):8–27. PubMed PMID: 26548803; eng.
  • Seijkens TTP, van Tiel CM, Kusters PJH, et al. Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis. J Am Coll Cardiol. 2018 Feb 6;71(5):527–542. PubMed PMID: 29406859; PubMed Central PMCID: PMCPMC5800892. eng.
  • Bu DX, Tarrio M, Maganto-Garcia E, et al. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler Thromb Vasc Biol. 2011 May;31(5):1100–1107. PubMed PMID: 21393583; PubMed Central PMCID: PMCPMC3104026. eng.
  • Lee J, Zhuang Y, Wei X, et al. Contributions of PD-1/PD-L1 pathway to interactions of myeloid DCs with T cells in atherosclerosis. J Mol Cell Cardiol. 2009 Feb;46(2):169–176. PubMed PMID: 19056397; eng.
  • Foks AC, Kuiper J. Immune checkpoint proteins: exploring their therapeutic potential to regulate atherosclerosis. Br J Pharmacol. 2017 Nov;174(22):3940–3955. PubMed PMID: 28369782; PubMed Central PMCID: PMCPMC5660000. eng
  • Hu YB, Zhang Q, Li HJ, et al. Evaluation of rare but severe immune related adverse effects in PD-1 and PD-L1 inhibitors in non-small cell lung cancer: a meta-analysis. Transl Lung Cancer Res. 2017 Dec;6((Suppl 1)):S8–s20. PubMed PMID: 29299404; PubMed Central PMCID: PMCPMC5750164. eng.
  • Bar J, Markel G, Gottfried T, et al. Acute vascular events as a possibly related adverse event of immunotherapy: a single-institute retrospective study. Eur J Cancer. 2019 Oct;120:122–131. PubMed PMID: 31518968; eng.
  • Kwan JM, Cheng R, Feldman LE. Hepatotoxicity and Recurrent NSTEMI While on Pembrolizumab for Metastatic Giant Cell Bone Tumor. Am J Med Sci. 2019 Apr;357(4):343–347. PubMed PMID: 30638772; eng
  • Drobni ZD, Alvi RM, Taron J, et al. Association Between Immune Checkpoint Inhibitors With Cardiovascular Events and Atherosclerotic Plaque. Circulation. 2020;142(24):2299–2311.
  • Nidorf SM, Fiolet ATL, Mosterd A, et al. Colchicine in Patients with Chronic Coronary Disease. N Engl J Med. 2020;383(19):1838–1847.
  • Tardif J-C, Kouz S, Waters DD, et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N Engl J Med. 2019;381(26):2497–2505.
  • Rosenberg JE, Hoffman-Censits J, Powles T, et al. 2016; Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. May 7. 38710031:–20. PubMed PMID: 26952546; PubMed Central PMCID: PMCPMC5480242. eng.
  • Ralph C, Elkord E, Burt DJ, et al. Modulation of lymphocyte regulation for cancer therapy: a phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma. Clin Cancer Res off J Am Assoc Cancer Res. 2010 Mar 1;16(5):1662–1672. PubMed PMID: 20179239; eng
  • Loong HH, Kwan SS, Mok TS, et al. Therapeutic Strategies in EGFR Mutant Non-Small Cell Lung Cancer. Curr Treat Options Oncol. 2018 Sep 29;19(11):58. PubMed PMID: 30267319; eng
  • Esteva FJ, Hubbard-Lucey VM, Tang J, et al. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019;20(3):e175–e186.
  • Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med. 2019;380(12):1116–1127.
  • Lin P-L, Wu T-C, Wu D-W, et al. An increase in BAG-1 by PD-L1 confers resistance to tyrosine kinase inhibitor in non–small cell lung cancer via persistent activation of ERK signalling. Eur J Cancer. 2017;85:95–105. 2017 nov 01.
  • Ocadlikova D, Lecciso M, Broto JM, et al. Sunitinib Exerts In Vitro Immunomodulatory Activity on Sarcomas via Dendritic Cells and Synergizes With PD-1 Blockade [Original Research]. Front Immunol. 2021 2021 Feb 26;12140:https://doi.org/10.3389/fimmu.2021.577766. English.
  • Kato Y, Tabata K, Kimura T, et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLOS ONE. 2019;14(2):e0212513.
  • Hurley PJ, Konety S, Cao Q, et al. Frequency and risk factors for tyrosine kinase inhibitor–associated cardiotoxicity. J clin oncol. 2016;34(15_suppl):6596.
  • Hall PS, Harshman LC, Srinivas S, et al. The frequency and severity of cardiovascular toxicity from targeted therapy in advanced renal cell carcinoma patients. JACC Heart Fail. 2013 Feb;1(1):72–78. PubMed PMID: 24621801; eng.
  • Rose BA, Force T, Wang Y. Mitogen-Activated Protein Kinase Signaling in the Heart: angels Versus Demons in a Heart-Breaking Tale. Physiol Rev. 2010;90(4):1507–1546.
  • Choueiri TK, Larkin J, Oya M, et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol. 2018 Apr;19(4):451–460. PubMed PMID: 29530667; eng.
  • Chitturi Kalyan R, Xu J, Araujo-Gutierrez R, et al. Immune Checkpoint Inhibitor-Related Adverse Cardiovascular Events in Patients With Lung Cancer. JACC: CardioOncology. 2019 2019 nov 01;12:182–192.
  • Makker V, Rasco D, Vogelzang NJ, et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2019;20(5):711–718.
  • Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med. 2019;380(12):1103–1115.
  • Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001 Mar 15;344(11):783–792. PubMed PMID: 11248153; eng
  • Quagliariello V, Passariello M, Coppola C, et al. Cardiotoxicity and pro-inflammatory effects of the immune checkpoint inhibitor Pembrolizumab associated to Trastuzumab. Int J Cardiol. 2019;292:171–179. 2019 oct 01.
  • Janjigian YY, Maron SB, Chatila WK, et al. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: an open-label, single-arm, phase 2 trial. Lancet Oncol. 2020 Jun;21(6):821–831. PubMed PMID: 32437664; PubMed Central PMCID: PMCPMC8229851. eng.
  • Andrews LP, Marciscano AE, Drake CG, et al. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017 Mar;276(1):80–96. PubMed PMID: 28258692; PubMed Central PMCID: PMCPMC5338468. eng.
  • Demeure CE, Wolfers J, Martin-Garcia N, et al. T Lymphocytes infiltrating various tumour types express the MHC class II ligand lymphocyte activation gene-3 (LAG-3): role of LAG-3/MHC class II interactions in cell-cell contacts. Eur J Cancer. 2001 Sep;37(13):1709–1718. PubMed PMID: 11527700; eng.
  • Hemon P, Jean-Louis F, Ramgolam K, et al. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol. 2011 May 1;186(9):5173–5183. PubMed PMID: 21441454; eng
  • Luke JJ, Patel MR, Hamilton EP, et al. A phase I, first-in-human, open-label, dose-escalation study of MGD013, a bispecific DART molecule binding PD-1 and LAG-3, in patients with unresectable or metastatic neoplasms. J clin oncol. 2020;38(15_suppl):3004.
  • Ascierto PA, Melero I, Bhatia S, et al. Initial efficacy of anti-lymphocyte activation gene-3 (anti–LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti–PD-1/PD-L1 therapy. J clin oncol. 2017;35(15_suppl):9520.
  • Johnson ML, Patel MR, Cherry M, et al. Safety of BI 754111, an anti-LAG-3 monoclonal antibody (mAb), in combination with BI 754091, an anti-PD-1 mAb, in patients with advanced solid tumors. J clin oncol. 2020;38(15_suppl):3063.
  • Goetze TO, Mueller DW, Rafiyan M-R, et al. Open-label, phase I study evaluating feasibility and safety of subcutaneous IMP321 (LAG-3Ig fusion protein, eftilagimod alpha) combined with avelumab in advanced stage solid tumor entities: results from stratum D of the INSIGHT platform trial J clin oncol 2020 2020 may 20 3815_suppl 3099
  • Lipson EJ, Tawbi -HA-H, Schadendorf D, et al. Relatlimab (RELA) plus nivolumab (NIVO) versus NIVO in first-line advanced melanoma: primary phase III results from RELATIVITY-047 (CA224-047). J clin oncol. 2021;39(15_suppl):9503.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.