483
Views
0
CrossRef citations to date
0
Altmetric
Review

Addressing the need for more therapeutic options in neuroendocrine prostate cancer

, &
Pages 177-185 | Received 30 Sep 2022, Accepted 23 Jan 2023, Published online: 03 Feb 2023

References

  • American Cancer Society Cancer Facts & Figures [Internet]; 2022[Cited 2022 Aug 15]. Available from https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html
  • National Cancer Institute Cancer Stat Facts:Prostate Cancer [Internet]; 2022 [Cited 2022 Aug 15] Available from: https://seer.cancer.gov/statfacts/html/prost.html
  • Mayo Clinic Gets FDA Approval for New Imaging Agent for Recurrent Prostate Cancer [Internet]. 2012; [Cited 2022 Aug 15] Available from: https://newsnetwork.mayoclinic.org/discussion/mayo-clinic-gets-fda-approval-for-new-imaging-agent-for-recurrent-prostate-cancer/
  • Lonergan PE, Tindall DJ. Androgen receptor signaling in prostate cancer development and progression. J Carcinog. 2011;10(1):20.
  • Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004 Oct 7;351(15):1502–1512.
  • Basch E, Autio K, Ryan CJ, et al. Abiraterone acetate plus prednisone versus prednisone alone in chemotherapy-naive men with metastatic castration-resistant prostate cancer: patient-reported outcome results of a randomised phase 3 trial. Lancet Oncol. 2013 Nov;14(12):1193–1199.
  • Aggarwal R, Huang J, Alumkal JJ, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J Clin Oncol. 2018 Aug 20;36(24):2492–2503.
  • Epstein JI, Amin MB, Beltran H, et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol. 2014 Jun;38(6):756–767.
  • Wenk RE, Bhagavan BS, Levy R, et al. Ectopic ACTH, prostatic oat cell carcinoma, and marked hypernatremia. Cancer. 1977 Aug;40(2):773–778.
  • Zaffuto E, Pompe R, Zanaty M, et al. Contemporary incidence and cancer control outcomes of primary neuroendocrine prostate cancer: a SEER Database Analysis. Clin Genitourin Cancer. 2017 Oct;15(5):e793–e800.
  • Abida W, Cyrta J, Heller G, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11428–11436.
  • Zhang Q, Han Y, Zhang Y, et al. Treatment-emergent neuroendocrine prostate cancer: a clinicopathological and immunohistochemical analysis of 94 cases. Front Oncol. 2020;10:571308.
  • Liu S, Alabi BR, Yin Q, et al. Molecular mechanisms underlying the development of neuroendocrine prostate cancer. Semin Cancer Biol. 2022;86(Pt 3):57–68.
  • Aparicio A, Logothetis CJ, Maity SN. Understanding the lethal variant of prostate cancer: power of examining extremes. Cancer Discov. 2011 Nov;1(6):466–468.
  • Turbat-Herrera EA, Herrera GA, Gore I, et al. Neuroendocrine differentiation in prostatic carcinomas. A retrospective autopsy study. Arch Pathol Lab Med. 1988 Nov;112(11):1100–1105.
  • Tanaka M, Suzuki Y, Takaoka K, et al. Progression of prostate cancer to neuroendocrine cell tumor. Int J Urol. 2001Aug8; 8(8)431–436. discussion 437
  • Alanee S, Moore A, Nutt M, et al. Contemporary incidence and mortality rates of neuroendocrine prostate cancer. Anticancer Res. 2015 Jul;35(7):4145–4150.
  • Marcus DM, Goodman M, Jani AB, et al. A comprehensive review of incidence and survival in patients with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis. 2012 Sep;15(3):283–288.
  • Conteduca V, Oromendia C, Eng KW, et al. Clinical features of neuroendocrine prostate cancer. Eur J Cancer. 2019 Nov;121:7–18.
  • Clermont PL, Ci XP, Pandha H, et al. Treatment-emergent neuroendocrine prostate cancer: molecularly driven clinical guidelines. Int J Endocr Oncol. 2019;6:2.
  • Sismeiro R, Brito Monteiro M, Negrao C, et al. Male breast metastasis: a case of treatment-emergent neuroendocrine prostate cancer. Cureus. 2022 Apr;14(4):e24283.
  • Masuda T, Kosaka T, Nakamura K, et al. Multiple metastases of androgen indifferent prostate cancer in the urinary tract: two case reports and a literature review. BMC Med Genomics. 2022 May 21;15(1):118.
  • Munoz Lopez AY, Dominguez Castillo RE, Rodenas Gil EA, et al. Primary neuroendocrine prostate cancer with adrenal gland metastasis. Urol Case Rep. 2022 Jan;40:101896.
  • Aly M, Schain F, Leval A, et al. Survival in men diagnosed with castration resistant prostate cancer: a population-based observational study in Sweden. J Clin Oncol. 2019 May 20; 37(15_suppl):15
  • Papandreou CN, Daliani DD, Thall PF, et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate. J Clin Oncol. 2002 Jul 15;20(14):3072–3080.
  • Vlachostergios PJ, Karathanasis A, Tzortzis V. Expression of fibroblast activation protein is enriched in neuroendocrine prostate cancer and predicts worse survival. Genes (Basel). 2022 Jan 13;13(1):135.
  • Iwamoto H, Nakagawa R, Makino T, et al. Treatment outcomes in neuroendocrine prostate cancer. Anticancer Res. 2022 Apr;42(4):2167–2176.
  • Abbas F, Civantos F, Benedetto P, et al. Small cell carcinoma of the bladder and prostate. Urology. 1995 Nov;46(5):617–630.
  • Merkens L, Sailer V, Lessel D, et al. Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. J Exp Clin Cancer Res. 2022 Feb 2;41(1):46.
  • Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016 Mar;22(3):298–305.
  • Ku SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017 Jan 6;355(6320):78–83.
  • Karanikolas BD, Figueiredo ML, Wu L. Comprehensive evaluation of the role of EZH2 in the growth, invasion, and aggression of a panel of prostate cancer cell lines. Prostate. 2010 May 1;70(6):675–688.
  • Nadal R, Schweizer M, Kryvenko ON, et al. Small cell carcinoma of the prostate. Nat Rev Urol. 2014 Apr;11(4):213–219.
  • Huang J, Yao JL, Di Sant’agnese PA, et al. Immunohistochemical characterization of neuroendocrine cells in prostate cancer. Prostate 2006 Sep 15;66(13):1399–1406.
  • Bakht MK, Derecichei I, Li Y, et al. Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. Endocr Relat Cancer. 2018 Nov 23;26(2):131–146.
  • Koo PJ, David Crawford E. (1)(8)F-NaFPET/CT and (1)(1) C-CholinePET/CT for the initial detection of metastatic disease in prostate cancer: overview and potential utilization. Oncology (Williston Park). 2014 Dec;28(12):1057.
  • Kwon ED, editor DIY combat manual for beating prostate cancer 2021.
  • Zhou J, Gou Z, Wu R, et al. Comparison of PSMA-PET/CT, choline-PET/CT, NaF-PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a systematic review and meta-analysis. Skeletal Radiol. 2019 Dec;48(12):1915–1924.
  • Te Beek ET, Burggraaf J, Teunissen JJM, et al. Clinical pharmacology of radiotheranostics in oncology. Clin Pharmacol Ther. 2022 Apr;113(2):260–274.
  • Garg I, Nathan MA, Packard AT, et al. (11)C-cholinepositron emission tomography/computed tomography for detection of disease relapse in patients with history of biochemically recurrent prostate cancer and prostate-specific antigen </=0.1 ng/ml. J Cancer Res Ther. 2021 April-June;17(2):358–365.
  • Hennrich U, Benesova M. [(68)Ga]Ga-DOTA-TOC: the First FDA-approved (68) Ga-Radiopharmaceutical for PET imaging. Pharmaceuticals (Basel). 2020 Mar 3;13(3):38.
  • Huang Z, Rui J, Li X, et al. Use of (1)(1) C-Cholinepositron emission tomography/computed tomography to investigate the mechanism of choline metabolism in lung cancer. Mol Med Rep. 2015 May;11(5):3285–3290.
  • Beheshti MRA, Langsteger W. PET/CT in cancer: an interdisciplinary approach to individualized imaging . Elsevier Health Sciences. 2017.
  • Gusman M, Aminsharifi JA, Peacock JG, et al. Review of (18) F-FluciclovinePET for detection of recurrent prostate cancer. Radiographics. 2019 May-June;39(3):822–841.
  • Kitajima K, Murphy RC, Nathan MA, et al. Detection of recurrent prostate cancer after radical prostatectomy: comparison of 11C-choline PET/CT with pelvic multiparametric MR imaging with endorectal coil. J Nucl Med. 2014 Feb;55(2):223–232.
  • Afshar-Oromieh A, Avtzi E, Giesel FL, et al. The diagnostic value of PET/CT imaging with the (68) Ga-labelledPSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015 Feb;42(2):197–209.
  • Morigi JJ, Stricker PD, van Leeuwen PJ, et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med. 2015 Aug;56(8):1185–1190.
  • Schwenck J, Rempp H, Reischl G, et al. Comparison of (68) Ga-labelledPSMA-11 and (11) C-choline in the detection of prostate cancer metastases by PET/CT. Eur J Nucl Med Mol Imaging. 2017 Jan;44(1):92–101.
  • Evans JD, Jethwa KR, Ost P, et al. Prostate cancer-specific PET radiotracers: a review on the clinical utility in recurrent disease. Pract Radiat Oncol. 2018 January - February;8(1):28–39.
  • Luiting HB, van Leeuwen PJ, Busstra MB, et al. Use of gallium-68 prostate-specific membrane antigen positron-emission tomography for detecting lymph node metastases in primary and recurrent prostate cancer and location of recurrence after radical prostatectomy: an overview of the current literature. BJU Int. 2020 Feb;125(2):206–214.
  • Seitz AK, Rauscher I, Haller B, et al. Preliminary results on response assessment using (68) Ga-HBED-CC-PSMAPET/CT in patients with metastatic prostate cancer undergoing docetaxel chemotherapy. Eur J Nucl Med Mol Imaging. 2018 Apr;45(4):602–612.
  • Ozulker T, Ozulker F. Assessment of the role of Ga-68 PSMA I&T PET/CT in response evaluation to docetaxel therapy in castration resistant prostate cancer patients. Rev Esp Med Nucl Imagen Mol (Engl Ed). 2020 September - October;39(5): 292–298.
  • Tosoian JJ, Gorin MA, Rowe SP, et al. Correlation of PSMA-Targeted (18) F-DCFPyLPET/CT findings with immunohistochemical and genomic data in a patient with metastatic neuroendocrine prostate cancer. Clin Genitourin Cancer. 2017 Feb;15(1):e65–e68.
  • Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev. 2003 Aug;24(4):389–427.
  • Reubi JC, Schonbrunn A. Illuminating somatostatin analog action at neuroendocrine tumor receptors. Trends Pharmacol Sci. 2013 Dec;34(12):676–688.
  • Chen S, Cheung SK, Wong KN, et al. 68Ga-DOTATOC and 68Ga-PSMA PET/CT unmasked a case of prostate cancer with neuroendocrine differentiation. Clin Nucl Med. 2016 Dec;41(12):959–960.
  • Souvatzoglou M, Maurer T, Treiber U, et al. 68Ga-DOTATOC-PET/CT detects neuroendocrine differentiation of prostate cancer metastases. Nuklearmedizin. 2009;48(5):N52–4.
  • Gofrit ON, Frank S, Meirovitz A, et al. PET/CT With 68Ga-DOTA-TATE for diagnosis of neuroendocrine: differentiation in patients with castrate-resistant prostate cancer. Clin Nucl Med. 2017 Jan;42(1):1–6.
  • Savelli G, Muni A, Falchi R, et al. Somatostatin receptors over-expression in castration resistant prostate cancer detected by PET/CT: preliminary report of in six patients. Ann Transl Med. 2015 Jun;3(10):145.
  • Hennigs JK, Muller J, Adam M, et al. Loss of somatostatin receptor subtype 2 in prostate cancer is linked to an aggressive cancer phenotype, high tumor cell proliferation and predicts early metastatic and biochemical relapse. PLoS One. 2014;9(7):e100469.
  • Werner C, Dirsch O, Dahmen U, et al. Evaluation of somatostatin and CXCR4 receptor expression in a large set of prostate cancer samples using tissue microarrays and well-characterized monoclonal antibodies. Transl Oncol. 2020 Sep;13(9):100801.
  • Javan FN, Aryana K, Askari E. Prostate cancer with neuroendocrine differentiation recurring after treatment with lu-177-PSMA A chance for Lu-177-DOTATATE Therapy? Clin Nucl Med. 2021 Sep;46(9):E480–E482.
  • Assadi M, Pirayesh E, Rekabpour SJ, et al. 177Lu-PSMA and 177Lu-DOTATATE therapy in a patient with metastatic castration-resistant prostate cancer and neuroendocrine differentiation. Clin Nucl Med. 2019 Dec;44(12):978–980.
  • Nisar MU, Costa DN, Jia L, et al. 68Ga-DOTATATE PET/CT uptake in prostate with an incidental finding of prostatic acinar adenocarcinoma and metastatic neuroendocrine cancer to the liver. Clin Nucl Med. 2021 Aug 1;46(8):e428–e430.
  • Savelli G, Muni A, Barbieri R, et al. Neuroendocrine differentiation of prostate cancer metastases evidenced “in Vivo” by (68) Ga-DOTANOCPET/CT: two cases. World J Oncol. 2014 Apr;5(2):72–76.
  • Usmani S, Ahmed N, Marafi F, et al. Molecular imaging in neuroendocrine differentiation of prostate cancer: 68Ga-PSMA Versus 68Ga-DOTA NOC PET-CT. Clin Nucl Med. 2017 May;42(5):410–413.
  • Kitajima K, Yamamoto S, Ikeda M, et al. Pelvic MRI, FDG-PET/CT, and somatostatin receptor scintigraphy findings of treatment-related neuroendocrine-differentiated prostate cancer. Case Rep Oncol. 2021 January-April;14(1):397–402.
  • Spratt DE, Gavane S, Tarlinton L, et al. Utility of FDG-PET in clinical neuroendocrine prostate cancer. Prostate. 2014 Aug;74(11):1153–1159.
  • Vargas Ahumada J, Gonzalez Rueda SD, Sinisterra Solis FA, et al. Multitarget molecular imaging in metastatic castration resistant adenocarcinoma prostate cancer with therapy induced neuroendocrine differentiation. Diagnostics (Basel). 2022 Jun 3;12(6). DOI:10.3390/diagnostics12061387.
  • Bauckneht M, Morbelli S, Miceli A, et al. Neuroendocrine differentiation of prostate cancer is not systematically associated with increased 18F-FDG uptake. Diagnostics (Basel). 2021 Mar 8;11(3):468.
  • Iravani A, Mitchell C, Akhurst T, et al. Molecular imaging of neuroendocrine differentiation of prostate cancer: a case series. Clin Genitourin Cancer. 2021 Aug;19(4):e200–e205.
  • Kitajima K, Yamamoto S, Odawara S, et al. Diagnostic performance of 11C-choline PET/CT and FDG PET/CT in prostate cancer. Acta Med Okayama. 2018 Jun;72(3):289–296.
  • Castellucci P, Fuccio C, Rubello D, et al. Is there a role for (1)(1) C-cholinePET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase <1.5 ng/ml? Eur J Nucl Med Mol Imaging. 2011 Jan;38(1):55–63.
  • Ceci F, Castellucci P, Graziani T, et al. (11)C-Choline PET/CT in castration-resistant prostate cancer patients treated with docetaxel. Eur J Nucl Med Mol Imaging. 2016 Jan;43(1):84–91.
  • Zhu S, Tian H, Niu X, et al. Neurotensin and its receptors mediate neuroendocrine transdifferentiation in prostate cancer. Oncogene. 2019 Jun;38(24):4875–4884.
  • Wu WY, Yu F, Zhang PJ, et al. 68 Ga-DOTA-NT-20.3 neurotensin receptor 1 PET imaging as a surrogate for neuroendocrine differentiation of prostate cancer. J Nucl Med. 2022 Feb 17;63(9):1394–1400.
  • Puca L, Gavyert K, Sailer V, et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci Transl Med. 2019 Mar 20;11(484):484.
  • Korsen JA, Kalidindi TM, Khitrov S, et al. Molecular imaging of neuroendocrine prostate cancer by targeting delta-like ligand 3. J Nucl Med. 2022 Jan;63(9):1401–1407.
  • Hoof P, Tsai-Nguyen G, Paulson S, et al. Neuroendocrine carcinoma of the prostate gland. Proc (Bayl Univ Med Cent). 2016 Jan;29(1):68–69.
  • Omura M, Kosaka T, Aimono E, et al. First successful case of platinum-based chemotherapy for neuroendocrine prostate cancer with BRCA2 and PTEN alterations. IJU Case Rep. 2022 Jan;5(1):41–44.
  • Aparicio AM, Harzstark AL, Corn PG, et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res. 2013 Jul 1;19(13):3621–3630.
  • Flechon A, Pouessel D, Ferlay C, et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: results of the French Genito-Urinary Tumor Group (GETUG) P01 trial. Ann Oncol. 2011 Nov;22(11):2476–2481.
  • Beltran H, Rickman DS, Park K, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011 Nov;1(6):487–495.
  • Aparicio A, Xiao LC, Tapia ELN, et al. The aggressive variant prostate carcinoma (AVPC) molecular signature (-MS) and platinum-sensitivity in castration resistant prostate cancer (CRPC). J Clin Oncol. 2017;20:35.
  • Pokhrel A, Nair K, Jaswani V, et al. Review of checkpoint inhibitor immunotherapy in neuroendocrine tumor of prostate and our experience in 2 cases. J Investig Med High Impact Case Rep. 2022 January-December;10:23247096221093886.
  • Brown LC, Halabi S, Somarelli JA, et al. A phase 2 trial of avelumab in men with aggressive-variant or neuroendocrine prostate cancer. Prostate Cancer Prostatic Dis. 2022 Mar;25(4):762–769.
  • Wu C, Peng S, Pilie PG, et al. PARP and CDK4/6 inhibitor combination therapy induces apoptosis and suppresses neuroendocrine differentiation in prostate cancer. Mol Cancer Ther. 2021 Sep;20(9):1680–1691.
  • Beltran H, Oromendia C, Danila DC, et al. A phase II trial of the aurora kinase a inhibitor alisertib for patients with castration-resistant and neuroendocrine prostate cancer: efficacy and biomarkers alisertib for neuroendocrine prostate cancer. Clin Cancer Res. 2019 Jan 1;25(1):43–51.
  • Lee JK, Phillips JW, Smith BA, et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell. 2016 Apr 11;29(4):536–547.
  • Emmett L, Willowson K, Violet J, et al. Lutetium (177) PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci. 2017 Mar;64(1):52–60.
  • Sartor O, de Bono J, Chi KN, et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021 Sep 16;385(12):1091–1103.
  • Das S, Al-Toubah T, El-Haddad G, et al. (177)Lu-DOTATATE for the treatment of gastroenteropancreatic neuroendocrine tumors. Expert Rev Gastroenterol Hepatol. 2019 Nov;13(11):1023–1031.
  • Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of (177) lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017 Jan 12;376(2):125–135.
  • Liu C, Liu T, Zhang J, et al. Excellent Response to 177Lu-DOTATATE peptide receptor radionuclide therapy in a patient with progressive metastatic castration-resistant prostate cancer with neuroendocrine differentiation after 177Lu-PSMA therapy. Clin Nucl Med. 2019 Nov;44(11):876–878.
  • Korsen JA, Gutierrez JA, Tully KM, et al. Delta-like ligand 3-targeted radioimmunotherapy for neuroendocrine prostate cancer. Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2203820119.
  • DeLucia DC, Cardillo TM, Ang L, et al. Regulation of CEACAM5 and therapeutic efficacy of an Anti-CEACAM5-SN38 antibody-drug conjugate in neuroendocrine prostate cancer. Clin Cancer Res. 2021 Feb 1;27(3):759–774.
  • Ton AT, Foo J, Singh K, et al. Development of VPC-70619, a small-molecule N-Myc inhibitor as a potential therapy for neuroendocrine prostate cancer. Int J Mol Sci. 2022 Feb 26;23(5):5.
  • Lee JK, Bangayan NJ, Chai T, et al. Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4473–E4482.
  • Alshalalfa M, Abou-Ouf H, Davicioni E, et al. Expression of ISL1 and its partners in prostate cancer progression and neuroendocrine differentiation. J Cancer Res Clin Oncol. 2021 Aug;147(8):2223–2231.
  • Liu Q, Pang J, Wang LA, et al. Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2. J Pathol. 2021 Jan;253(1):106–118.
  • Asrani K, Torres AF, Woo J, et al. Reciprocal YAP1 loss and INSM1 expression in neuroendocrine prostate cancer. J Pathol. 2021 Dec;255(4):425–437.
  • Hu CY, Wu KY, Lin TY, et al. The crosstalk of long non-coding RNA and MicroRNA in castration-resistant and neuroendocrine prostate cancer: their interaction and clinical importance. Int J Mol Sci. 2021 Dec 30;23(1):1.
  • Baca SC, Takeda DY, Seo JH, et al. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nat Commun. 2021 Mar 30;12(1):1979.
  • Mori JO, Shafran JS, Stojanova M, et al. Novel forms of prostate cancer chemoresistance to successful androgen deprivation therapy demand new approaches: rationale for targeting BET proteins. Prostate. 2022 Jun;82(10):1005–1015.
  • Kim DH, Sun DC, Storck WK, et al. BET bromodomain inhibition blocks an AR-repressed, E2F1-activated treatment-emergent neuroendocrine prostate cancer lineage plasticity program. Clin Cancer Res. 2021 Sep 1;27(17):4923–4936.
  • Sreekumar A, Saini S, Zijlstra LE. Role of MicroRNAs in neuroendocrine prostate cancer. Noncoding RNA. 2022 Mar 30;8(1):2.
  • Shui X, Ren X, Xu R, et al. Monoamine oxidase A drives neuroendocrine differentiation in prostate cancer. Biochem Biophys Res Commun. 2022 May;28(606):135–141.
  • Xu H, Liu Z, Gao D, et al. Reprogramming hormone-sensitive prostate cancer to a lethal neuroendocrine cancer lineage by mitochondrial pyruvate carrier (MPC). Mol Metab. 2022 May;59:101466.
  • Lee CF, Chen YA, Hernandez E, et al. The central role of Sphingosine kinase 1 in the development of neuroendocrine prostate cancer (NEPC): a new targeted therapy of NEPC. Clin Transl Med. 2022 Feb;12(2):e695.
  • Natani S, Sruthi KK, Asha SM, et al. Activation of TGF-beta - SMAD2 signaling by IL-6 drives neuroendocrine differentiation of prostate cancer through p38MAPK. Cell Signal. 2022 Mar;91:110240.
  • Owens JL, Beketova E, Liu S, et al. Targeting protein arginine methyltransferase 5 suppresses radiation-induced neuroendocrine differentiation and sensitizes prostate cancer cells to radiation. Mol Cancer Ther. 2022 Mar 1;21(3):448–459.
  • Ji S, Shi Y, Yang L, et al. miR-145-5p inhibits neuroendocrine differentiation and tumor growth by regulating the SOX11/MYCN axis in prostate cancer. Front Genet. 2022;13:790621.
  • Bryce AH, Alumkal JJ, Armstrong A, et al. Radiographic progression with nonrising PSA in metastatic castration-resistant prostate cancer: post hoc analysis of PREVAIL. Prostate Cancer Prostatic Dis. 2017 Jun;20(2):221–227.
  • Bhagirath D, Liston M, Akoto T, et al. Novel, non-invasive markers for detecting therapy induced neuroendocrine differentiation in castration-resistant prostate cancer patients. Sci Rep. 2021 Apr 15;11(1):8279.
  • Beltran H, Jendrisak A, Landers M, et al. The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer. Clin Cancer Res. 2016 Mar 15;22(6):1510–1519.
  • Shah RB, Mehra R, Chinnaiyan AM, et al. Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res. 2004 Dec 15;64(24):9209–9216.
  • Ong WL, Koh TL, Lim Joon D, et al. Prostate-specific membrane antigen-positron emission tomography/computed tomography (PSMA-PET/CT)-guided stereotactic ablative body radiotherapy for oligometastatic prostate cancer: a single-institution experience and review of the published literature. BJU Int. 2019 Nov;124 Suppl 1:19–30.
  • Novartis provides update on production of radioligand therapy medicines [Internet]. 2022. [Cited 2022 Aug 15] Available from: https://www.novartis.com/news/media-releases/novartis-provides-update-production-radioligand-therapy-medicines
  • Kurth J, Krause BJ, Schwarzenbock SM, et al. External radiation exposure, excretion, and effective half-life in (177) Lu-PSMA-targeted therapies. EJNMMI Res. 2018 Apr 12;8(1):32.
  • Gelman M Novartis’ radiopharma drug wins approval in tough-to-treat prostate cancer patients Endpoints News: endpoints News; 2022 [Cited 2022 Aug 15]. Available from: https://endpts.com/novartis-radiopharma-drug-wins-approval-in-tough-to-treat-prostate-cancer-patients/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.