387
Views
5
CrossRef citations to date
0
Altmetric
Review

Immunotherapy in soft tissue sarcoma: current evidence and future perspectives in a variegated family of different tumor

, ORCID Icon, &
Pages 491-503 | Received 11 Jan 2022, Accepted 11 Apr 2022, Published online: 26 Apr 2022

References

  • Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as second line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–1026.
  • Larchin J, Chiarion-Sileni V, Gonzalez R, et al. Five-years survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–1546.
  • Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced non squamous non–small-cell lung cancer. N Engl J Med. 2015;373(17):1627–1639.
  • Brahmer J, Reckamp K, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N Engl J Med. 2015;373(2):123–135.
  • Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet Oncol. 2019;10212(10212):1915–1928.
  • Antonescu CM , et al., editors. World Health organization (WHO) classification of soft tissue and bone tumours. 5th ed. Lyon: International Agency for Research on Cancer (IARC); 2020.
  • Gronchi A, Miceli R, Colombo C, et al. Primary extremity soft tissue sarcomas: outcome improvement over time at a single institution. Ann Oncol. 2011 Jul;22(7):1675–1681.
  • Callegaro D, Raut CP, Ng D, et al. Has the outcome for patients who undergo resection of primary retroperitoneal sarcoma changed over time? A study of time trends during the past 15 years. Ann Surg Oncol. 2021 Mar;28(3):1700–1709.
  • Vos M, Ho VKY, Oosten AW, et al. Minimal increase in survival throughout the years in patients with soft tissue sarcoma with synchronous metastases: results of a population-based study. Oncologist. 2019 Jul;24(7):e526–35.
  • Jansen-Landheer ML, Krijnen P, Oostindiër MJ, et al. Improved diagnosis and treatment of soft tissue sarcoma patients after implementation of national guidelines: a population-based study. Eur J Surg Oncol. 2009 Dec;35(12):1326–1332.
  • Savina M, Le Cesne A, Blay JY, et al. Patterns of care and outcomes of patients with METAstatic soft tissue SARComa in a real-life setting: the METASARC observational study. BMC Med. 2017 Apr 10;15(1):78.
  • Maki RG, Jungbluth AA, Gnjatic S, et al. A pilot study of anti-CTLA4 antibody ipilimumab in patients with synovial sarcoma. Sarcoma. 2013;2013:168145.
  • Ben-Ami E, Barysauskas CM, Solomon S, et al. Immunotherapy with single-agent nivolumab for advanced leiomyosarcoma of the uterus: results of a phase II study. Cancer. 2017;123(17):3285–3290.
  • Tawbi HA, Burgess M, Bolejack V, et al., Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017;18(11): 1493–1501.
  • Burgess MA, Bolejack V, Schuetze S, et al. Clinical activity of pembrolizumab in undifferentiated pleomorphic sarcoma (UPD) and dedifferentiated liposarcoma (LPS): final results of SARC028 expansion cohort. J Clin Oncol. 2019;37(15_suppl):11015. suppl, abstr 11015.
  • D’Angelo SP, Mahoney MR, Van Tine BA, et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 2018;19(3):416–426.
  • Chen JL, Mahoney MR, George S, et al. Multicenter phase II study of nivolumab ± ipilimumab for patients with metastatic sarcoma (Alliance A091401: results of expansion cohorts. J Clin Oncol. 2020;38(15_suppl): 11511–1. doi:https://doi.org/10.1200/JCO.2020.38.15_suppl.11511.
  • Wilky BA, Trucco MM, Subhawong TK, et al. Axitinib plus pembrolizumab in patients with advanced sarcomas including alveolar soft-part sarcoma: a single-centre, single-arm, phase 2 trial. Lancet Oncol. 2019 Jun;20(6):837–848.
  • Pollack SM, Redman MW, Baker KK, et al. Assessment of doxorubicin and pembrolizumab in patients with advanced anthracycline-naive sarcoma: a phase 1/2 nonrandomized clinical trial. JAMA Oncol. 2020 Nov 1;6(11):1778–1782.
  • Saerens M, Brusselaers N, Rottey S, et al. Immune checkpoint inhibitors in treatment of soft tissue sarcoma: a systematic review and meta-analyses. Eur J Cancer. 2021;152:165–182.
  • Groisberg R, Hong DS, Behrang A, et al. Characteristics and outcome of patients with advanced sarcoma enrolled in early phase immunotherapy trials. J Immunother Cancer. 2017 Dec 19;5(1):100.
  • Italiano A, Bellera C, D’Angelo S. PD1/PD-L1 targeting in advanced soft-tissue sarcomas: a pooled analysis of phase II trials. J Hematol Oncol. 2020 May 19;13(1):55.
  • Robbins PF, Kassim SH, Tran TLN, et al., A pilot trial using lymphocytes genetically engineered with an NY-ESO-1 reactive T-cell receptor: long term follow-up and correlates with response. Clin Cancer Res. 2015;21(5): 1019–1027.
  • D’Angelo SP, Noujaim JC, Thistlethwaite F, et al. IGNYTE-ESO: a master protocol to assess safety and activity of letetresgene autoleucel (lete-cel; GSK3377794) in HLA-A*02+ patients with synovial sarcoma or myxoid/round cell liposarcoma (Substudies 1 and 2). J Clin Oncol. 2021;39. suppl 15; abstr TPS11582.
  • D’Angelo SP, Van Tine BA, Attia S, et al. SPEARHEAD-1: a phase 2 trial of afamitresgene autoleucel (Formerly ADP-A2M4) in patients with advanced synovial sarcoma or myxoid/round cell liposarcoma. J Clin Oncol. 2021;39:11504. suppl 15; abstr.
  • D’Angelo SP, Druta M, Van Tine BA, et al. Safety and efficacy of letetresgene autoleucel (lete-cel; GSK3377794) in advanced myxoid/round cell liposarcoma (MRCLS) following high lymphodepletion (Cohort 2): interim analysis. J Clin Oncol. 2021;39. suppl 15; abstr 11521.
  • Meyers PA, Schwartz PL, Krailo M, et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol. 2005 Mar 20;23(9):2004–2011.
  • Abeshouse A, Adebamowo C, Adebamowo SN, Cancer Genome Atlas Research Network. Comprehensive and integrated genomic characterization of adult soft tissuesarcomas. Cell. 2017;171(4):950–965.
  • Steele CD, Tarabichi M, Oukrif D, et al. Undifferentiated sarcomas develop through distinct evolutionary pathways. Cancer Cell. 2019;35(3):441–456.
  • Nacev BA, Jones KB, Intlekofer AM, et al. The epigenomics of sarcoma. Nat Rev Cancer. 2020;20(10):608–623.
  • Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell. Rep. 2017;18(1):248–262.
  • Starzer AM, Berghoff AS, Hamacher R, et al. Tumor DNA methylation profiles correlate with response to anti-PD-1 immune checkpoint inhibitor monotherapy in sarcoma patients. J Immunother Cancer. 2021;9(3):e001458.
  • Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577(7791):549–555.
  • Chen L, Oke T, Siegel N, et al. The immunosuppressive niche of soft-tissue sarcomas is sustained by tumor-associated macrophages and characterized by intratumoral tertiary lymphoid structures. Clin Cancer Res. 2020;26(15):4018–4030. .
  • Tseng WW, Malu S, Zhang M, et al. Analysis of the intratumoral adaptive immune response in well differentiated and dedifferentiated retroperitoneal liposarcoma. Sarcoma. 2015 Article ID;2015:547460.
  • Tsagozis P, Augsten M, Zhang Y, et al. An immunosuppressive macrophage profile attenuates the prognostic impact of CD20-positive B cells in human soft tissue sarcoma. Cancer Immunol Immunother. 2019;68(6):927–936.
  • Petitprez F et al . (2020). B cells are associated with survival and immunotherapy response in sarcoma. Nature, 577(7791), 556–560. https://doi.org/10.1038/s41586-019-1906-8
  • Klaver Y, Rijnders M, Oostvogels A, Wijers R, Smid M, Grünhagen D, Verhoef C, Sleijfer S, Lamers C, Debets R. (2020). Differential quantities of immune checkpoint-expressing CD8 T cells in soft tissue sarcoma subtypes. J Immunother Cancer, 8(2),– https://doi.org/10.1136/jitc-2019-000271
  • D'Angelo S P et al . (2015). Prevalence of tumor-infiltrating lymphocytes and PD-L1 expression in the soft tissue sarcoma microenvironment. Hum Pathol, 46(3), 357–65. https://doi.org/10.1016/j.humpath.2014.11.001
  • Pollack SM, He Q, Yearley JH, et al. T-cell infiltration and clonality correlate with programmed cell death protein 1 and programmed death-ligand 1 expression in patients with soft tissue sarcomas. Cancer. 2017 Sep 1;123(17):3291–3304.
  • Atkins MB, Plimack ER, Puzanov I, et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol. 2018;19(3):405–415.
  • Hodi FS, Lawrence D, Lezcano C, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2:632–642.
  • Yang J, Yan J, Liu B. (2018). Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Front Immunol, 9 978 https://doi.org/10.3389/fimmu.2018.00978
  • Ocadlikova D, Lecciso M, Martin-Broto J, et al. Sunitinib exerts in vitro immunomodulatory activity on sarcomas via dendritic cells and synergizes with PD-1 blockade. Front Immunol. 2021 Feb 26;12:577766.
  • Tazzari M, Negri T, Rini F, et al. Adaptive immune contexture at the tumour site and downmodulation of circulating myeloid-derived suppressor cells in the response of solitary fibrous tumour patients to anti-angiogenic therapy. Br J Cancer. 2014;111(7):1350–1362.
  • Tazzari M, Palassini E, Vergani B, et al. Melan- A/MART-1 Immunity in a EWS-ATF1 translocated clear cell sarcoma patient treated with sunitinib: a case report. BMC Cancer. 2015;15(1):58.
  • Martin-Broto J et al . (2020). Nivolumab and sunitinib combination in advanced soft tissue sarcomas: a multicenter, single-arm, phase Ib/II trial. J Immunother Cancer, 8(2),– https://doi.org/10.1136/jitc-2020-001561
  • Toulmonde M et al . (2018). Use of PD-1 Targeting, Macrophage Infiltration, and IDO Pathway Activation in Sarcomas: A Phase 2 Clinical Trial. JAMA Oncol, 4(1), 93–97. https://doi.org/10.1001/jamaoncol.2017.1617
  • Klug F, Prakash H, Huber PE, et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013;24(5):589–602.
  • Keung EZ, Tsai JW, Ali AM, et al. Analysis of the immune infiltrate in undifferentiated pleomorphic sarcoma of the extremity and trunk in response to radiotherapy: rationale for combination neoadjuvant immune checkpoint inhibition and radiotherapy. Oncoimmunology. 2018;7(2):e1385689.
  • Patel KR, Martinez A, Stahl JM, et al. Increase in PD-L1 expression after pre-operative radiotherapy for soft tissue sarcoma. OncoImmunology. 2018;7(7):7, e1442168.
  • Sharma A, Bode B, Studer G, et al. Radiotherapy for human sarcoma promotes an intratumoral immune effector signature. Clin Cancer Res. 2013;19(17):4843–4853.
  • Stone H B, Peters L J, Milas L. (1979). Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J Natl Cancer Inst, 63(5), 1229–35.
  • Issels R D et al . (2018). Effect of Neoadjuvant Chemotherapy Plus Regional Hyperthermia on Long-term Outcomes Among Patients With Localized High-Risk Soft Tissue Sarcoma: The EORTC 62961-ESHO 95 Randomized Clinical Trial. JAMA Oncol, 4(4), 483–492. https://doi.org/10.1001/jamaoncol.2017.4996
  • Pasquali S, Castelli C, Collini P, et al. Immune contexture in high-risk soft tissue sarcomas (STS): a planned analysis of the ISG-STS-1001 randomized trial. J Clin Oncol. 2021;39(suppl 15):abstr 11572.
  • Gronchi A et al . (2020). Neoadjuvant Chemotherapy in High-Risk Soft Tissue Sarcomas: Final Results of a Randomized Trial From Italian (ISG), Spanish (GEIS), French (FSG), and Polish (PSG) Sarcoma Groups. J Clin Oncol, 38(19), 2178–2186. https://doi.org/10.1200/JCO.19.03289
  • Blay JY, Ray-Coquard N, Penel F, et al. High clinical benefit rates of single agent pembrolizumab in selected rare sarcoma histotypes: first results of the AcSè pembrolizumab study. Ann Oncol. 2020;4(31):S914–S933.
  • Blay JY, Penel N, Ray-Coquard IL et al. High clinical activity rate of pembrolizumab in chordoma, alveolar soft part sarcoma (ASPS) and other rare sarcoma histotypes: The French AcSè pembrolizumab study from Unicancer. J Clin Oncol 2021; 39 Suppl 15: abstr 11520
  • O’Sullivan CG, Moore N, Sharon E, et al. Effective treatment of alveolar soft part sarcoma with single agent atezolizumab. CTOS annual meeting Proceedings 2019 Tokyo. Paper ID 066 ( Paper ID 066).
  • Hindi M, Rosenbaum E, Rutkowski P, et al. Efficacy of immune-checkpoint inhibitors in alveolar soft part sarcoma: results from a retrospective world-wide registry. CTOS virtual annual meeting 2020 Proceedings, abstract 3464044.
  • Sindhu S, Gimber L H, Cranmer L, McBride A, Kraft A S. (2017). Angiosarcoma treated successfully with anti-PD-1 therapy - a case report. J Immunother Cancer, 5(1), 58 https://doi.org/10.1186/s40425-017-0263-0
  • Hamacher R, Kampfe D, Reuter-Jessen K, et al. Dramatic response of a PD-L1-positive advanced angiosarcoma of the scalp to pembrolizumab. JCO Precis Oncol. 2018;2:1–7.
  • Florou V, Rosenberg A E, Wieder E, Komanduri K V, Kolonias D, Uduman M, Castle J C, Buell J S, Trent J C, Wilky B A. (2019). Angiosarcoma patients treated with immune checkpoint inhibitors: a case series of seven patients from a single institution. J Immunother Cancer, 7(1), 213 https://doi.org/10.1186/s40425-019-0689-7
  • Negri T et al . (2012). Receptor tyrosine kinase pathway analysis sheds light on similarities between clear-cell sarcoma and metastatic melanoma. Genes Chromosomes Cancer, 51(2), 111–26. https://doi.org/10.1002/gcc.20933
  • Kawai A, Nishikawa T, Kaeasaki M et al. Efficacy and safety of nivolumab monotherapy in patients with unresectable clear cell sarcoma and alveolar soft part sarcoma (OSCAR trial, NCCH1010): a multicenter, phase 2, clinical trial. CTOS virtual annual meeting proceedings 2020. Abs 3421748
  • Lai J, Robbins P F, Raffeld M, Aung P Phyu, Tsokos M, Rosenberg S A, Miettinen M M, Lee C Richard. (2012). NY-ESO-1 expression in synovial sarcoma and other mesenchymal tumors: significance for NY-ESO-1-based targeted therapy and differential diagnosis. Mod Pathol, 25(6), 854–8. https://doi.org/10.1038/modpathol.2012.31
  • Pollack SM, Jungbluth AA, Hoch BL, et al. NY-ESO-1 is a ubiquitous immunotherapeutic target antigen for patients with myxoid/round cell liposarcoma. Cancer. 2012;118(18):4564–4570.
  • Robbins P F et al . (2011). Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol, 29(7), 917–24. https://doi.org/10.1200/JCO.2010.32.2537
  • D'Angelo SP, Demetri GD, Van Tine BA, et al. Final analysis of the phase I trial of NY-ESO-1 specific T-cell receptor (TCR) T-cell therapy (letetresgene autoleucel; GSK3377794) in patients with adavnced synovial sarcoma. CTOS virtual annual meeting Proceedings 2020. Paper ID 03.
  • Van Tine BA, Hong DS, Johnson ML, et al. Durable response in patients with synovial sarcoma in the phase 1 trial of ADP-A2M4 (MAGE-A4). CTOS virtual annual meeting Proceedings 2020. Paper ID 04.
  • Wei R, Dean DC, Thanindratarn P, et al. Cancer testis antigens in Sarcoma: expression, function and immunotherapeutic application. Cancer Lett. 2020 Jun 1;479:54–60.
  • Saxena M, van der Burg S H, Melief C J, Bhardwaj N. (2021). Therapeutic cancer vaccines. Nat Rev Cancer, 21(6), 360–378. https://doi.org/10.1038/s41568-021-00346-0
  • Mahvi DM, Shi FS, Yang NS, et al. Immunization by particle-mediated transfer of the granulocyte macrophage colony-stimulating factor gene into autologous tumour cells in melanoma or sarcoma patients: report of a phase I/Ib study. Hum Gene Ther. 2002;13(14):1711–1721.
  • Dillman R, Barth N, Selvan S, et al. Phase I/II trial of autologous tumour cell line derived vaccines for recurrent or metastatic sarcomas. Cancer Biother Radiopharm. 2004;19(5):581–588.
  • Kawaguchi S, Wada T, Ida K, et al. Phase I vaccination trial of SYT-SSX junction peptide in patients with disseminated synovial sarcoma. J Transl Med. 2005;3(1):1.
  • Kawaguchi S, Tsukahara T, Ida K, et al. SYT-SSX breakpoint peptide vaccines in patients with synovial sarcoma: a study from the Japanese Musculoskeletal Oncology Group. Cancer Sci. 2012;103(9):1625–1630.
  • Sato Y, Nabeta Y, Tsukahara T, et al. Detection and induction of CTLS specific for SYT-SSX-derived peptides in HLA-A24* patients with synovial sarcoma. J Immunol. 2002;169(3):1611–1618.
  • Pender A, Jones R L, Pollack S. (2018). Optimising Cancer Vaccine Design in Sarcoma. Cancers (Basel), 11(1),– https://doi.org/10.3390/cancers11010001
  • Takahashi R et al . (2013). Phase II study of personalized peptide vaccination for refractory bone and soft tissue sarcoma patients. Cancer Sci, 104(10), 1285–94. https://doi.org/10.1111/cas.12226
  • Finkelstein S E et al . (2012). Combination of external beam radiotherapy (EBRT) with intratumoral injection of dendritic cells as neo-adjuvant treatment of high-risk soft tissue sarcoma patients. Int J Radiat Oncol Biol Phys, 82(2), 924–32. https://doi.org/10.1016/j.ijrobp.2010.12.068
  • Bulgarelli J et al . (2019). Dendritic Cell Vaccination in Metastatic Melanoma Turns ”Non-T Cell Inflamed” Into ”T-Cell Inflamed” Tumors. Front Immunol, 10 2353 https://doi.org/10.3389/fimmu.2019.02353
  • Fujiwara T et al . (2021). Role of Tumor-Associated Macrophages in Sarcomas. Cancers (Basel), 13(5),– https://doi.org/10.3390/cancers13051086
  • Germano G et al . (2010). Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer Res, 70(6), 2235–44. https://doi.org/10.1158/0008-5472.CAN-09-2335
  • Chen Y, Yu Z, Tan X, Jiang H, Xu Z, Fang Y, Han D, Hong W, Wei W, Tu J. (2021). CAR-macrophage: A new immunotherapy candidate against solid tumors. Biomed Pharmacother, 139 111605 https://doi.org/10.1016/j.biopha.2021.111605
  • Kailayangiri S, Altvater B, Lesch S, et al. EZH2 inhibition in Ewing sarcoma upregulates GD2 expression for targeting with gene-modified T cells. Mol Ther. 2019;27(5):933–946.
  • Que Y, Fang Z, Guan Y, et al. LAG-3 expression on tumor-infiltrating T cells in soft tissue sarcoma correlates with poor survival. Cancer Biol Med. 2019;16(2):331–340.
  • Dufresne A, Lesluyes T, Menetrier-Caux C, et al. Specific immune landscapes and immune checkpoint expressions in histotypes and molecular subtypes of sarcoma. Oncoimmunology. 2020;9(1):1792036.
  • Dancsok AR, Setsu N, Gao D, et al. Expression of lymphocyte immunoregulatory biomarkers in bone and soft-tissue sarcomas. Mod Pathol. 2019;32(12):1772–1785.
  • Stacchiotti S et al . (2016). Efficacy and Biological Activity of Imatinib in Metastatic Dermatofibrosarcoma Protuberans (DFSP). Clin Cancer Res, 22(4), 837–46. https://doi.org/10.1158/1078-0432.CCR-15-1243
  • Ugurel S, Becker JC. Imatinib in dermatofibrosarcoma: targeted therapy or immunotherapy? J. Investig. Dermatol. 2017;137(2):277–279
  • Tazzari M, Indio V, Vergani B, et al. Adaptive immunity in fibrosarcomatous dermatofibrosarcoma protuberans and response to imatinib treatment. J. Investig. Dermatol. 2017;137(2):484–493.
  • Dickson M A et al . (2013). Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol, 31(16), 2024–8. https://doi.org/10.1200/JCO.2012.46.5476
  • Dickson MA, Schwartz GK, Keohan ML, et al. Progression-free survival among patients with well-differentiated or dedifferentiated liposarcoma treated with CDK4 inhibitor palbociclib: a phase 2 trial of the CDK4 inhibitor palbociclib for liposarcoma. JAMA Oncol. 2016;2(7):937–940.
  • Goel S et al . (2017). CDK4/6 inhibition triggers anti-tumour immunity. Nature, 548(7668), 471–475. https://doi.org/10.1038/nature23465
  • Lee P J, Yoo N S, Hagemann I S, Pfeifer J D, Cottrell C E, Abel H J, Duncavage E J. (2017). Spectrum of mutations in leiomyosarcomas identified by clinical targeted next-generation sequencing. Exp Mol Pathol, 102(1), 156–161. https://doi.org/10.1016/j.yexmp.2017.01.012
  • Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 2016;6(2):202–216.
  • Chawla SP, Van Tine BA, Pollack SM, et al. Phase II randomized study of CMB305 and atezolizumab compared with atezolizumab alone in soft tissue sarcomas expressing NY-ESO-1. J Clin Oncol. 2021:JCO2003452. DOI:https://doi.org/10.1200/JCO.20.03452. Online ahead of print.
  • Everts A, Bergeman M, McFadden G, et al. Simultaneous tumor and stroma targeting by oncolytic viruses. Biomedicines. 2020;8(11):474.
  • Kelly CM, Antonescu CR, Bowler T, et al. Objective response rate among patients with locally advanced or metastatic sarcoma treated with talimogene laherparepvec in combination with pembrolizumab. Jama Oncol. 2020;6(3):402–408.
  • Gronchi A, Miah AB, Dei Tos AP, et al. on behalf of the ESMO guidelines committee, EURACAN and GENTURIS. Soft tissue and visceral sarcomas: ESMO-EURACAN-GENTURIS clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;32(11):1311–1456. •• ESMO clinical practice guidelines for diagnosis, treatement and follow ESMO clinical practice guidelines for diagnosis, treatement and followup of STS
  • NCCN Clinical Practice Guidelines in Oncology. Soft Tissue Sarcoma (Version 2). 2021. https://www.nccn.org/professionals/physician_gls/pdf/sarcoma.pdf
  • Garber K. Tissue-agnostic cancer drug pipeline grows, despite doubts. Nat Rev Drug Discov. 2018;17(4):227–229.
  • Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–413.
  • Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–2520.
  • Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731–739.
  • Demetri GD, Paz-Ares L, Farago AF, et al. Efficacy and safety of entrectinib in patients with NTRK fusion-positive tumors: pooled analysis of STARTRK-2, STARTRK-1 and ALKA-372–001. Ann Oncol. 2018;29(8):LBA17–VIII713.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.