265
Views
1
CrossRef citations to date
0
Altmetric
Review

Immune senescence in non-small cell lung cancer management: therapeutic relevance, biomarkers, and mitigating approaches

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1197-1210 | Received 19 Jul 2022, Accepted 19 Oct 2022, Published online: 02 Nov 2022

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. DOI:10.3322/caac.21660.
  • Wyld L, Bellantuono I, Tchkonia T, et al. Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers (Basel). 2020;12(8):2134. DOI:10.3390/cancers12082134.
  • Demaria M, O’Leary MN, Chang J, et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017;7(2):165–176. DOI:10.1158/2159-8290.CD-16-0241.
  • Owonikoko TK, Ragin CC, Belani CP, et al. Lung cancer in elderly patients: an analysis of the surveillance, epidemiology, and end results database. J clin oncol. 2007;25(35):5570–5577. DOI:10.1200/JCO.2007.12.5435.
  • Thomas A, Chen Y, Yu T, et al. Trends and characteristics of young non-small cell lung cancer patients in the United States. Front Oncol. 2015;5:113.
  • Tagliamento M, Frelaut M, Baldini C, et al. The use of immunotherapy in older patients with advanced non-small cell lung cancer. Cancer Treat Rev. 2022 May;106:102394.
  • Chen S, Wu S. Identifying lung cancer risk factors in the elderly using deep neural networks: quantitative analysis of web-based survey data. J Med Internet Res. 2020 Mar 17;22(3):e17695.
  • Reddy A, Conde C, Peterson C, et al. Residential radon exposure and cancer. Oncol Rev. 2022 Feb 22;16(1):558.
  • Huang Z, Sun S, Lee M, et al. Single-cell analysis of somatic mutations in human bronchial epithelial cells in relation to aging and smoking. Nat Genet. 2022 Apr;54(4):492–498. DOI:10.1038/s41588-022-01035-w.
  • Komici K, Bencivenga L, Navani N, et al. Frailty in patients with lung cancer: a systematic review and meta-analysis. Chest. 2022 Aug;162(2):485–497. DOI:10.1016/j.chest.2022.02.027.
  • Bianco A, D’Agnano V, Matera MG, et al. Immune checkpoint inhibitors: a new landscape for extensive stage small cell lung cancer treatment. Expert Rev Respir Med. 2021 Nov;15(11):1415–1425. DOI:10.1080/17476348.2021.1964362.
  • Gettinger S, Choi J, Hastings K, et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017 Dec;7(12):1420–1435. DOI:10.1158/2159-8290.CD-17-0593.
  • Ferrara R, Mezquita L, Auclin E, et al. Immunosenescence and immunecheckpoint inhibitors in non-small cell lung cancer patients: does age really matter? Cancer Treat Rev. 2017 Nov;60:60–68.
  • Mollica M, Salvi R, Paoli G, et al. Lung cancer management: challenges in elderly patients. J Gerontol Geriatrics. 2019;2019(2):132–140.
  • Ferrara R, Naigeon M, Auclin E, et al. Circulating T-cell immunosenescence in patients with advanced non-small cell lung cancer treated with single-agent PD-1/PD-L1 inhibitors or platinum-based chemotherapy. Clin Cancer Res. 2021 Jan 15;27(2):492–503.
  • Onyema OO, Njemini R, Forti LN, et al. Aging-associated subpopulations of human CD8+ T-lymphocytes identified by their CD28 and CD57 phenotypes. Arch Gerontol Geriatr. 2015 Nov-Dec;61(3):494–502. DOI:10.1016/j.archger.2015.08.007.
  • Onyema OO, Decoster L, Njemini R, et al. Shifts in subsets of CD8+ T-cells as evidence of immunosenescence in patients with cancers affecting the lungs: an observational case-control study. BMC Cancer. 2015 Dec 28;15(1):1016.
  • Chen I-H, Lai Y-L, Wu C-L, et al. Immune impairment in patients with terminal cancers: influence of cancer treatments and cytomegalovirus infection. Cancer Immunol Immunother. 2010 Feb;59(2):323–334. DOI:10.1007/s00262-009-0753-0.
  • Suárez GM, Añé-Kourí AL, González A, et al. Associations among cytokines, EGF and lymphocyte subpopulations in patients diagnosed with advanced lung cancer. Cancer Immunol Immunother. 2021 Jun;70(6):1735–1743. DOI:10.1007/s00262-020-02823-1.
  • Saavedra D, García B, Lorenzo-Luaces P, et al. Biomarkers related to immunosenescence: relationships with therapy and survival in lung cancer patients. Cancer Immunol Immunother. 2016 [2016/January/01];65(1):37–45. DOI:10.1007/s00262-015-1773-6.
  • Jiao D, Zheng X, Du X, et al. Immunogenic senescence sensitizes lung cancer to LUNX-targeting therapy. Cancer Immunol Immunother. 2022 Jun;71(6):1403–1417. DOI:10.1007/s00262-021-03077-1.
  • Planchard D, Popat S, Kerr K, et al. Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018 Oct 1;29(Suppl 4):iv192–iv237.
  • Perrotta F, Rocco D, Vitiello F, et al. Immune Checkpoint blockade for advanced NSCLC: a new landscape for elderly patients. Int J Mol Sci. 2019 May 7;20(9):2258.
  • Grossi F, Crinò L, Logroscino A, et al. Use of nivolumab in elderly patients with advanced squamous non-small-cell lung cancer: results from the Italian cohort of an expanded access programme. Eur J Cancer. 2018 Sep;100:126–134.
  • Moreira A, Gross S, Kirchberger MC, et al. Senescence markers: predictive for response to checkpoint inhibitors. Int J Cancer. 2019 Mar 1;144(5):1147–1150.
  • Li H, Li J, Zhang C, et al. TERT mutations correlate with higher TMB value and unique tumor microenvironment and may be a potential biomarker for anti-CTLA4 treatment. Cancer Med. 2020 Oct;9(19):7151–7160. DOI:10.1002/cam4.3376.
  • Teng F, Meng X, Kong L, et al. Progress and challenges of predictive biomarkers of anti PD-1/PD-L1 immunotherapy: a systematic review. Cancer Lett. 2018 Feb 1;414:166–173. DOI:10.1016/j.canlet.2017.11.014.
  • Rodriguez JE, Naigeon M, Goldschmidt V, et al. Immunosenescence, inflammaging, and cancer immunotherapy efficacy. Expert Rev Anticancer Ther. 2022;14:1–12.
  • Matsumoto Y, Sawa K, Fukui M, et al. Impact of tumor microenvironment on the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitors in patients with EGFR-mutant non-small cell lung cancer. Cancer Sci. 2019 Oct;110(10):3244–3254. DOI:10.1111/cas.14156.
  • Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75(1):685–705.
  • Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965 Mar;37(3):614–636.
  • Mooi WJ, Peeper DS. Oncogene-induced cell senescence–halting on the road to cancer. N Engl J Med. 2006 Sep 7;355(10):1037–1046.
  • Schworer S, Becker F, Feller C, et al. Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals. Nature. 2016 Dec 15;540(7633):428–432.
  • Chandeck C, Mooi WJ. Oncogene-induced cellular senescence. Adv Anat Pathol. 2010 Jan;17(1):42–48.
  • Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 2021;9:645593.
  • Campisi J, D’adda Di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007 Sep;8(9):729–740.
  • Frescas D, Roux CM, Aygun-Sunar S, et al. Senescent cells expose and secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive antibody. Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):E1668–E1677.
  • Chapman J, Fielder E, Passos JF. Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett. 2019 Jul;593(13):1566–1579.
  • Lee BY, Han JA, Im JS, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006 Apr;5(2):187–195. DOI:10.1111/j.1474-9726.2006.00199.x.
  • Djajadikerta A, Keshri S, Pavel M, et al. Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J Mol Biol. 2020 Apr 3;432(8):2799–2821.
  • Pavel M, Tanasa R, Park SJ, et al. The complexity of biological control systems: an autophagy case study. BioEssays. 2022 Mar;44(3):e2100224. DOI:10.1002/bies.202100224.
  • Berben L, Floris G, Wildiers H, et al. Cancer and aging: two tightly interconnected biological processes. Cancers (Basel). 2021 Mar 19;13(6):1400.
  • Faget DV, Ren Q, Stewart SA. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer. 2019 Aug;19(8):439–453.
  • Cuollo L, Antonangeli F, Santoni A, et al. The Senescence-Associated Secretory Phenotype (SASP) in the challenging future of cancer therapy and age-related diseases. Biology (Basel). 2020 Dec 21;9(12). DOI:10.3390/biology9120485.
  • Cayo A, Segovia R, Venturini W, et al. mTOR activity and autophagy in senescent cells, a complex partnership. Int J Mol Sci. 2021 Jul 29;22(15):8149.
  • Coppé JP, Desprez PY, Krtolica A, et al. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5(1):99–118. DOI:10.1146/annurev-pathol-121808-102144.
  • Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005 Feb 25;120(4):513–522.
  • Effros RB. Roy Walford and the immunologic theory of aging. Immun Ageing. 2005 Apr 25;2(1):7.
  • Sidler C, Woycicki R, Ilnytskyy Y, et al. Immunosenescence is associated with altered gene expression and epigenetic regulation in primary and secondary immune organs. Front Genet. 2013;4:211.
  • Drapela S, Ilter D, Gomes AP. Metabolic reprogramming: a bridge between aging and tumorigenesis. Mol Oncol. 2022 Jun 5;16(18):3295–3318.
  • Fulop T, Larbi A, Pawelec G, et al. Immunology of aging: the birth of inflammaging. Clin Rev Allergy Immunol. 2021 Sep 18. DOI:10.1007/s12016-021-08899-6.
  • Antohe I, Tanasa MP, Dascalescu A, et al. The MHC-II antigen presentation machinery and B7 checkpoint ligands display distinctive patterns correlated with acute myeloid leukaemias blast cells HLA-DR expression. Immunobiology. 2021 Jan;226(1):152049. DOI:10.1016/j.imbio.2020.152049.
  • Antohe I, Dascalescu A, Danaila C, et al. B7-positive and B7-negative acute myeloid leukemias display distinct T cell maturation profiles, immune checkpoint receptor expression, and European Leukemia net risk profiles. Front Oncol. 2020;10:264.
  • Plunkett FJ, Franzese O, Finney HM, et al. The loss of telomerase activity in highly differentiated CD8+CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation. J Iimmunol. 2007 Jun 15;178(12):7710–7719.
  • Posnett DN, Edinger JW, Manavalan JS, et al. Differentiation of human CD8 T cells: implications for in vivo persistence of CD8+ CD28- cytotoxic effector clones. Int Immunol. 1999 Feb;11(2):229–241. DOI:10.1093/intimm/11.2.229.
  • Voehringer D, Koschella M, Pircher H. Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). Blood. 2002 Nov 15;100(10):3698–3702.
  • Brenchley JM, Karandikar NJ, Betts MR, et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood. 2003 Apr 1;101(7):2711–2720.
  • Kaiser M, Semeraro MD, Herrmann M, et al. Immune aging and immunotherapy in cancer. Int J Mol Sci. 2021 Jun 29;22(13):7016.
  • Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006 Feb 9;439(7077):682–687.
  • Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 2017;8:1960.
  • Ostroumov D, Duong S, Wingerath J, et al. Transcriptome profiling identifies TIGIT as a marker of T-cell exhaustion in liver cancer. Hepatology. 2021 Apr;73(4):1399–1418. DOI:10.1002/hep.31466.
  • Zhou Q, Munger ME, Veenstra RG, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011 Apr 28;117(17):4501–4510.
  • Frasca D, Diaz A, Romero M, et al. Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways. Exp Gerontol. 2017 Jan;87(Pt A):113–120. DOI:10.1016/j.exger.2016.12.001.
  • Frasca D, Diaz A, Romero M, et al. Aging effects on T-bet expression in human B cell subsets. Cell Immunol. 2017;321:68–73.
  • Lian J, Yue Y, Yu W, et al. Immunosenescence: a key player in cancer development. J Hematol Oncol. 2020 Nov 10;13(1):151.
  • Brauning A, Rae M, Zhu G, et al. Aging of the immune system: focus on natural killer cells phenotype and functions. Cells. 2022 Mar 17;11(6):1017.
  • Solana R, Tarazona R, Gayoso I, et al. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012 Oct;24(5):331–341. DOI:10.1016/j.smim.2012.04.008.
  • Koch S, Larbi A, Derhovanessian E, et al. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun Ageing. 2008 Jul 25;5(1):6.
  • Song Y, Wang B, Song R, et al. T-cell immunoglobulin and ITIM domain contributes to CD8 + T-cell immunosenescence. Aging Cell. 2018 Apr;17(2):e12716. DOI:10.1111/acel.12716.
  • Huang B, Liu R, Wang P, et al. CD8 + CD57 + T cells exhibit distinct features in human non-small cell lung cancer. J Immunother Cancer. 2020 Jun;8(1):e000639. DOI:10.1136/jitc-2020-000639.
  • Xu W, Larbi A. Markers of T cell senescence in humans. Int J Mol Sci. 2017 Aug 10;18(8):1742.
  • Frasca D, Diaz A, Romero M, et al. B Cell Immunosenescence. Annu Rev Cell Dev Biol. 2020 Oct 6;36(1):551–574.
  • Fukushima Y, Minato N, Hattori M. The impact of senescence-associated T cells on immunosenescence and age-related disorders. Inflamm Regen. 2018;38(1):24.
  • Salminen A, Kauppinen A, Kaarniranta K. Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence. Biogerontology. 2018 Oct;19(5):325–339.
  • Pawelec G, Picard E, Bueno V, et al. MDSCs, ageing and inflammageing. Cell Immunol. 2021 Apr;362:104297.
  • Wang SS, Liu W, Ly D, et al. Tumor-infiltrating B cells: their role and application in anti-tumor immunity in lung cancer. Cell Mol Immunol. 2019 Jan;16(1):6–18. DOI:10.1038/s41423-018-0027-x.
  • Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life. Immunity. 2018 Feb 20;48(2):202–213.
  • Naylor K, Li G, Vallejo AN, et al. The influence of age on T cell generation and TCR diversity. J Iimmunol. 2005 Jun 1;174(11):7446–7452.
  • Tsukishiro T, Donnenberg AD, Whiteside TL. Rapid turnover of the CD8(+)CD28(-) T-cell subset of effector cells in the circulation of patients with head and neck cancer. Cancer Immunol Immunother. 2003 Oct;52(10):599–607.
  • Tan J, Chen S, Lu Y, et al. Higher PD-1 expression concurrent with exhausted CD8+ T cells in patients with de novo acute myeloid leukemia. Chin J Cancer Res. 2017 Oct;29(5):463–470. DOI:10.21147/j.issn.1000-9604.2017.05.11.
  • Pan XD, Mao YQ, Zhu LJ, et al. Changes of regulatory T cells and FoxP3 gene expression in the aging process and its relationship with lung tumors in humans and mice. Chin Med J (Engl). 2012 Jun;125(11):2004–2011.
  • Gong Z, Jia Q, Chen J, et al. Impaired cytolytic activity and loss of clonal neoantigens in elderly patients with lung adenocarcinoma. J Thorac Oncol. 2019 May;14(5):857–866. DOI:10.1016/j.jtho.2019.01.024.
  • Hagen M, Derudder E. Inflammation and the alteration of B-cell physiology in aging. Gerontology. 2020;66(2):105–113.
  • Labi V, Derudder E. Cell signaling and the aging of B cells. Exp Gerontol. 2020 Sep;138:110985.
  • McKenna RW, Washington LT, Aquino DB, et al. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood. 2001 Oct 15;98(8):2498–2507.
  • Ratliff M, Alter S, Frasca D, et al. In senescence, age-associated B cells secrete TNFalpha and inhibit survival of B-cell precursors. Aging Cell. 2013 Apr;12(2):303–311. DOI:10.1111/acel.12055.
  • Cepeda S, Cantu C, Orozco S, et al. Age-associated decline in thymic B cell expression of aire and aire-dependent self-antigens. Cell Rep. 2018 Jan 30;22(5):1276–1287.
  • Hernandez-Segura A, de Jong TV, Melov S, et al. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 2017 Sep 11;27(17):2652–2660.e4.
  • Martínez-Zamudio RI, Dewald HK, Vasilopoulos T, et al. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell. 2021 May;20(5):e13344. DOI:10.1111/acel.13344.
  • Callender LA, Carroll EC, Beal RWJ, et al. Human CD8(+) EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell. 2018 Feb;17(1). DOI:10.1111/acel.12675.
  • Liu W, Wang H, Bai F, et al. IL-6 promotes metastasis of non-small-cell lung cancer by up-regulating TIM-4 via NF-κB. Cell Prolif. 2020 Mar;53(3):e12776. DOI:10.1111/cpr.12776.
  • Yang Z, Schooling CM, Kwok MK. Mendelian randomization study of interleukin (IL)-1 family and lung cancer. Sci Rep. 2021 Sep 2;11(1):17606.
  • Numasaki M, Watanabe M, Suzuki T, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol. 2005 Nov 1;175(9):6177–6189.
  • Wang R, Yamada T, Kita K, et al. Transient IGF-1R inhibition combined with osimertinib eradicates AXL-low expressing EGFR mutated lung cancer. Nat Commun. 2020 Sep 14;11(1):4607.
  • Kadota T, Fujita Y, Yoshioka Y, et al. Emerging role of extracellular vesicles as a senescence-associated secretory phenotype: insights into the pathophysiology of lung diseases. Mol Aspects Med. 2018 Apr;60:92–103.
  • Robbins PD, Jurk D, Khosla S, et al. Senolytic drugs: reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol. 2021 Jan 6;61(1):779–803.
  • Tan N, Malek M, Zha J, et al. Navitoclax enhances the efficacy of taxanes in non-small cell lung cancer models. Clin Cancer Res. 2011 Mar 15;17(6):1394–1404.
  • Chen B, Wang X, Zhao W, et al. Klotho inhibits growth and promotes apoptosis in human lung cancer cell line A549. J Exp Clin Cancer Res. 2010 Jul 19;29(1):99.
  • Zhang M, Tian J, Wang R, et al. Dasatinib inhibits lung cancer cell growth and patient derived tumor growth in mice by targeting LIMK1. Front Cell Dev Biol. 2020;8:556532.
  • Guo H, Ding H, Tang X, et al. Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac Cancer. 2021 May;12(9):1415–1422. DOI:10.1111/1759-7714.13925.
  • Punia R, Raina K, Agarwal R, et al. Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells. PLoS One. 2017;12(8):e0182870. DOI:10.1371/journal.pone.0182870.
  • Rawat L, Hegde H, Hoti SL, et al. Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells. Biomed Pharmacother. 2020 [2020/August/01];128:110243.
  • Ye W, Huang Q, Tang T, et al. Synergistic effects of piperlongumine and gemcitabine against KRAS mutant lung cancer. Tumori. 2021 Apr;107(2):119–124. DOI:10.1177/0300891620930789.
  • Zhu P, Qian J, Xu Z, et al. Overview of piperlongumine analogues and their therapeutic potential. Eur J Med Chem. 2021 [2021/August/05/];220:113471.
  • Jiang ZB, Wang WJ, Xu C, et al. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer. Cancer Lett. 2021 Sep 1;515:36–48. DOI:10.1016/j.canlet.2021.05.019.
  • Feng M, Kim J, Field K, et al. Aspirin ameliorates the long-term adverse effects of doxorubicin through suppression of cellular senescence. FASEB Bioadv. 2019 Sep;1(9):579–590. DOI:10.1096/fba.2019-00041.
  • Mohd Tajuddin WNB W, Lajis NH, Abas F, et al. Mechanistic understanding of curcumin’s therapeutic effects in LUNG CANCER. Nutrients. 2019 Dec 6;11(12). DOI:10.3390/nu11122989.
  • Zhang M, Wang R, Tian J, et al. Targeting LIMK1 with luteolin inhibits the growth of lung cancer in vitro and in vivo. J Cell Mol Med. 2021 Jun;25(12):5560–5571. DOI:10.1111/jcmm.16568.
  • Fouzder C, Mukhuty A, Kundu R. Kaempferol inhibits Nrf2 signalling pathway via downregulation of Nrf2 mRNA and induces apoptosis in NSCLC cells. Arch Biochem Biophys. 2021 Jan 15;697:108700. DOI:10.1016/j.abb.2020.108700.
  • Kuo WT, Tsai YC, Wu HC, et al. Radiosensitization of non-small cell lung cancer by kaempferol. Oncol Rep. 2015 Nov;34(5):2351–2356. DOI:10.3892/or.2015.4204.
  • Wang J, Li J, Cao N, et al. Resveratrol, an activator of SIRT1, induces protective autophagy in non-small-cell lung cancer via inhibiting Akt/mTOR and activating p38-MAPK. Onco Targets Ther. 2018;11:7777–7786.
  • Cao W, Ma L. Effect and mechanism of rapamycin on proliferation and apoptosis of human lung cancer cells. Cell Mol Biol (Noisy-le-grand). 2020 Sep 30;66(6):65–70.
  • Shen M, Xu Z, Xu W, et al. Inhibition of ATM reverses EMT and decreases metastatic potential of cisplatin-resistant lung cancer cells through JAK/STAT3/PD-L1 pathway. J Exp Clin Cancer Res. 2019 Apr 8;38(1):149.
  • Taverna JA, Hung CN, DeArmond DT, et al. Single-cell proteomic profiling identifies combined AXL and JAK1 inhibition as a novel therapeutic strategy for lung cancer. Cancer Res. 2020 Apr 1;80(7):1551–1563.
  • Jin D, Guo J, Wang D, et al. The antineoplastic drug metformin downregulates YAP by interfering with IRF-1 binding to the YAP promoter in NSCLC. EBioMedicine. 2018 Nov;37:188–204.
  • Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28.
  • Tabasum S, Singh RP. Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition. Chem Biol Interact. 2019 Apr 25;303:14–21. DOI:10.1016/j.cbi.2019.02.020.
  • Jiang P, Xu C, Zhang P, et al. Epigallocatechin 3 gallate inhibits self renewal ability of lung cancer stem‑like cells through inhibition of CLOCK. Int J Mol Med. 2020 Dec;46(6):2216–2224. DOI:10.3892/ijmm.2020.4758.
  • Kumar R, Sharma A, Kumari A, et al. Epigallocatechin gallate suppresses premature senescence of preadipocytes by inhibition of PI3K/Akt/mTOR pathway and induces senescent cell death by regulation of Bax/Bcl-2 pathway. Biogerontology. 2019 Apr;20(2):171–189. DOI:10.1007/s10522-018-9785-1.
  • Cai Y, Zhou H, Zhu Y, et al. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res. 2020 Jul;30(7):574–589. DOI:10.1038/s41422-020-0314-9.
  • González-Gualda E, Pàez-Ribes M, Lozano-Torres B, et al. Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell. 2020 Apr;19(4):e13142. DOI:10.1111/acel.13142.
  • Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014 [2014/January/01];15(1):49–63. DOI:10.1038/nrm3722.
  • Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2016 Jun;15(3):428–435. DOI:10.1111/acel.12445.
  • Moreau K, Coen M, Zhang AX, et al. Proteolysis-targeting chimeras in drug development: a safety perspective. Br J Pharmacol. 2020;177(8):1709–1718. DOI:10.1111/bph.15014.
  • Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020;181(1):102–114.
  • He Y, Zhang X, Chang J, et al. Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun. 2020 Apr 24;11(1):1996.
  • Thummuri D, Khan S, Underwood PW, et al. Overcoming Gemcitabine resistance in pancreatic cancer using the BCL-X(L)-specific degrader DT2216. Mol Cancer Ther. 2022 Jan;21(1):184–192. DOI:10.1158/1535-7163.MCT-21-0474.
  • Fan Y, Cheng J, Zeng H, et al. Senescent cell depletion through targeting BCL-family proteins and mitochondria. Front Physiol. 2020;11:593630.
  • Ritschka B, Knauer-Meyer T, Gonçalves DS, et al. The senotherapeutic drug ABT-737 disrupts aberrant p21 expression to restore liver regeneration in adult mice. Genes Dev. 2020 Apr 1;34(7–8):489–494.
  • Wang M, Zhang G, Zhang Y, et al. Fibrinogen alpha chain knockout promotes tumor growth and metastasis through integrin-AKT signaling pathway in lung cancer. Mol Cancer Res. 2020 Jul;18(7):943–954. DOI:10.1158/1541-7786.MCR-19-1033.
  • Hickson LJ, Langhi Prata LGP, Bobart SA, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019 Sep;47:446–456.
  • Schafer MJ, White TA, Iijima K, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017 Feb 23;8(1):14532.
  • Naeimi AF, Alizadeh M. Antioxidant properties of the flavonoid fisetin: an updated review of in vivo and in vitro studies. Trends Food SciTechnol. 2017;70:34–44. 2017/December/01. DOI:10.1016/j.tifs.2017.10.003.
  • Vishwas S, Singh SK, Gulati M, et al. Harnessing the therapeutic potential of fisetin and its nanoparticles: journey so far and road ahead. Chem Biol Interact. 2022 [2022/April/01];356:109869.
  • Shao Z, Wang B, Shi Y, et al. Senolytic agent quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis. Osteoarthritis Cartilage. 2021 Mar;29(3):413–422. DOI:10.1016/j.joca.2020.11.006.
  • Shi J, Xia Y, Wang H, et al. Piperlongumine is an NLRP3 inhibitor with anti-inflammatory activity. Front Pharmacol. 2021;12:818326.
  • Fuhrmann-Stroissnigg H, Ling YY, Zhao J, et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun. 2017 Sep 4;8(1):422.
  • Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle. 2018;17(9):1048–1055.
  • Triana-Martínez F, Picallos-Rabina P, Da Silva-Álvarez S, et al. Identification and characterization of Cardiac Glycosides as senolytic compounds. Nat Commun. 2019 [2019/October/21];10(1):4731. DOI:10.1038/s41467-019-12888-x.
  • Pongrakhananon V, Chunhacha P, Chanvorachote P. Ouabain suppresses the migratory behavior of lung cancer cells. PLoS One. 2013;8(7):e68623.
  • Lim H, Park H, Kim HP. Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts. Biochem Pharmacol. 2015 Aug 15;96(4):337–348.
  • Wang R, Yu Z, Sunchu B, et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell. 2017 Jun;16(3):564–574. DOI:10.1111/acel.12587.
  • Xu M, Tchkonia T, Kirkland JL. Perspective: targeting the JAK/STAT pathway to fight age-related dysfunction. Pharmacol Res. 2016 Sep;111:152–154.
  • Xu M, Tchkonia T, Ding H, et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):E6301–10.
  • Morsli S, Doherty GJ, Muñoz-Espín D. Activatable senoprobes and senolytics: novel strategies to detect and target senescent cells. Mech Ageing Dev. 2022;202:111618. 2022/March/01. DOI:10.1016/j.mad.2021.111618.
  • Shinmura K. Cardiac senescence, heart failure, and frailty: a triangle in elderly people. Keio J Med. 2016 Jun 25;65(2):25–32.
  • Carpenter VJ, Saleh T, Gewirtz DA. Senolytics for cancer therapy: is all that glitters really gold? Cancers (Basel). 2021;13(4):723.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.