470
Views
0
CrossRef citations to date
0
Altmetric
Review

The effect of mechanical force in genitourinary malignancies

, , , , , , , , & ORCID Icon show all
Pages 53-64 | Received 20 Jul 2021, Accepted 28 Oct 2021, Published online: 17 Nov 2021

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-A Cancer J Clin. 2021;71(3):209–249.
  • Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics. Ca-a Cancer J Clin. 2019;69(5):363–385.
  • Suárez C, Puente J, Gallardo E, et al. New advances in genitourinary cancer: evidence gathered in 2014. Cancer Metastasis Rev. 2015;34(3):443–464.
  • Ribeiro Franco P, Rodrigues A, de Menezes L, et al. Tumor microenvironment components: allies of cancer progression. Pathol Res Pract. 2020;216:152729.
  • Runel G, Lopez-Ramirez N, Chlasta J, et al. Biomechanical properties of cancer cells. Cells. 2021;10(4):887.
  • Butcher D, Alliston T, Weaver V. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9:108–122.
  • Rianna C, Kumar P, Radmacher M. The role of the microenvironment in the biophysics of cancer. Semin Cell Dev Biol. 2018;73:107–114.
  • Liu Q, Luo Q, Ju Y, et al. Role of the mechanical microenvironment in cancer development and progression. Cancer Biol Med. 2020;17(2):282–292.
  • Nagelkerke A, Bussink J, Rowan A, et al. The mechanical microenvironment in cancer: how physics affects tumours. Semin Cancer Biol. 2015;35:62–70.
  • Liu Z, Wang L, Xu H, et al. Heterogeneous responses to mechanical force of prostate cancer cells inducing different metastasis patterns. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2020;7:1903583.
  • Ghasemi H, Mousavibahar S, Hashemnia M, et al. Tissue stiffness contributes to YAP activation in bladder cancer patients undergoing transurethral resection. Ann N Y Acad Sci. 2020;1473(1):48–61.
  • Hadden M, Mittal A, Samra J, et al. Mechanically stressed cancer microenvironment: role in pancreatic cancer progression. Biochim Biophys Acta Rev Cancer. 2020;1874:188418.
  • Lampi M, Reinhart-King C. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci Transl Med. 2018;10(422).
  • Mohammadi H, Sahai E. Mechanisms and impact of altered tumour mechanics. Nat Cell Biol. 2018;20(7):766–774.
  • Hoffman B, Grashoff C, Schwartz M. Dynamic molecular processes mediate cellular mechanotransduction. Nature. 2011;475(7356):316–323.
  • Wang N. Review of cellular mechanotransduction. J Phys D Appl Phys. 2017;50 (23) .
  • Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.
  • Marhuenda E, Fabre C, Zhang C, et al. Glioma stem cells invasive phenotype at optimal stiffness is driven by MGAT5 dependent mechanosensing. J Exp Clin Cancer Res. 2021;40(1):139.
  • Deng Y, Chakraborty P, Jolly M, et al. A theoretical approach to coupling the epithelial-mesenchymal transition (EMT) to extracellular matrix (ECM) stiffness via LOXL2. Cancers (Basel). 2021;13(7):1609.
  • Azadi S, Tafazzoli Shadpour M. The microenvironment and cytoskeletal remodeling in tumor cell invasion. Int Rev Cell Mol Biol. 2020;356:257–289.
  • Jain R, Martin J, Stylianopoulos T. The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng. 2014;16(1):321–346.
  • Stylianopoulos T, Martin J, Snuderl M, et al. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res. 2013;73(13):3833–3841.
  • Cox T, Erler J. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4(2):165–178.
  • Zanotelli M, Reinhart-King C. Mechanical Forces in Tumor Angiogenesis. Adv Exp Med Biol. 2018;1092:91–112.
  • Bordeleau F, Mason B, Lollis E, et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc Natl Acad Sci U S A. 2017;114(3):492–497.
  • Vogel V. Unraveling the mechanobiology of extracellular matrix. Annu Rev Physiol. 2018;80(1):353–387.
  • Humphrey J, Dufresne E, Schwartz M. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15:802–812.
  • Cox T. The matrix in cancer. Nat Rev Cancer. 2021;21:217–238.
  • Medina S, Bush B, Cam M, et al. Identification of a mechanogenetic link between substrate stiffness and chemotherapeutic response in breast cancer. Biomaterials. 2019;202:1–11.
  • Turner D. The role of advanced glycation end-products in cancer disparity. Adv Cancer Res. 2017;133:1–22.
  • Miki S, Kasayama S, Miki Y, et al. Expression of receptors for advanced glycosylation end products on renal cell carcinoma cells in vitro. Biochem Biophys Res Commun. 1993;196(2):984–989.
  • Rodriguez-Teja M, Breit C, Clarke M, et al. How to study basement membrane stiffness as a biophysical trigger in prostate cancer and other age-related pathologies or metabolic diseases. J Vis Exp. 2016(115). DOI: https://doi.org/10.3791/54230.
  • Rodriguez-Teja M, Gronau J, Breit C, et al. AGE -modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival. J Pathol. 1993;235(4):581–592.
  • Wang T, Hsia S, Shieh T. Lysyl oxidase and the tumor microenvironment. Int J Mol Sci. 2016;18(1):62.
  • Di Stefano V, Torsello B, Bianchi C, et al. Major action of endogenous lysyl oxidase in clear cell renal cell carcinoma progression and collagen stiffness revealed by primary cell cultures. Am J Pathol. 2016;186(9):2473–2485.
  • Hase H, Jingushi K, Ueda Y, et al. LOXL2 status correlates with tumor stage and regulates integrin levels to promote tumor progression in ccRCC. Mol Cancer Res. 2014;12(12):1807–1817.
  • Hughes F, Sexton S, Jin H, et al. Bladder fibrosis during outlet obstruction is triggered through the NLRP3 inflammasome and the production of IL-1β. Am J Physiol Renal Physiol. 2017;313(3):F603–F610
  • Meng Q, Luo X, Chen J, et al. Unmasking carcinoma-associated fibroblasts: key transformation player within the tumor microenvironment. Biochim Biophys Acta Rev Cancer. 2020;1874:188443.
  • Follonier Castella L, Gabbiani G, McCulloch C, et al. Regulation of myofibroblast activities: calcium pulls some strings behind the scene. Exp Cell Res. 2010;316(15):2390–2401.
  • Jaeschke A, Jacobi A, Lawrence M, et al. Cancer-associated fibroblasts of the prostate promote a compliant and more invasive phenotype in benign prostate epithelial cells. Mater Today Bio. 2020;8:100073.
  • Yang Q, Chen J, Zhu Y, et al. Mesenchymal stem cells accelerate the remodeling of bladder VX2 tumor interstitial microenvironment by TGFβ1-smad pathway. J Cancer. 2019;10(19):4532–4539.
  • Chen Q, Yang D, Zong H, et al. Growth-induced stress enhances epithelial-mesenchymal transition induced by IL-6 in clear cell renal cell carcinoma via the Akt/GSK-3β/β-catenin signaling pathway. Oncogenesis. 2017;6(8):e375.
  • Haage A, Schneider I. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells. FASEB J. 2014;28(8):3589–3599.
  • Gonzalez-Avila G, Sommer B, García-Hernández A, et al. Matrix metalloproteinases’ role in tumor microenvironment. Adv Exp Med Biol. 2020;1245:97–131.
  • Artym V, Swatkoski S, Matsumoto K, et al. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network. J Cell Biol. 2015;208(3):331–350.
  • Wiśniowski T, Bryda J, Kurzepa J, et al. The role of matrix metalloproteinases in pathogenesis of human bladder cancer. Acta Biochim Pol. 2021.
  • Mosaddad S, Salari Y, Amookhteh S, et al. Response to mechanical cues by interplay of YAP/TAZ transcription factors and key mechanical checkpoints of the cell: a comprehensive review. Cell Physiol Biochem. 2021;55:33–60.
  • Koo J, Guan K. Interplay between YAP/TAZ and Metabolism. Cell Metab. 2018;28(2):196–206.
  • Moya I, Halder G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol. 2019;20:211–226.
  • Reginensi A, Hoshi M, Boualia S, et al. Yap and taz are required for ret-dependent urinary tract morphogenesis. Development. 2015;142(15):2696–2703.
  • Yang W, Ding C, Sun T, et al. The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep. 2019;28(10):2501–2508.e2504.
  • Salem O, Hansen C. The hippo pathway in prostate cancer. Cells. 2019;8(4):370.
  • Dupont S, Morsut L, Aragona M, et al., Role of YAP/TAZ in mechanotransduction. Nature. 474(7350);2011:179–183.
  • Martinez B, Yang Y, Harker D, et al. YAP/TAZ related biomechano signal transduction and cancer metastasis. Front Cell Dev Biol. 2019;7:199.
  • Torrino S, Roustan F, Kaminski L, et al. UBTD1 is a mechano-regulator controlling cancer aggressiveness. EMBO Rep. 2019;20(4). DOI:https://doi.org/10.15252/embr.201846570.
  • Govinden R, Bhoola K. Genealogy. expression, and cellular function of transforming growth factor-beta. Pharmacol Ther. 2003;98(2):257–265.
  • Tang R, Gu S, Chen X, et al. Immobilized transforming growth factor-beta 1 in a stiffness-tunable artificial extracellular matrix enhances mechanotransduction in the epithelial mesenchymal transition of hepatocellular carcinoma. ACS Appl Mater Interfaces. 2019;11(16):14660–14671.
  • Wang N, Zhang M, Chang Y, et al. Directly observing alterations of morphology and mechanical properties of living cancer cells with atomic force microscopy. Talanta. 2019;191:461–468.
  • Kechagia J, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol. 2019;20:457–473.
  • Guo W, Giancotti F. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 2004;5:816–826.
  • Zhai J, Lin H, Nie Z, et al. Direct interaction of focal adhesion kinase with p190RhoGEF. J Biol Chem. 2003;278(27):24865–24873.
  • Johan M, Samuel M. Rho-ROCK signaling regulates tumor-microenvironment interactions. Biochem Soc Trans. 2019;47(1):101–108.
  • Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken). 2010;67(9):545–554.
  • Ghosh K, Thodeti C, Dudley A, et al. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci U S A. 2008;105(32):11305–11310.
  • Efremov Y, Dokrunova A, Efremenko A, et al. Distinct impact of targeted actin cytoskeleton reorganization on mechanical properties of normal and malignant cells. Biochim Biophys Acta. 2008;1853(11):3117–3125.
  • Clucas J, Valderrama F. ERM proteins in cancer progression. J Cell Sci. 2014;127(2):267–275.
  • Astudillo P. Extracellular matrix stiffness and Wnt/β-catenin signaling in physiology and disease. Biochem Soc Trans. 2020;48(3):1187–1198.
  • Tao B, Song Y, Wu Y, et al. Matrix stiffness promotes glioma cell stemness by activating BCL9L/Wnt/β-catenin signaling. Aging (Albany NY). 2021;13(4):5284–5296.
  • Huang Q, Hu X, He W, et al. Fluid shear stress and tumor metastasis. Am J Cancer Res. 2018;8:763–777.
  • Follain G, Herrmann D, Harlepp S, et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer. 2020;20:107–124.
  • Mitchell M, King M. Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol. 2013;3:44.
  • Ma S, Fu A, Chiew G, et al. Hemodynamic shear stress stimulates migration and extravasation of tumor cells by elevating cellular oxidative level. Cancer Lett. 2017;388:239–248.
  • Lee H, Ewere A, Diaz M, et al. TAZ responds to fluid shear stress to regulate the cell cycle. Cell Cycle. 2018;17(2):147–153.
  • Khan Z, Hussain F. Shear stress increases V-H -ATPase and acidic vesicle number density, and p-mTORC2 activation in prostate cancer cells. Cell Mol Bioeng. 2020;13(6):591–604.
  • Lee Y, Yeh C. Laminar shear stress inhibits high glucose-induced migration and invasion in human bladder cancer cells. In vitro Cell Develop Biol Animal. 2018;54:120–128.
  • Lee Y, Lai C, Cheng Y. Fluid shear stress induces cell cycle arrest in human urinary bladder transitional cell carcinoma through bone morphogenetic protein receptor-Smad1/5 pathway. Cell Mol Bioeng. 2018;11(3):185–195.
  • Mitchell M, King M. Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors. New J Phys. 2013;15(1):015008.
  • Chivukula V, Krog B, Nauseef J, et al. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study. Cell Health and Cytoskeleton. 2015;7:25–35.
  • Liu N, Du P, Xiao X, et al. Microfluidic-based mechanical phenotyping of androgen-sensitive and non-sensitive prostate cancer cells lines. Micromachines. 2019;10(9):602.
  • Chen S, Chung C, Cheng Y, et al. Hydrostatic pressure enhances mitomycin C induced apoptosis in urothelial carcinoma cells. Urol Oncol. 2014;32(1):26.e17–24.
  • Vella A, Eko E, Del Río Hernández A. The emergence of solid stress as a potent biomechanical marker of tumour progression. Emerging Topics Life Sci. 2018;2(5):739–749.
  • Nia H, Liu H, Seano G, et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat Biomed Eng. 2016;1.
  • Fernández-Sánchez M, Barbier S, Whitehead J, et al. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature. 2015;523(7558):92–95.
  • Indana D, Chaudhuri O. Cells under pressure. eLife. 2021;10. DOI:https://doi.org/10.7554/eLife.68643
  • Nitta N, Yamakawa M, and Hachiya H, et al. A review of physical and engineering factors potentially affecting shear wave elastography. J Med Ultrason (2001). 2021.
  • Fovargue D, Nordsletten D, Sinkus R. Stiffness reconstruction methods for MR elastography. NMR Biomed. 2018;31(10):e3935.
  • Woo S, Kim S, Cho J, et al. Shear wave elastography for detection of prostate cancer: a preliminary study. Korean J Radiol. 2014;15(3):346–355.
  • Huang X, Zhou A, Liu M, et al. Shear wave elasticity differentiation between low- and high-grade bladder urothelial carcinoma and correlation with collagen fiber content. J Ultrasound Med. 2021;40(1):113–122.
  • Zhang B, Wang H, Jiang T, et al. Cyclopamine treatment disrupts extracellular matrix and alleviates solid stress to improve nanomedicine delivery for pancreatic cancer. J Drug Target. 2018;26(10):913–919.
  • Diop-Frimpong B, Chauhan V, Krane S, et al. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A. 2011;108(7):2909–2914.
  • Chauhan V, Martin J, Liu H, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun. 2013;4(1):2516.
  • Landolt L, Spagnoli G, Hertig A, et al. Fibrosis and cancer: shared features and mechanisms suggest common targeted therapeutic approaches, Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association, 2020.
  • Sarker F, Prior V, Bax S, et al. Forcing a growth factor response - tissue-stiffness modulation of integrin signaling and crosstalk with growth factor receptors. J Cell Sci. 2020;133(23). DOI: https://doi.org/10.1242/jcs.242461
  • Aw Yong K, Sun Y, Merajver S, et al. Mechanotransduction-induced reversible phenotypic switching in prostate cancer cells. Biophys J. 2017;112(6):1236–1245.
  • Huse M. Mechanical forces in the immune system. Nat Rev Immunol. 2017;17:679–690.
  • Lei K, Kurum A, Tang L. Mechanical immunoengineering of T cells for therapeutic applications. Acc Chem Res. 2020;53(12):2777–2790.
  • Kobayashi Y, Lim S, Yamaguchi H. Oncogenic signaling pathways associated with immune evasion and resistance to immune checkpoint inhibitors in cancer. Semin Cancer Biol. 2020;65:51–64.
  • Rianna C, Radmacher M. Influence of microenvironment topography and stiffness on the mechanics and motility of normal and cancer renal cells. Nanoscale. 2017;9(31):11222–11230.
  • Raczkowska J, Prauzner-Bechcicki S. Discrimination between HCV29 and T24 by controlled proliferation of cells co-cultured on substrates with different elasticity. J Mech Behav Biomed Mater. 2018;88:217–222.
  • Peschetola V, Laurent V, Duperray A, et al. Time-dependent traction force microscopy for cancer cells as a measure of invasiveness. Cytoskeleton (Hoboken). 2013;70(4):201–214.
  • Lekka M, Pabijan J, Orzechowska B. Morphological and mechanical stability of bladder cancer cells in response to substrate rigidity. Biochim Biophys Acta General Subj. 2019;1863(6):1006–1014.
  • Sieh S, Taubenberger A, Rizzi S, et al. Phenotypic characterization of prostate cancer LNCaP cells cultured within a bioengineered microenvironment. PloS One. 2012;7(9):e40217.
  • Tang X, Kuhlenschmidt T, Li Q, et al. A mechanically-induced colon cancer cell population shows increased metastatic potential. Mol Cancer. 2014;13(1):131.
  • Prauzner-Bechcicki S, Raczkowska J, Madej E, et al. PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells. J Mech Behav Biomed Mater. 2015;41:13–22.
  • Palacio-Torralba J, Reuben R, Chen Y. A novel palpation-based method for tumor nodule quantification in soft tissue-computational framework and experimental validation. Med Biol Eng Comput. 2020;58(6):1369–1381.
  • Wang X, Wang J, Liu Y, et al. Alterations in mechanical properties are associated with prostate cancer progression. Med Oncol. 2014;31(3):876.
  • Erdogan B, Ao M, White L, et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J Cell Biol. 2017;216(11):3799–3816.
  • Chen S, Chung C, Cheng Y, et al. Toll-like receptor 6 and connective tissue growth factor are significantly upregulated in mitomycin-C-treated urothelial carcinoma cells under hydrostatic pressure stimulation. Genet Test Mol Biomarkers. 2014;18(6):410–416.
  • Liu F, Wang L, Qi H, et al. Nintedanib, a triple tyrosine kinase inhibitor, attenuates renal fibrosis in chronic kidney disease. Clin sci. 2017;131(16):2125–2143.
  • Feng L, Li W, Chao Y, et al. Synergistic inhibition of renal fibrosis by nintedanib and gefitinib in a murine model of obstructive nephropathy. Kidney Dis (Basel). 2021;7:34–49.
  • Guo Y, Xiao Y, Zhu H, et al. Inhibition of proliferation-linked signaling cascades with atractylenolide I reduces myofibroblastic phenotype and renal fibrosis. Biochem Pharmacol. 2021;183:114344.
  • Bai Y, Lu H, Zhang G, et al. Sedum sarmentosum Bunge extract exerts renal anti-fibrotic effects in vivo and in vitro. Life Sci. 2014;105(1–2):22–30.
  • Stangenberg S, Saad S, Schilter H, et al. Lysyl oxidase-like 2 inhibition ameliorates glomerulosclerosis and albuminuria in diabetic nephropathy. Sci Rep. 2018;8(1):9423.
  • Wang M, Chen D, Chen L, et al. Novel inhibitors of the cellular renin-angiotensin system components, poricoic acids, target Smad3 phosphorylation and Wnt/β-catenin pathway against renal fibrosis. Br J Pharmacol. 2018;175(13):2689–2708.
  • He Y, Wen J, Pu Q, et al. Losartan prevents bladder fibrosis and protects renal function in rat with neurogenic paralysis bladder. Neurourol Urodyn. 2021;40(1):137–146.
  • Duan L, Qi J, Huang T, et al. Pirfenidone attenuates bladder fibrosis and mitigates deterioration of bladder function in a rat model of partial bladder outlet obstruction. Mol Med Rep. 2015;12(3):3639–3647.
  • Vicari E, Arancio A, Catania V, et al. Resveratrol reduces inflammation-related prostate fibrosis. Int J Med Sci. 2020;17(13):1864–1870.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.