113
Views
0
CrossRef citations to date
0
Altmetric
Review

Adaptive therapy to circumvent drug resistance to tyrosine kinase inhibitors in cancer: is it clinically relevant?

, , , & ORCID Icon
Pages 1309-1323 | Received 12 Dec 2021, Accepted 10 Nov 2022, Published online: 24 Nov 2022

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021 Jan;71(1):7–33.
  • Si W, Shen J, Zheng H, et al. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics. 2019 Feb;11(1):25.
  • Konieczkowski DJ, Johannessen CM, Garraway LA. A convergence-based framework for cancer drug resistance. Cancer Cell. 2018 May;33(5):801–815.
  • McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017 Feb;168(4):613–628.
  • Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001 Aug;293(5531):876–880.
  • Burgess MR, Sawyers CL. Treating imatinib-resistant leukemia: the next generation targeted therapies. ScientificWorldJournal. 2006Aug;6:918–930. DOI:10.1100/tsw.2006.184
  • Hoemberger M, Pitsawong W, Kern D. Cumulative mechanism of several major imatinib-resistant mutations in Abl kinase. Proc Natl Acad Sci U S A. 2020 Aug;117(32):19221–19227.
  • Soverini S, Iacobucci I, Baccarani M, et al. Targeted therapy and the T315I mutation in Philadelphia-positive leukemias. Haematologica. 2007 Apr;92(4):437–439.
  • Zhang Y, Swoboda DM, Grover A, et al. T315I-mutated myeloid sarcoma. Leuk Res Rep. 2019;12:100184.
  • Liu J, Yang H, Xu X, et al. Mutations in the BCR-ABL1 kinase domain in patients with chronic myeloid leukaemia treated with TKIs or at diagnosis. Oncol Lett. 2020 Aug;20(2):1071.
  • Saussele S, Haverkamp W, Lang F, et al. Ponatinib in the treatment of chronic myeloid leukemia and Philadelphia chromosome-positive acute leukemia: recommendations of a German expert consensus panel with focus on cardiovascular management. Acta Haematol. 2020;143(3):217–231.
  • Devos T, Havelange V, Theunissen K, et al. Clinical outcomes in patients with Philadelphia chromosome-positive leukemia treated with ponatinib in routine clinical practice-data from a Belgian registry. Ann Hematol. 2021 Jul;100(7):1723–1732.
  • Chen J, Wang F, Fang J, et al. Dynamic evolution of ponatinib-resistant mutations in BCR–ABL1 -positive leukaemias revealed by next-generation sequencing. Br J Haematol. 2020;191(5):e113–e116.
  • Hata AN, Niederst MJ, Archibald HL, et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med. 2016 Mar;22(3):262–269.
  • Rangachari D, To C, Shpilsky JE, et al. EGFR-mutated lung cancers resistant to osimertinib through EGFR C797S respond to first-generation reversible EGFR inhibitors but eventually acquire EGFR T790M/C797S in preclinical models and clinical samples. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2019 Nov;14(11):1995–2002.
  • Choi G, Kim D, Oh J. AI-based drug discovery of TKIs targeting L858R/T790M/C797S-mutant EGFR in non-small cell lung cancer. Front Pharmacol. 2021;12:660313.
  • Tanaka K, Nosaki K, Otsubo K, et al. Acquisition of the T790M resistance mutation during Afatinib treatment in EGFR tyrosine kinase inhibitor-naïve patients with non–small cell lung cancer harboring EGFR mutations. Oncotarget. 2017 Jul;8(40):68123–68130.
  • Hakozaki T, Yomota M. Acquisition of T790M resistance mutation in a patient with advanced adenocarcinoma harbouring uncommon EGFR mutations: a case report and literature review. Oncol Targets Ther. 2019Jan;12:745–748. DOI:10.2147/OTT.S190034
  • Molina-Vila M-A, Stahel RA, Dafni U, et al. Evolution and clinical impact of EGFR mutations in circulating free DNA in the BELIEF trial. J Thorac Oncol. 2020 Mar;15(3):416–425.
  • Maynard A, McCoach CE, Rotow JK, et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell. 2020 Sep;182(5):1232–1251.e22.
  • Xu Y, Huang Z, Gong L, et al. A case of resistance to tyrosine kinase inhibitor therapy: small cell carcinoma transformation concomitant with plasma-genotyped T790M positivity. Anticancer Drugs. 2017 Oct;28(9):1056–1061.
  • Pizzutilo EG, Lauricella C, Cerea G, et al. Concurrent small-cell transformation and emergence of trans-C797S and T790M mutations under sequential treatment with EGFR inhibitors in lung adenocarcinoma. JCO Precis Oncol. 2019 Dec;(3):1–5. DOI:10.1200/PO.19.00229
  • Ma S, He Z, Fu H, et al. Dynamic changes of acquired T790M mutation and small cell lung cancer transformation in a patient with EGFR-mutant adenocarcinoma after first- and third-generation EGFR-TKIs: a case report. Transl Lung Cancer Res. 2020 Feb;9(1):139–143.
  • Chang C-F, Wang C-W, Hsu C-L. A case of small-cell lung cancer harboring an epidermal growth factor receptor mutation that responded to epidermal growth factor receptor tyrosine kinase inhibitor treatment. J Cancer Res Pract. 2020 Apr;7(2):78.
  • Kosaka T, Yamaki E, Mogi A, et al. Mechanisms of resistance to EGFR TKIs and development of a new generation of drugs in non-small-cell lung cancer. J Biomed Biotechnol. 2011Jun;2011:e165214. DOI:10.1155/2011/165214
  • Welsh JW, Mahadevan D, Ellsworth R, et al. The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells. Radiat Oncol. 2009 Dec;4(1):69.
  • Yang L, Li J, Ran L, et al. Phosphorylated insulin-like growth factor 1 receptor is implicated in resistance to the cytostatic effect of gefitinib in colorectal cancer cells. J Gastrointest Surg. 2011 Jun;15(6):942–957.
  • Dumka D, Puri P, Carayol N, et al. Activation of the p38 Map kinase pathway is essential for the antileukemic effects of dasatinib. Leuk Lymphoma. 2009 Dec;50(12):2017–2029.
  • Nagaraj NS, Smith JJ, Revetta F, et al. Targeted inhibition of src kinase signaling attenuates pancreatic tumorigenesis. Mol Cancer Ther. 2010 Aug;9(8):2322–2332.
  • Suzuki M, Abe A, Imagama S, et al. BCR-ABL-independent and RAS/MAPK pathway-dependent form of imatinib resistance in Ph-positive acute lymphoblastic leukemia cell line with activation of EphB4. Eur J Haematol. 2010;84(3):229–238.
  • Bean J, Brennan C, Shih J-Y, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci. 2007 Dec;104(52):20932–20937.
  • Turke AB, Zejnullahu K, Wu Y-L, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell. 2010 Jan;17(1):77–88.
  • Corso S, Ghiso E, Cepero V, et al. Activation of HER family members in gastric carcinoma cells mediates resistance to MET inhibition. Mol Cancer. 2010 May;9(1):121.
  • Cepero V, Sierra JR, Corso S, et al. MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors. Cancer Res. 2010 Sep;70(19):7580–7590.
  • McDermott U, Pusapati RV, Christensen JG, et al. Acquired resistance of non–small cell lung cancer cells to MET kinase inhibition is mediated by a switch to epidermal growth factor receptor dependency. Cancer Res. 2010 Feb;70(4):1625–1634.
  • Jabbour E, Cortes J, Kantarjian H. Long-term outcomes in the second-line treatment of chronic myeloid leukemia. Cancer. 2011;117(5):897–906.
  • Leslie EM, Deeley RG, Cole SPC. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol. 2005 May;204(3):216–237.
  • Vasconcelos FC, Silva KL, Souza PSD, et al. Variation of MDR proteins expression and activity levels according to clinical status and evolution of CML patients. Cytometry B Clin Cytom. 2011;80B(3):158–166.
  • Brózik A, Hegedüs C, Erdei Z, et al. Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: substrates, chemosensitizers or inducers of acquired multidrug resistance? Expert Opin Drug Metab Toxicol. 2011 May;7(5):623–642.
  • Noble AR. Just say no to ‘de novo resistance.’ These Few Lines. 12, 2018. https://thesefewlines.wordpress.com/2018/12/12/just-say-no-to-de-novo-resistance/
  • Syn NL, Teng MWL, Mok TSK, et al. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017 Dec;18(12):e731–e741.
  • Zhao X, Lwin T, Silva A, et al. Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma. Nat Commun. 2017 Apr;8(1):14920.
  • Hazlehurst LA, Dalton WS. De novo and acquired resistance to antitumor alkylating agents. In: Teicher BA, editor. Cancer drug resistance. Humana Press: Totowa (NJ). 2006. 377–389. DOI:10.1007/978-1-59745-035-5_20
  • Henke E, Nandigama R, Ergün S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 2020;6:160.
  • Khalaf K, Hana D, Chou J-T-T, et al. Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Front Immunol. 2021;12:1764.
  • Lee JS, Hur JY, Kim HJ, et al. A case of concurrent de novo C797S and L858R EGFR mutation detected in stage IA non–small cell lung cancer patient. J Thorac Oncol. 2017 Nov;12(11):e179–e181.
  • Jia Y, Yun C-H, Park E, et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature. 2016 Jun;534(7605):129–132.
  • Maity S, Pai KSR, Nayak Y. Advances in targeting EGFR allosteric site as anti-NSCLC therapy to overcome the drug resistance. Pharmacol Rep. 2020 Aug;72(4):799–813.
  • Peitzsch C, Tyutyunnykova A, Pantel K, et al. Cancer stem cells: the root of tumor recurrence and metastases. Semin Cancer Biol. 2017Jun;44:10–24. DOI:10.1016/j.semcancer.2017.02.011
  • Begicevic -R-R, Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci. 2017 Nov;18(11):2362.
  • Traverso N, Ricciarelli R, Nitti M, et al. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev. 2013May;2013:e972913. DOI:10.1155/2013/972913
  • Kennedy L, Sandhu JK, Harper M-E, et al. Role of glutathione in cancer: from mechanisms to therapies. Biomolecules. 2020 Oct;10(10):1429.
  • Inukai M, Toyooka S, Ito S, et al. Presence of epidermal growth factor receptor gene t790m mutation as a minor clone in non–small cell lung cancer. Cancer Res. 2006 Aug;66(16):7854–7858.
  • Wu J-Y, Yu C-J, Chang Y-C, et al. Effectiveness of tyrosine kinase inhibitors on ‘uncommon’ epidermal growth factor receptor mutations of unknown clinical significance in non-small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2011 Jun;17(11):3812–3821.
  • Su K-Y, Tseng J-S, Liao K-M, et al. Mutational monitoring of EGFR T790M in cfDNA for clinical outcome prediction in EGFR-mutant lung adenocarcinoma. PLoS ONE. 2018;13(11):e0207001.
  • Lettig L, Sahnane N, Pepe F, et al. EGFR T790M detection rate in lung adenocarcinomas at baseline using droplet digital PCR and validation by ultra-deep next generation sequencing. Transl Lung Cancer Res. 2019 Oct;8(5):584.
  • Yang Y, Meng Y, Zhang H, et al. Detection of EGFR and BRAF mutations by competitive allele-specific TaqMan polymerase chain reaction in lung adenocarcinoma. Oncol Lett. 2018 Mar;15(3):3295–3304.
  • Xue Z, You M, Peng P, et al. Taqman-MGB nanoPCR for highly specific detection of single-base mutations. Int J Nanomedicine. 2021;16:3695–3705.
  • Lee SH, Kim EY, Kim A, et al. Clinical implication and usefulness of de novo EGFR T790M mutation in lung adenocarcinoma with EGFR-tyrosine kinase inhibitor sensitizing mutation. Cancer Biol Ther. 2020 Aug;21(8):741–748.
  • Billaud A, Verriele V, Dauvé J, et al. Non-Small-cell lung cancer-sensitive detection of the p.Thr790Met EGFR alteration by preamplification before PNA-mediated PCR clamping and pyrosequencing. Diagn Basel Switz. 2020 Jul;10(8):E527.
  • Siggillino A, Ulivi P, Pasini L, et al. Detection of EGFR mutations in plasma cell-free tumor DNA of TKI-treated advanced-NSCLC patients by three methodologies: scorpion-ARMS, PNAClamp, and digital PCR. Diagn Basel Switz. 2020 Dec;10(12):E1062.
  • Zhou R, Cai Y, Li Z, et al. A digital PCR assay development to detect EGFR T790M mutation in NSCLC patients. Front Lab Med. 2018 Sep;2(3):89–96.
  • Ye L, Mesbah Ardakani N, Thomas C, et al. Detection of Low-level EGFR c.2369 C > T (p.Thr790Met) resistance mutation in pre-treatment non-small cell lung carcinomas harboring activating EGFR mutations and correlation with clinical outcomes. Pathol Oncol Res POR. 2020 Oct;26(4):2371–2379.
  • Vendrell JA, Mazieres J, Senal R, et al. Ultra-sensitive EGFR T790M detection as an independent prognostic marker for lung cancer patients harboring EGFR del19 mutations and treated with first-generation TKIs. Clin Cancer Res Off J Am Assoc Cancer Res. 2019 Jul;25(14):4280–4289.
  • de Kock R, Knoops C, Baselmans M, et al. Sensitive cell-free tumor DNA analysis in supernatant pleural effusions supports therapy selection and disease monitoring of lung cancer patients. Cancer Treat Res Commun. 2021Aug;29:100449. DOI:10.1016/j.ctarc.2021.100449
  • Brindel A, Althakfi W, Barritault M, et al. Uncommon EGFR mutations in lung adenocarcinoma: features and response to tyrosine kinase inhibitors. J Thorac Dis. 2020 Sep;12(9):4643–4650.
  • Guo G, Li G, Liu Y, et al. Next-generation sequencing reveals high uncommon EGFR mutations and tumour mutation burden in a subgroup of lung cancer patients. Front Oncol. 2021;11. DOI:10.3389/fonc.2021.621422.
  • Schalm SS, Dineen T, Lim SM, et al. 1296P BLU-945, a highly potent and selective 4th generation EGFR TKI for the treatment of EGFR T790M/C797S resistant NSCLC. Ann Oncol. 2020Sep;31:S839. DOI:10.1016/j.annonc.2020.08.1610
  • Liu X, Zhang X, Yang L, et al. Abstract 1320: preclinical evaluation of TQB3804, a potent EGFR C797S inhibitor. Cancer Res. 2019 Jul;79(13 Supplement):1320.
  • Kashima K, Kawauchi H, Tanimura H, et al. CH7233163 Overcomes Osimertinib-Resistant EGFR-Del19/T790M/C797S Mutation. Mol Cancer Ther. 2020 Nov;19(11):2288–2297.
  • Schumacher JA, Szankasi P, Bahler DW, et al. A pyrosequencing-based test for detection and relative quantification of the BCR-ABL1 T315I point mutation. J Clin Pathol. 2011 Jul;64(7):618–625.
  • Kantarjian H, Sawyers C, Hochhaus A, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002 Feb;346(9):645–652.
  • Hughes TP, Kaeda J, Branford S, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003 Oct;349(15):1423–1432.
  • Verma D, Kantarjian H, Jain N, et al. Sustained complete molecular response after imatinib discontinuation in a patient with chronic myeloid leukemia not previously exposed to interferon alpha. Leuk Lymphoma. 2008 Jan;49(7):1399–1402.
  • Kuwata T, Yoneda K, Kobayashi K, et al. Achievement of cure with gefitinib in advanced lung adenocarcinoma harboring an activating EGFR mutation: a case report. Case Rep Oncol. 2016 Dec;9(3):565–567.
  • Watanabe K, Haratake N, Takenaka T, et al. Long-term complete response to gefitinib after treatment termination in a patient with recurrent post-operative EGFR-mutated lung adenocarcinoma: case report and literature review. Transl Cancer Res. 2021 Nov;10(11):5010–5013.
  • Djebbari F, Stoner N, Lavender VT. A systematic review of non-standard dosing of oral anticancer therapies. BMC Cancer. 2018 Nov;18(1). DOI:10.1186/s12885-018-5066-2
  • Faber E, Naušová J, Jarošová M, et al. Intermittent dosage of imatinib mesylate in CML patients with a history of significant hematologic toxicity after standard dosing. Leuk Lymphoma. 2006 Jun;47(6):1082–1090.
  • Abrahamsson P-A. Potential benefits of intermittent androgen suppression therapy in the treatment of prostate cancer: a systematic review of the literature. Eur Urol. 2010 Jan;57(1):49–59.
  • Abdel-Wahab O, Klimek VM, Gaskell AA, et al. Efficacy of intermittent combined RAF and MEK inhibition in a patient with concurrent BRAF- and NRAS-mutant malignancies. Cancer Discov. 2014 May;4(5):538–545.
  • Botrel TEA, Clark O, Dos Reis RB, et al. Intermittent versus continuous androgen deprivation for locally advanced, recurrent or metastatic prostate cancer: a systematic review and meta-analysis. BMC Urol. 2014 Jan;14(1):9.
  • Chandra S, Nymeyer AC, Rice PF, et al. Intermittent dosing with sulindac provides effective colorectal cancer chemoprevention in the azoxymethane-treated mouse model. Cancer Prev Res (Phila Pa). 2017 Aug;10(8):459–466.
  • Satoh H, Inoue A, Kobayashi K, et al. Low-dose gefitinib treatment for patients with advanced non-small cell lung cancer harboring sensitive epidermal growth factor receptor mutations. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2011 Aug;6(8):1413–1417.
  • Mangiacavalli S, Albani G, Caravita T, et al. Similar neurotoxicity of an alternating compared to a continuous low-dose schedule of thalidomide for relapsed/refractory multiple myeloma. Leuk Lymphoma. 2012 Mar;53(3):514–515.
  • Takabayashi K, Kashiwagi K, Kawata T, et al. Continuous low-dose irradiation by I-125 seeds induces apoptosis of gastric cancer cells regardless of histological origin. Cancer Biol Ther. 2014 Jan;15(1):81–88.
  • Hirano R, Uchino J, Ueno M, et al. Low-dose Epidermal Growth Factor Receptor (EGFR)- tyrosine kinase inhibition of EGFR mutation-positive lung cancer: therapeutic benefits and associations between dosage, efficacy and body surface area. Asian Pac J Cancer Prev APJCP. 2016;17(2):785–789.
  • Lazarev S, Thompson MR, Stone NN, et al. Low-dose-rate brachytherapy for prostate cancer: outcomes at >10 years of follow-up. BJU Int. 2018 May;121(5):781–790.
  • Tsubata Y, Masuda T, Hamai K, et al. Efficacy of erlotinib and its effects on the quality of life of older patients with epidermal growth factor receptor-mutant non-small cell lung cancer: a prospective, multicenter, dose-modification study. Geriatr Gerontol Int. 2021 Aug;21(10):881–886.
  • Matsuzaki T, Iwami E, Sasahara K, et al. A case report of metastatic lung adenocarcinoma with long-term survival for over 11 years. Medicine (Baltimore). 2019 Jan;98(4):e14100 .
  • Najjar YG, Mittal K, Elson P, et al. A 2 weeks on and 1 week off schedule of sunitinib is associated with decreased toxicity in metastatic renal cell carcinoma. Eur J Cancer. 2014 Apr;50(6):1084–1089.
  • Gulmez A, Dikilitas M, Elkiran ET, et al. Acute sunitinib neurotoxicity. Cancer Treat Res Commun. 2021;27:100366.
  • Guerin M, Salem N, Walz J, et al. Major response with sorafenib in advanced renal cell carcinoma after 14 years of follow-up. World J Surg Oncol. 2013 Sep;11(1):243.
  • Devan AR, Kumar AR, Nair B, et al. Insights into an immunotherapeutic approach to combat multidrug resistance in hepatocellular carcinoma. Pharm Basel Switz. 2021 Jul;14(7):656.
  • Moser M, Radu I-P, Dufour J-F. Effects of Home Care on patients with hepatocellular carcinoma treated with sorafenib. JGH Open Open Access J Gastroenterol Hepatol. 2021 Aug;5(8):864–870.
  • Junaid T, Wu X, Thanukrishnan H, et al. Chapter 30 - Therapeutic drug monitoring. In: Thomas D, Eds. Clinical pharmacy education, practice and research. Amsterdam, Netherlands: Elsevier; 2019. p. 425–436. DOI:10.1016/B978-0-12-814276-9.00030-1.
  • Algazi AP, Othus M, Daud AI, et al. Continuous versus intermittent BRAF and MEK inhibition in patients with BRAF-mutated melanoma: a randomized phase 2 trial. Nat Med. 2020 Oct;26(10):1564–1568.
  • Gonzalez-Cao M, Mayo de Las Casas C, Oramas J, et al. Intermittent BRAF inhibition in advanced BRAF mutated melanoma results of a phase II randomized trial. Nat Commun. 2021 Dec;12(1, Art. no. 1). DOI:10.1038/s41467-021-26572-6.
  • Zhu Y, Du Y, Liu H, et al. Study of efficacy and safety of pulsatile administration of high‐dose gefitinib or erlotinib for advanced non‐small cell lung cancer patients with secondary drug resistance: a single center, single arm, phase II clinical trial. Thorac Cancer. 2016 Nov;7(6):663–669.
  • Camidge DR, Sequist LV, Jänne PA, et al. Phase Ib study of high-dose intermittent afatinib in patients with advanced solid tumors. Clin Lung Cancer. 2018 Sep;19(5):e655–e665.
  • Wang Y, Schmid-Bindert G, Zhou C. Erlotinib in the treatment of advanced non-small cell lung cancer: an update for clinicians. Ther Adv Med Oncol. 2012 Jan;4(1):19–29.
  • Yik YY, Alaga A, Hin HS. Osimertinib 80 mg EOD? Does this work? Proc Singap Healthc. Jun 2022;31:20101058221114744. doi: 10.1177/20101058221114743
  • Long GV, Stroyakovskiy D, Gogas H, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet Lond Engl. 2015 Aug;386(9992):444–451.
  • White PS, Pudusseri A, Lee SL, et al. Intermittent dosing of dabrafenib and trametinib in metastatic BRAFV600E mutated papillary thyroid cancer: two case reports. Thyroid Off J Am Thyroid Assoc. 2017 Sep;27(9):1201–1205.
  • Xue Y, Martelotto L, Baslan T, et al. An approach to suppress the evolution of resistance in BRAFV600E-mutant cancer. Nat Med. 2017 Aug;23(8):929–937.
  • Gatenby RA. A change of strategy in the war on cancer. Nature. 2009 May;459(7246, Art. no. 7246):508–509.
  • Gatenby RA, Silva AS, Gillies RJ, et al. Adaptive Therapy. Cancer Res. 2009 Jun;69(11):4894–4903 .
  • Cunningham JJ. A call for integrated metastatic management. Nat Ecol Evol. 2019 Jul;3(7, Art. no. 7):996–998.
  • Enriquez-Navas PM, Kam Y, Das T, et al. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci Transl Med. 2016 Feb;8(327):327ra24.
  • Grolmusz VK, Chen J, Emond R, et al. Exploiting collateral sensitivity controls growth of mixed culture of sensitive and resistant cells and decreases selection for resistant cells in a cell line model. Cancer Cell Int. 2020 Jun;20(1). DOI:10.1186/s12935-020-01337-1.
  • Emond R, Griffiths JI, Grolmusz VK, et al. Ecological interactions in breast cancer: cell facilitation promotes growth and survival under drug pressure. Apr. 2021. DOI:10.1101/2021.02.01.429214
  • Chmielecki J, Foo J, Oxnard GR, et al. Optimization of dosing for EGFR-mutant non–small cell lung cancer with evolutionary cancer modeling. Sci Transl Med. 2011 Jul;3(90):90ra59.
  • Xie X, Li L, Xie L, et al. A new single-cell level R-index for EGFR-TKI resistance and survival prediction in LUAD. bioRxiv. 2021. DOI:10.1101/2021.07.30.454426
  • Silva AS, Kam Y, Khin ZP, et al. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 2012 Dec;72(24):6362–6370.
  • Strobl M, West J, Viossat Y, et al. Turnover modulates the need for a cost of resistance in adaptive therapy. Cancer Res. 2020. DOI:10.1101/2020.01.22.914366.
  • Strobl MAR, Gallaher J, West J, et al. Spatial structure impacts adaptive therapy by shaping intra-tumoral competition. bioRxiv. 2021 Jan;2020.11.03.365163. DOI:10.1101/2020.11.03.365163
  • Kim E, Brown JS, Eroglu Z, et al. Adaptive therapy for metastatic melanoma: predictions from patient calibrated mathematical models. Cancers (Basel). 2021 Feb;13(4):823.
  • Gallaher JA, Enriquez-Navas PM, Luddy KA, et al. Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies. Cancer Res. 2018 Apr;78(8):2127–2139 .
  • Zhang J, Cunningham JJ, Brown JS, et al. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat Commun. 2017 28;8(1):1816.
  • Brady-Nicholls R, Zhang J, Zhang T, et al. Predicting patient-specific response to adaptive therapy in metastatic castration-resistant prostate cancer using prostate-specific antigen dynamics. Neoplasia. 2021 Sep;23(9):851–858.
  • University College, London. A multicentre phase ii randomised controlled trial to evaluate the efficacy of Adaptive Therapy (AT) with carboplatin, based on changes in CA125, in patients with relapsed platinum-sensitive high grade serous or high grade endometrioid ovarian cancer. clinicaltrials.gov, Clinical trial registration NCT05080556, Jun. 2022. Accessed Jul. 14, 2022. Available: https://clinicaltrials.gov/ct2/show/NCT05080556
  • H. Lee Moffitt Cancer Center and Research Institute. A pilot study of adaptive abiraterone therapy for metastatic castration resistant prostate cancer. clinicaltrials.gov, Clinical trial registration NCT02415621, Jun. 2022. Accessed: Jul. 14, 2022. Available: https://clinicaltrials.gov/ct2/show/NCT02415621
  • H. Lee Moffitt Cancer Center and Research Institute. Adaptive tyrosine kinase inhibitor therapy in patients with advanced progressive thyroid cancer. clinicaltrials.gov, Clinical trial registration NCT03630120, Jul. 2021. Accessed Jul. 14, 2022. Available: https://clinicaltrials.gov/ct2/show/NCT03630120
  • H. Lee Moffitt Cancer Center and Research Institute. Pilot study of adaptive BRAF-MEK inhibitor therapy for advanced BRAF mutant melanoma. clinicaltrials.gov, Clinical trial registration NCT03543969, Feb. 2022. Accessed Jul. 14, 2022. Available: https://clinicaltrials.gov/ct2/show/NCT03543969
  • Australian and New Zealand Urogenital and Prostate Cancer Trials Group. A randomised non-comparative phase ii trial of biomarker-driven intermittent docetaxel versus standard-of-care (SOC) docetaxel in metastatic castration-resistant prostate cancer (mCRPC). clinicaltrials.gov, Clinical trial registration NCT04918810, Feb. 2022. Accessed Jul. 14, 2022. Available: https://clinicaltrials.gov/ct2/show/NCT04918810
  • H. Lee Moffitt Cancer Center and Research Institute. A phase 1b study of adaptive androgen deprivation therapy for state IV castration sensitive prostate cancer. clinicaltrials.gov, Clinical trial registration NCT03511196, May 2022. Accessed Jul. 14, 2022. Available: https://clinicaltrials.gov/ct2/show/NCT03511196
  • Institut Cancerologie de l’Ouest. A study comparing intermittent androgen depriving therapy with or without salvage high-dose intensity modulation radiotherapy (IG-IMRT) to oligometastatic pelvic lymph nodes in biochemically-relapsing prostate cancer patients clinicaltrials.gov, Clinical trial registration NCT03630666, Dec. 2021. Accessed Jul. 14, 2022. Available: https://clinicaltrials.gov/ct2/show/NCT03630666
  • Tampere University. Intermittent vs continuous androgen deprivation in patients with advanced prostate cancer. clinicaltrials.gov, Clinical trial registration NCT00293670, Feb. 2006. Accessed Jul. 14, 2022. Available: https://clinicaltrials.gov/ct2/show/NCT00293670
  • Ingelheim B. A phase 1b study of intermittent administration of high doses of the irreversible EGFR Inhibitor afatinib as a means of achieving plasma levels active against non-small cell lung cancer with known T790M mutations. clinicaltrials.gov, Clinical trial registration NCT01647711, Dec. 2016. Accessed Jul. 14, 2022. Available: https://clinicaltrials.gov/ct2/show/NCT01647711
  • Zhang L, Mai W, Jiang W, et al. Case report: pathologic complete response to pembrolizumab in combination with neoadjuvant chemotherapy in a patient with stage IIB squamous lung cancer. Front Surg., vol. 7, 2020, Available. ;. https://www.frontiersin.org/article/10.3389/fsurg.2020.601805
  • Liu G, Zhou W, Li X, et al. Case report: complete response of primary massive hepatocellular carcinoma to anti-programmed death ligand-1 antibody following progression on anti-programmed death-1 antibody. Front Immunol. 2021;12. Available https://www.frontiersin.org/article/10.3389/fimmu.2021.712351
  • Atkins MB, Lee SJ, Chmielowski B, et al. DREAMseq (Doublet, randomized evaluation in advanced melanoma sequencing): a phase III trial—ECOG-ACRIN EA6134. J Clin Oncol. 2021 Dec;39(36_suppl):356154.
  • West J, You L, Zhang J, et al. Towards multidrug adaptive therapy. Cancer Res. 2020 Apr;80(7):1578–1589.
  • Jekunen AP. Role of rebiopsy in relapsed non-small cell lung cancer for directing oncology treatments. J Oncol. 2015;2015:809835.
  • Pisapia P, Malapelle U, Troncone G. Liquid biopsy and lung cancer. Acta Cytol. 2019;63(6):489–496.
  • Revelo AE, Martin A, Velasquez R, et al. Liquid biopsy for lung cancers: an update on recent developments. Ann Transl Med. 2019 Aug;7(15):349.
  • Guibert N, Pradines A, Favre G, et al. Current and future applications of liquid biopsy in nonsmall cell lung cancer from early to advanced stages. Eur Respir Rev. 2020 Mar;29(155):190052.
  • Kim E, Brown JS, Eroglu Z, et al. Understanding the potential benefits of adaptive therapy for metastatic melanoma. bioRxiv. 2020 Oct;2020.10.16.343269. DOI:10.1101/2020.10.16.343269
  • Imran A, Stanslas J. Delaying emergence of resistance to KRAS inhibitors with adaptive therapy: ‘treatment-to-contain’ instead of ‘treatment-to-cure.’ Oncologie. 2022;24(2, Art. no. 2). DOI:10.32604/oncologie.2022.023629

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.