232
Views
0
CrossRef citations to date
0
Altmetric
Review

Medical imaging and multimodal artificial intelligence models for streamlining and enhancing cancer care: opportunities and challenges

, , , , , , , & show all
Pages 1265-1279 | Received 01 Sep 2023, Accepted 16 Nov 2023, Published online: 06 Dec 2023

References

  • Rajpurkar P, Lungren MP, Drazen JM, et al. The Current and future state of AI interpretation of medical images. N Engl J Med. 2023 May 25;388(21):1981–1990. doi: 10.1056/NEJMra2301725
  • Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012 Nov;30(9):1234–1248. doi: 10.1016/j.mri.2012.06.010
  • Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012 Mar;48(4):441–446. doi: 10.1016/j.ejca.2011.11.036
  • Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016 Feb;278(2):563–577. doi: 10.1148/radiol.2015151169
  • Forghani R. Precision digital oncology: Emerging role of Radiomics-based biomarkers and Artificial intelligence for advanced imaging and characterization of brain tumors. Radiol Imaging Cancer. 2020 Jul;2(4):e190047. doi: 10.1148/rycan.2020190047
  • Haneberg AG, Pierre K, Winter-Reinhold E, et al. Introduction to Radiomics and Artificial intelligence: a primer for radiologists. Semin Roentgenol. 2023 Apr;58(2):152–157. doi: 10.1053/j.ro.2023.02.002
  • Lubner MG, Smith AD, Sandrasegaran K, et al. CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics. 2017 Sep;37(5):1483–1503. doi: 10.1148/rg.2017170056
  • Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019 Mar 19;19(1):64. doi: 10.1186/s12874-019-0681-4
  • Maleki F, Muthukrishnan N, Ovens K, et al. Machine learning algorithm validation: from essentials to advanced applications and implications for regulatory Certification and deployment. Neuro Clinical N Am. 2020 Nov;30(4):433–445. doi: 10.1016/j.nic.2020.08.004
  • Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527–1554. doi: 10.1162/neco.2006.18.7.1527
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May 28;521(7553):436–444. doi: 10.1038/nature14539
  • Hinton G. Deep learning-A technology with the potential to transform health care. JAMA. 2018 Sep 18;320(11):1101–1102. doi: 10.1001/jama.2018.11100
  • Yamashita R, Nishio M, Do RKG, et al. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018 Aug;9(4):611–629. doi: 10.1007/s13244-018-0639-9
  • Forghani R, Savadjiev P, Chatterjee A, et al. Radiomics and Artificial intelligence for biomarker and prediction model development in oncology. Comput Struct Biotechnol J. 2019;17:995–1008. doi: 10.1016/j.csbj.2019.07.001
  • Muthukrishnan N, Maleki F, Ovens K, et al. Brief history of Artificial intelligence. Neuro Clinical N Am. 2020 Nov;30(4):393–399. doi: 10.1016/j.nic.2020.07.004
  • Maleki F, Ovens K, Najafian K, et al. Overview of machine learning part 1: fundamentals and Classic approaches. Neuro Clinical N Am. 2020 Nov;30(4):e17–e32. doi: 10.1016/j.nic.2020.08.007
  • Cabral BP, Braga LAM, Syed-Abdul S, et al. Future of Artificial intelligence applications in cancer care: a global cross-sectional survey of researchers. Curr Oncol. 2023 Mar 16;30(3):3432–3446. doi: 10.3390/curroncol30030260
  • Bruls RJM, Kwee RM. Workload for radiologists during on-call hours: dramatic increase in the past 15 years. Insights Imaging. 2020 Nov 23;11(1):121. doi: 10.1186/s13244-020-00925-z
  • Itri JN, Tappouni RR, McEachern RO, et al. Fundamentals of Diagnostic Error in Imaging. Radiographics. 2018 Oct;38(6):1845–1865. doi: 10.1148/rg.2018180021
  • Geijer H, Geijer M. Added value of double reading in diagnostic radiology, a systematic review. Insights Imaging. 2018 Jun;9(3):287–301. doi: 10.1007/s13244-018-0599-0
  • Koh DM, Papanikolaou N, Bick U, et al. Artificial intelligence and machine learning in cancer imaging. Commun Med (Lond). 2022;2(1):133. doi: 10.1038/s43856-022-00199-0
  • Grimaldi S, Terroir M, Caramella C. Advances in oncological treatment: limitations of RECIST 1.1 criteria. Q J Nucl Med Mol Imaging. 2018 Jun;62(2):129–139. doi: 10.23736/S1824-4785.17.03038-2
  • Kickingereder P, Isensee F, Tursunova I, et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 2019 May;20(5):728–740. doi: 10.1016/S1470-2045(19)30098-1
  • Brune S, Hogestol EA, Cengija V, et al. LesionQuant for assessment of MRI in multiple sclerosis-A promising supplement to the visual scan inspection. Front Neurol. 2020;11:546744. doi: 10.3389/fneur.2020.546744
  • Van Hecke W, Costers L, Descamps A, et al. A novel digital care management platform to monitor clinical and subclinical disease activity in multiple sclerosis. Brain Sci. 2021 Sep 3;11(9):1171. doi: 10.3390/brainsci11091171
  • Morita-Sherman M, Li M, Joseph B, et al. Incorporation of quantitative MRI in a model to predict temporal lobe epilepsy surgery outcome. Brain Commun. 2021;3(3):fcab164. doi: 10.1093/braincomms/fcab164
  • Mendelsohn Z, Pemberton HG, Gray J, et al. Commercial volumetric MRI reporting tools in multiple sclerosis: a systematic review of the evidence. Neuroradiology. 2023 Jan;65(1):5–24. doi: 10.1007/s00234-022-03074-w
  • Abayazeed AH, Abbassy A, Mueller M, et al. NS-HGlio: a generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics. Neurooncol Adv. 2023 Jan;5(1):vdac184. doi: 10.1093/noajnl/vdac184
  • Schelb P, Kohl S, Radtke JP, et al. Classification of cancer at prostate MRI: deep learning versus clinical PI-RADS assessment. Radiology. 2019 Dec;293(3):607–617. doi: 10.1148/radiol.2019190938
  • Amin MB, Edge S, Greene F, editors. AJCC Cancer Staging Manual. 8th ed. London (NY): Springer International Publishing; 2017.
  • Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019 Mar;69(2):127–157. doi: 10.3322/caac.21552
  • Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol. 2022 Feb;19(2):132–146. doi: 10.1038/s41571-021-00560-7
  • Ardila D, Kiraly AP, Bharadwaj S, et al. Author correction: end-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019 Aug;25(8):1319. doi: 10.1038/s41591-019-0536-x
  • Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019 Jun;25(6):954–961. doi: 10.1038/s41591-019-0447-x
  • Baldwin DR, Gustafson J, Pickup L, et al. External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules. Thorax. 2020 Apr;75(4):306–312. doi: 10.1136/thoraxjnl-2019-214104
  • Lee JY, Lee KS, Seo BK, et al. Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI. Eur Radiol. 2022 Jan;32(1):650–660. doi: 10.1007/s00330-021-08146-8
  • Wu J, Cao G, Sun X, et al. Intratumoral spatial heterogeneity at Perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy. Radiology. 2018 Jul;288(1):26–35. doi: 10.1148/radiol.2018172462
  • Yu Y, Tan Y, Xie C, et al. Development and validation of a Preoperative Magnetic Resonance imaging Radiomics-based Signature to predict axillary lymph node metastasis and disease-free survival in patients with early-stage breast cancer. JAMA Netw Open. 2020 Dec 1;3(12):e2028086. doi: 10.1001/jamanetworkopen.2020.28086
  • Chitalia RD, Rowland J, McDonald ES, et al. Imaging phenotypes of breast cancer heterogeneity in preoperative breast dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) scans predict 10-year recurrence. Clin Cancer Res. 2020 Feb 15;26(4):862–869. doi: 10.1158/1078-0432.CCR-18-4067
  • Park H, Lim Y, Ko ES, et al. Radiomics Signature on magnetic resonance imaging: association with disease-free survival in patients with invasive breast cancer. Clin Cancer Res. 2018 Oct 1;24(19):4705–4714. doi: 10.1158/1078-0432.CCR-17-3783
  • Vachon CM, Scott CG, Norman AD, et al. Impact of Artificial intelligence system and volumetric density on risk prediction of interval, screen-detected, and advanced breast cancer. J Clin Oncol. 2023 Jun 10;41(17):3172–3183. doi: 10.1200/JCO.22.01153
  • Yala A, Mikhael PG, Strand F, et al. Toward robust mammography-based models for breast cancer risk. Sci Transl Med. 2021 Jan 27;13(578). doi: 10.1126/scitranslmed.aba4373
  • Hosny A, Parmar C, Coroller TP, et al. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLOS Med. 2018 Nov;15(11):e1002711. doi: 10.1371/journal.pmed.1002711
  • Parmar C, Leijenaar RT, Grossmann P, et al. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep. 2015 Jun 5;5:11044. doi: 10.1038/srep11044
  • Huang Y, Liu Z, He L, et al. Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology. 2016 Dec;281(3):947–957. doi: 10.1148/radiol.2016152234
  • Pavic M, Bogowicz M, Kraft J, et al. FDG PET versus CT radiomics to predict outcome in malignant pleural mesothelioma patients. EJNMMI Res. 2020 Jul 13;10(1):81. doi: 10.1186/s13550-020-00669-3
  • Kamran SC, Coroller T, Milani N, et al. The impact of quantitative CT-based tumor volumetric features on the outcomes of patients with limited stage small cell lung cancer. Radiat Oncol. 2020 Jan 14;15(1):14. doi: 10.1186/s13014-020-1460-4
  • Bae S, Choi YS, Ahn SS, et al. Radiomic MRI phenotyping of Glioblastoma: improving survival prediction. Radiology. 2018 Dec;289(3):797–806. doi: 10.1148/radiol.2018180200
  • Kickingereder P, Burth S, Wick A, et al. Radiomic profiling of Glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology. 2016 Sep;280(3):880–889. doi: 10.1148/radiol.2016160845
  • Beig N, Bera K, Prasanna P, et al. Radiogenomic-based survival risk stratification of tumor habitat on Gd-T1w MRI is associated with biological processes in Glioblastoma. Clin Cancer Res. 2020 Apr 15;26(8):1866–1876. doi: 10.1158/1078-0432.CCR-19-2556
  • Lao J, Chen Y, Li ZC, et al. A deep learning-based Radiomics model for prediction of survival in Glioblastoma Multiforme. Sci Rep. 2017 Sep 4;7(1):10353. doi: 10.1038/s41598-017-10649-8
  • Peng H, Dong D, Fang MJ, et al. Prognostic value of deep learning PET/CT-Based Radiomics: potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2019 Jul 15;25(14):4271–4279. doi: 10.1158/1078-0432.CCR-18-3065
  • Haider SP, Zeevi T, Baumeister P, et al. Potential added value of PET/CT Radiomics for survival prognostication beyond AJCC 8th edition staging in oropharyngeal squamous cell carcinoma. Cancers (Basel). 2020 Jul 3;12(7). doi: 10.3390/cancers12071778
  • Negreros-Osuna AA, Parakh A, Corcoran RB, et al. Radiomics texture features in advanced colorectal cancer: correlation with BRAF Mutation and 5-year overall survival. Radiol Imaging Cancer. 2020 Sep;2(5):e190084. doi: 10.1148/rycan.2020190084
  • Creasy JM, Cunanan KM, Chakraborty J, et al. Differences in liver parenchyma are measurable with CT Radiomics at initial colon resection in patients that develop hepatic metastases from stage II/III colon cancer. Ann Surg Oncol. 2021 Apr;28(4):1982–1989. doi: 10.1245/s10434-020-09134-w
  • Shiradkar R, Ghose S, Jambor I, et al. Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: preliminary findings. J Magn Reson Imaging. 2018 Dec;48(6):1626–1636. doi: 10.1002/jmri.26178
  • Zhang YD, Wang J, Wu CJ, et al. An imaging-based approach predicts clinical outcomes in prostate cancer through a novel support vector machine classification. Oncotarget. 2016 Nov 22;7(47):78140–78151. doi: 10.18632/oncotarget.11293
  • Zhong X, Cao R, Shakeri S, et al. Deep transfer learning-based prostate cancer classification using 3 tesla multi-parametric MRI. Abdom Radiol (NY). 2019 Jun;44(6):2030–2039. doi: 10.1007/s00261-018-1824-5
  • Letourneau-Guillon L, Camirand D, Guilbert F, et al. Artificial intelligence applications for workflow, process optimization and predictive analytics. Neuro Clinical N Am. 2020 Nov;30(4):e1–e15. doi: 10.1016/j.nic.2020.08.008
  • Pierre K, Haneberg AG, Kwak S, et al. Applications of Artificial intelligence in the radiology roundtrip: process streamlining, workflow Optimization, and beyond. Semin Roentgenol. 2023 Apr;58(2):158–169. doi: 10.1053/j.ro.2023.02.003
  • Brown AD, Marotta TR. A Natural language processing-based model to automate MRI brain protocol selection and prioritization. Acad Radiol. 2017 Feb;24(2):160–166. doi: 10.1016/j.acra.2016.09.013
  • Trivedi H, Mesterhazy J, Laguna B, et al. Automatic determination of the need for intravenous contrast in musculoskeletal MRI examinations using IBM Watson’s natural language processing algorithm. J Digit Imaging. 2018 Apr;31(2):245–251. doi: 10.1007/s10278-017-0021-3
  • Brown AD, Marotta TR. Using machine learning for sequence-level automated MRI protocol selection in neuroradiology. J Am Med Inform Assoc. 2018 May 1;25(5):568–571. doi: 10.1093/jamia/ocx125
  • Lee YH. Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks. J Digit Imaging. 2018 Oct;31(5):604–610. doi: 10.1007/s10278-018-0066-y
  • Kalra A, Chakraborty A, Fine B, et al. Machine learning for automation of radiology Protocols for quality and efficiency improvement. J Am Coll Radiol. 2020 Sep;17(9):1149–1158. doi: 10.1016/j.jacr.2020.03.012
  • Eberhard M, Alkadhi H. Machine learning and deep neural networks: applications in patient and scan preparation, contrast medium, and radiation dose optimization. J Thorac Imaging. 2020 May;35(1):S17–S20. doi: 10.1097/RTI.0000000000000482
  • Do WJ, Seo S, Han Y, et al. Reconstruction of multicontrast MR images through deep learning. Med Phys. 2020 Mar;47(3):983–997. doi: 10.1002/mp.14006
  • Johnson PM, Recht MP, Knoll F. Improving the speed of MRI with Artificial intelligence. Semin Musculoskelet. 2020 Feb;24(1):12–20. doi: 10.1055/s-0039-3400265
  • Clifford B, Conklin J, Huang SY, et al. An artificial intelligence-accelerated 2-minute multi-shot echo planar imaging protocol for comprehensive high-quality clinical brain imaging. Magn Reson Med. 2022 May;87(5):2453–2463. doi: 10.1002/mrm.29117
  • Rudie JD, Gleason T, Barkovich MJ, et al. Clinical assessment of deep learning-based super-resolution for 3D volumetric brain MRI. Radiol Artif Intell. 2022 Mar;4(2):e210059. doi: 10.1148/ryai.210059
  • Gong E, Pauly JM, Wintermark M, et al. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging. 2018 Aug;48(2):330–340. doi: 10.1002/jmri.25970
  • Bhargava R, Madabhushi A. Emerging themes in image informatics and molecular analysis for digital pathology. Annu Rev Biomed Eng. 2016 Jul 11;18(1):387–412. doi: 10.1146/annurev-bioeng-112415-114722
  • Rakha EA, Toss M, Shiino S, et al. Current and future applications of artificial intelligence in pathology: a clinical perspective. J Clin Pathol. 2021 Jul;74(7):409–414. doi: 10.1136/jclinpath-2020-206908
  • Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J Pathol Inform. 2016;7(1):29. doi: 10.4103/2153-3539.186902
  • Chang HY, Jung CK, Woo JI, et al. Artificial intelligence in pathology. J Pathol Transl Med. 2019 Jan;53(1):1–12. doi: 10.4132/jptm.2018.12.16
  • Khened M, Kori A, Rajkumar H, et al. A generalized deep learning framework for whole-slide image segmentation and analysis. Sci Rep. 2021 [2021/Jun/2];11(1):11579. doi: 10.1038/s41598-021-90444-8
  • Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol. 2019 May;20(5):e253–e261. doi: 10.1016/S1470-2045(19)30154-8
  • Kumar N, Verma R, Sharma S, et al. A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans Med Imaging. 2017 Jul;36(7):1550–1560. doi: 10.1109/TMI.2017.2677499
  • Kainz P, Pfeiffer M, Urschler M. Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization. PeerJ. 2017;5:e3874. doi: 10.7717/peerj.3874
  • Veta M, van Diest PJ, Willems SM, et al. Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal. 2015 Feb;20(1):237–248. doi: 10.1016/j.media.2014.11.010
  • Sirinukunwattana K, Ahmed Raza SE, Yee-Wah T, et al. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging. 2016 May;35(5):1196–1206. doi: 10.1109/TMI.2016.2525803
  • Xu Y, Jia Z, Wang LB, et al. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinf. 2017 May 26;18(1):281. doi: 10.1186/s12859-017-1685-x
  • Bejnordi BE, Zuidhof G, Balkenhol M, et al. Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. J Med Imag. 2017 Oct;4(4):044504. doi: 10.1117/1.JMI.4.4.044504
  • Wu S, Hong G, Xu A, et al. Artificial intelligence-based model for lymph node metastases detection in bladder cancer on whole slide images: a retrospective, multicentre, diagnostic study. Lancet Oncol. 2023;24(4):360–370. doi: 10.1016/S1470-2045(23)00061-X
  • Forghani R. Use of artificial intelligence to enhance detection of nodal metastases.Lancet Oncol. 2023 [2023/Apr/1];24(4):308–309. doi: 10.1016/S1470-2045(23)00101-8.
  • Naik N, Madani A, Esteva A, et al. Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains. Nat Commun. 2020 Nov 16;11(1):5727. doi: 10.1038/s41467-020-19334-3
  • Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018 Oct;24(10):1559–1567. doi: 10.1038/s41591-018-0177-5
  • Kim RH, Nomikou S, Coudray N, et al. A deep learning approach for rapid mutational screening in melanoma. bioRxiv. 2020;610311. doi: 10.1101/610311
  • Echle A, Rindtorff NT, Brinker TJ, et al. Deep learning in cancer pathology: a new generation of clinical biomarkers. Br J Cancer. 2021 Feb;124(4):686–696. doi: 10.1038/s41416-020-01122-x
  • Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2970–E2979. doi: 10.1073/pnas.1717139115
  • Bychkov D, Linder N, Turkki R, et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep. 2018 Feb 21;8(1):3395. doi: 10.1038/s41598-018-21758-3
  • Ali HR, Dariush A, Provenzano E, et al. Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. 2016 Feb 16;18(1):21. doi: 10.1186/s13058-016-0682-8
  • Tsai PC, Lee TH, Kuo KC, et al. Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients. Nat Commun. 2023 Apr 13;14(1):2102. doi: 10.1038/s41467-023-37179-4
  • Lipkova J, Chen RJ, Chen B, et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell. 2022 Oct 10;40(10):1095–1110. doi: 10.1016/j.ccell.2022.09.012
  • Baltrusaitis T, Ahuja C, Morency LP. Multimodal machine learning: a survey and taxonomy. IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):423–443. doi: 10.1109/TPAMI.2018.2798607
  • Tan P, Chen X, Zhang H, et al. Artificial intelligence aids in development of nanomedicines for cancer management. Semin Cancer Biol. 2023 Feb;89:61–75.
  • Mann M, Kumar C, Zeng WF, et al. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021 Aug 18;12(8):759–770. doi: 10.1016/j.cels.2021.06.006
  • Schmidt DR, Patel R, Kirsch DG, et al. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 2021 Jul;71(4):333–358. doi: 10.3322/caac.21670
  • Galal A, Talal M, Moustafa A. Applications of machine learning in metabolomics: disease modeling and classification. Front Genet. 2022;13:1017340. doi: 10.3389/fgene.2022.1017340
  • Mata LA, Retamero JA, Gupta RT, et al. Artificial Intelligence-assisted Prostate Cancer Diagnosis: Radiologic-Pathologic Correlation. Radiographics. 2021 Oct;41(6):1676–1697. doi: 10.1148/rg.2021210020
  • Kreimeyer K, Foster M, Pandey A, et al. Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review. J Biomed Inform. 2017 Sep;73:14–29.
  • Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge. Nature. 2023 [2023/Aug/1];620(7972):172–180. doi: 10.1038/s41586-023-06291-2
  • Kim MS, Park HY, Kho BG, et al. Artificial intelligence and lung cancer treatment decision: agreement with recommendation of multidisciplinary tumor board. Transl Lung Cancer Res. 2020 Jun;9(3):507–514. doi: 10.21037/tlcr.2020.04.11
  • Aerts HJ, Grossmann P, Tan Y, et al. Defining a radiomic response phenotype: a Pilot study using targeted therapy in NSCLC. Sci Rep. 2016 Sep 20;6(1):33860. doi: 10.1038/srep33860
  • Holzinger A, Haibe-Kains B, Jurisica I. Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data. Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2722–2730. doi: 10.1007/s00259-019-04382-9
  • Vobugari N, Raja V, Sethi U, et al. Advancements in oncology with Artificial intelligence—A review article. Cancers (Basel). 2022 Mar 6;14(5):1349. doi: 10.3390/cancers14051349
  • Berisha V, Krantsevich C, Hahn PR, et al. Digital medicine and the curse of dimensionality. NPJ Digit Med. 2021 Oct 28;4(1):153. doi: 10.1038/s41746-021-00521-5
  • Avanzo M, Stancanello J, Pirrone G, et al. Radiomics and deep learning in lung cancer. Strahlenther Onkol. 2020 Oct;196(10):879–887. doi: 10.1007/s00066-020-01625-9
  • Penberthy LT, Dahman BA, Petkov VI, et al. Effort required in eligibility screening for clinical trials. J Oncol Pract. 2012 Nov;8(6):365–370. doi: 10.1200/JOP.2012.000646
  • Alexander M, Solomon B, Ball DL, et al. Evaluation of an artificial intelligence clinical trial matching system in Australian lung cancer patients. JAMIA Open. 2020 Jul;3(2):209–215. doi: 10.1093/jamiaopen/ooaa002
  • Fountzilas E, Tsimberidou AM, Vo HH, et al. Clinical trial design in the era of precision medicine. Genome Med. 2022 Aug 31;14(1):101. doi: 10.1186/s13073-022-01102-1
  • Maleki F, Ovens K, Gupta R, et al. Generalizability of machine learning models: quantitative evaluation of three methodological pitfalls. Radiol Artif Intell. 2023 Jan;5(1):e220028. doi: 10.1148/ryai.220028
  • Kristiansen TB, Kristensen K, Uffelmann J, et al. Erroneous data: the Achilles’ heel of AI and personalized medicine. Front Digit Health. 2022;4:862095. doi: 10.3389/fdgth.2022.862095
  • Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295(2):328–338. doi: 10.1148/radiol.2020191145
  • Minh D, Wang HX, Li YF, et al. Explainable artificial intelligence: a comprehensive review.Artif Intell Rev. 2022 [2022/Jun/1];55(5):3503–3568. doi: 10.1007/s10462-021-10088-y.
  • Li B, Qi P, Liu B, et al. Trustworthy AI: from principles to practices. ACM Comput Surv. 2023;55(9):1–46. doi: 10.1145/3555803
  • Intended use of imaging software for intracranial large vessel occlusion - letter to health care providers. U.S. Food and Drug Administration (FDA); 2022.
  • Straw I. The automation of bias in medical Artificial intelligence (AI): decoding the past to create a better future. Artif Intell Med. 2020 Nov;110:101965. doi: 10.1016/j.artmed.2020.101965
  • Mousavi Baigi SF, Sarbaz M, Ghaddaripouri K, et al. Attitudes, knowledge, and skills towards artificial intelligence among healthcare students: a systematic review. Health Sci Rep. 2023 Mar;6(3):e1138. doi: 10.1002/hsr2.1138
  • Forghani R. A practical Guide for AI algorithm selection for the radiology department. Semin Roentgenol. 2023 Apr;58(2):208–213. doi: 10.1053/j.ro.2023.02.006
  • McKee M, Wouters OJ. The challenges of regulating Artificial intelligence in healthcare comment on clinical decision support and New regulatory frameworks for medical devices: are we ready for it? - a viewpoint paper. Int J Health Policy Manag. 2023;12:7261.
  • Murdoch B. Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Med Ethics. 2021 Sep 15;22(1):122. doi: 10.1186/s12910-021-00687-3
  • Chalutz Ben-Gal H. Artificial intelligence (AI) acceptance in primary care during the coronavirus pandemic: what is the role of patients’ gender, age and health awareness? A two-phase pilot study. Front Public Health. 2023 [2023 Jan 9];10:10. doi: 10.3389/fpubh.2022.931225

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.