482
Views
37
CrossRef citations to date
0
Altmetric
Review

Recent advances in biochemical and molecular diagnostics for the rapid detection of antibiotic-resistant Enterobacteriaceae: a focus on ß-lactam resistance

, &
Pages 327-350 | Received 19 May 2016, Accepted 27 Jan 2017, Published online: 20 Feb 2017

References

  • Chang HH, Cohen T, Grad YH, et al. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol Mol Biol Rev. 2015;79:101–116.
  • Fauci AS, Morens DM. The perpetual challenge of infectious diseases. N Engl J Med. 2012;366:454–461.
  • Weiner LM, Fridkin SK, Aponte-Torres Z, et al. Vital signs: preventing antibiotic-resistant infections in hospitals - United States, 2014. MMWR Morb Mortal Wkly Rep. 2016;65:235–241.
  • Iredell J, Brown J, Tagg K. Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. BMJ. 2016 Feb 8;352: h6420.
  • Laupland KB. Incidence of bloodstream infection: a review of population-based studies. Clin Microbiol Infect. 2013;19:492–500.
  • Buehler SS, Madison B, Snyder SR, et al. Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: a laboratory medicine best practices systematic review and meta-analysis. Clin Microbiol Rev. 2016;29:59–103.
  • Doyle D, Peirano G, Lascols C, et al. Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol. 2012;50:3877–3880.
  • Tsakris A, Poulou A, Pournaras S, et al. A simple phenotypic method for the differentiation of metallo-beta-lactamases and class A KPC carbapenemases in Enterobacteriaceae clinical isolates. J Antimicrob Chemother. 2010;65:1664–1671.
  • Faron ML, Buchan BW, Vismara C, et al. Automated scoring of chromogenic media for detection of methicillin-resistant staphylococcus aureus by use of WASPLab image analysis software. J Clin Microbiol. 2016;54:620–624.
  • Dellit TH, Owens RC, McGowan JE Jr, et al. Infectious diseases society of America and the society for healthcare epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44:159–177.
  • Grave K, Torren-Edo J, Muller A, et al. Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries. J Antimicrob Chemother. 2014;69:2284–2291.
  • Van Boeckel TP, Gandra S, Ashok A, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014;14:742–750.
  • Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med. 2012;18:263–272.
  • Paul M, Shani V, Muchtar E, et al. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother. 2010;54:4851–4863.
  • Falagas ME, Tansarli GS, Karageorgopoulos DE, et al. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis. 2014;20:1170–1175.
  • Fraenkel-Wandel Y, Raveh-Brawer D, Wiener-Well Y, et al. Mortality due to blaKPC Klebsiella pneumoniae bacteraemia. J Antimicrob Chemother. 2016;71:1083–1087.
  • Diekema DJ, Pfaller MA. Rapid detection of antibiotic-resistant organism carriage for infection prevention. Clin Infect Dis. 2013;56:1614–1620.
  • Fournier S, Monteil C, Lepainteur M, et al. Long-term control of carbapenemase-producing Enterobacteriaceae at the scale of a large French multihospital institution: a nine-year experience, France, 2004 to 2012. Euro Surveill. 2014 May 15;19(19). pii: 20802.
  • Dhar S, Marchaim D, Tansek R, et al. Contact precautions: more is not necessarily better. Infect Control Hosp Epidemiol. 2014;35:213–221.
  • O’Callaghan CH, Morris A, Kirby SM, et al. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972;1:283–288.
  • Mura T, Kawamura K, Wachino J, et al. Development of a novel chromogenic method, Penta-well test, for rapid prediction of β-lactamase classes produced in clinical Enterobacteriaceae isolates. Diagn Microbiol Infect Dis. 2015;83:25–29.
  • Renvoisé A, Decré D, Amarsy-Guerle R, et al. Evaluation of the βLacta test, a rapid test detecting resistance to third-generation cephalosporins in clinical strains of Enterobacteriaceae. J Clin Microbiol. 2013;51(12):4012–4017.
  • Hanaki H, Kubo R, Nakano T, et al. Characterization of HMRZ-86: a novel chromogenic cephalosporin for the detection of extended-spectrum beta-lactamases. J Antimicrob Chemother. 2004;53:888–889.
  • Compain F, Bensekhri H, Rostane H, et al. β LACTA test for rapid detection of Enterobacteriaceae resistant to third-generation cephalosporins from positive blood cultures using briefly incubated solid medium cultures. J Med Microbiol. 2015;64:1256–1259.
  • Walewski V, Podglajen I, Lefeuvre P, et al. Early detection with the β-LACTA™ test of extended-spectrum β-lactamase-producing Enterobacteriaceae in blood cultures. Diagn Microbiol Infect Dis. 2015;83:216–218.
  • Gallah S, Decré D, Genel N, et al. The β-Lacta test for direct detection of extended-spectrum-β-lactamase-producing Enterobacteriaceae in urine. J Clin Microbiol. 2014;52:3792–3794.
  • Morosini MI, García-Castillo M, Tato M, et al. Rapid detection of β-lactamase-hydrolyzing extended-spectrum cephalosporins in Enterobacteriaceae by use of the new chromogenic β-Lacta test. J Clin Microbiol. 2014;52:1741–1744.
  • Poirel L, Fernández J, Nordmann P. Comparison of three biochemical tests for rapid detection of extended-spectrum-β-lactamase-producing enterobacteriaceae. J Clin Microbiol. 2016;54:423–427.
  • Compain F, Gallahd S, Eckert C, et al. Assessment of carbapenem resistance in Enterobacteriaceae with the rapid and easy-to-use chromogenic β CARBA test. J Clin Microbiol. 2016;54:3065–3068.
  • Nordmann P, Dortet L, Poirel L. Rapid detection of extended-spectrum-β-lactamase-producing Enterobacteriaceae. J Clin Microbiol. 2012;50:3016–3022.
  • Dortet L, Poirel L, Nordmann P. Rapid detection of ESBL-producing Enterobacteriaceae in blood cultures. Emerg Infect Dis. 2015;21:504–507.
  • Dortet L, Poirel L, Nordmann P. Rapid detection of extended-spectrum-β-lactamase-producing enterobacteriaceae from urine samples by use of the ESBL NDP test. J Clin Microbiol. 2014;52:3701–3706.
  • Dortet L, Agathine A, Naas T, et al. Evaluation of the RAPIDEC® CARBA NP, the rapid CARB Screen® and the carba NP test for biochemical detection of carbapenemase-producing enterobacteriaceae. J Antimicrob Chemother. 2015;70:3014–3022.
  • Pantel A, Souzy D, Sotto A, et al. Evaluation of two phenotypic screening tests for carbapenemase-producing enterobacteriaceae. J Clin Microbiol. 2015;53:3359–3362.
  • Clinical and Laboratory Standards Institute. 2015. Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement (M100-S25). http://clsi.org/blog/2015/01/08/clsi-publishes-new-antimicrobial-susceptibility-testing-standards/)
  • Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012;18:1503–1507.
  • Maurer FP, Castelberg C, Quiblier C, et al. Evaluation of carbapenemase screening and confirmation tests with Enterobacteriaceae and development of a practical diagnostic algorithm. J Clin Microbiol. 2015;53:95–104.
  • Dortet L, Poirel L, Nordmann P. Rapid identification of carbapenemase types in enterobacteriaceae and pseudomonas spp. by using a biochemical test. Antimicrob Agents Chemother. 2012;56:6437–6440.
  • AbdelGhani S, Thomson GK, Snyder JW, et al. Comparison of the carba NP, modified CARBA NP, and updated rosco neo-rapid carb kit tests for carbapenemase detection. J Clin Microbiol. 2015;53:3539–3542.
  • Vasoo S, Cunningham SA, Kohner PC, et al. Comparison of a novel, rapid chromogenic biochemical assay, the Carba NP test, with the modified Hodge test for detection of carbapenemase-producing Gram-negative bacilli. J Clin Microbiol. 2013;51:3097–3101.
  • Dortet L, Poirel L, Nordmann P. Further proofs of concept for the Carba NP test. Antimicrob Agents Chemother. 2014;58:1269.
  • Tijet N, Boyd D, Patel SN, et al. Reply to “further proofs of concept for the Carba NP test. Antimicrob Agents Chemother. 2014;58(2):1270.
  • Osterblad M, Hakanen AJ, Jalava J. Evaluation of the Carba NP test for carbapenemase detection. Antimicrob Agents Chemother. 2014;58:7553–7556.
  • Dortet L, Bréchard L, Poirel L, et al. Impact of the isolation medium for detection of carbapenemase-producing Enterobacteriaceae using an updated version of the Carba NP test. J Med Microbiol. 2014;63(Pt 5):772–776.
  • Poirel L, Nordmann P. Rapidec carba NP test for rapid detection of carbapenemase producers. J Clin Microbiol. 2015;53:3003–3008.
  • Garg A, Garg J, Upadhyay GC, et al. Evaluation of the rapidec carba NP test kit for detection of carbapenemase-producing gram-negative bacteria. Antimicrob Agents Chemother. 2015;59:7870–7872.
  • Kabir MH, Meunier D, Hopkins KL, et al. A two-centre evaluation of RAPIDEC® CARBA NP for carbapenemase detection in enterobacteriaceae, pseudomonas aeruginosa and acinetobacter spp. J Antimicrob Chemother. 2016;71:1213–1216.
  • Lifshitz Z, Adler A, Carmeli Y. Comparative study of a novel biochemical assay, the rapidec carba NP test, for detecting carbapenemase-producing enterobacteriaceae. J Clin Microbiol. 2016;54:453–456.
  • Hombach M, von Gunten B, Castelberg C, et al. Evaluation of the rapidec carba NP test for detection of carbapenemases in enterobacteriaceae. J Clin Microbiol. 2015;53:3828–3833.
  • Österblad M, Lindholm L, Jalava J. Evaluation of two commercial carbapenemase gene assays, the rapidec carba NP test and the in-house rapid carba NP test, on bacterial cultures. J Antimicrob Chemother. 2016;71:2057–2059.
  • Dortet L, Bréchard L, Poirel L, et al. Rapid detection of carbapenemase-producing Enterobacteriaceae from blood cultures. Clin Microbiol Infect. 2014;20:340–344.
  • Novais Â, Brilhante M, Pires J, et al. Evaluation of the recently launched rapid carb blue kit for detection of carbapenemase-producing gram-negative bacteria. J Clin Microbiol. 2015;53:3105–3107.
  • Pasteran F, Veliz O, Ceriana P, et al. Evaluation of the Blue-Carba test for rapid detection of carbapenemases in gram-negative bacilli. J Clin Microbiol. 2015;53:1996–1998.
  • Pires J, Novais A, Peixe L. Blue-carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol. 2013;51:4281–4283.
  • Pires J, Tinguely R, Thomas B, et al. Comparison of the in-house made carba-NP and blue-carba tests: considerations for better detection of carbapenemase-producing enterobacteriaceae. J Microbiol Methods. 2016;122:33–37.
  • García-Fernández S, Morosini MI, Gijón D, et al. Detection of carbapenemase production in a collection of enterobacteriaceae with characterized resistance mechanisms from clinical and environmental origins by use of both carba NP and blue-carba tests. J Clin Microbiol. 2016;54:464–466.
  • Yusuf E, Van Der Meeren S, Schallier A, et al. Comparison of the carba NP test with the rapid CARB screen kit for the detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2014;33:2237–2240.
  • Clark AE, Kaleta EJ, Arora A, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev. 2013;26:547–603.
  • Lasserre C, De Saint Martin L, Cuzon G, et al. Efficient detection of carbapenemase activity in enterobacteriaceae by matrix-assisted laser desorption ionization-time of flight mass spectrometry in less than 30 minutes. J Clin Microbiol. 2015;53:2163–2171.
  • Knox J, Jadhav S, Sevior D, et al. Phenotypic detection of carbapenemase-producing enterobacteriaceae by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and the carba NP test. J Clin Microbiol. 2014;52:4075–4077.
  • Hrabák J, Studentová V, Walková R, et al. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2012;50:2441–2443.
  • Vogne C, Prod’hom G, Jaton K, et al. A simple, robust and rapid approach to detect carbapenemases in Gram-negative isolates by MALDI-TOF mass spectrometry: validation with triple quadripole tandem mass spectrometry, microarray and PCR. Clin Microbiol Infect.2014;20:01106–01112.
  • Mirande C, Canard I, Buffet Croix Blanche S, et al. Rapid detection of carbapenemase activity: benefits and weaknesses of MALDI-TOF MS. Eur J Clin Microbiol Infect Dis. 2015;34:2225–2234.
  • Hoyos-Mallecot Y, Riazzo C, Miranda-Casas C, et al. Rapid detection and identification of strains carrying carbapenemases directly from positive blood cultures using MALDI-TOF MS. J Microbiol Methods. 2014;105:98–101.
  • Carvalhaes CG, Cayô R, Visconde MF, et al. Detection of carbapenemase activity directly from blood culture vials using MALDI-TOF MS: a quick answer for the right decision. J Antimicrob Chemother. 2014;69:2132–2136.
  • Hu YY, Cai JC, Zhou HW, et al. Rapid detection of porins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Front Microbiol. 2015;6(4):784.
  • Oviaño M, Barba MJ, Fernández B, et al. Rapid detection of OXA-48-producing enterobacteriaceae by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2016;54:754–759.
  • Fernández J, Fleites A, Rodcio MR, et al. Evaluation of OXA-48 K-Se T: an immunochromatographic assay for rapid detection of OXA-48-producing Enterobacteriaceae. Diagn Microbiol Infect Dis. 2016;85:12–15.
  • Wareham DW, Shah R, Betts JW, et al. Evaluation of an immunochromatographic lateral flow assay (OXA-48 K-SeT) for rapid detection of OXA-48-like carbapenemases in enterobacteriaceae. J Clin Microbiol. 2016;54:471–473.
  • Meunier D, Vickers A, Pike R, et al. Evaluation of the K-SeT R.E.S.I.S.T. immunochromatographic assay for the rapid detection of KPC and OXA-48-like carbapenemases. J Antimicrob Chemother. 2016;71(8):2357–2359.
  • Glupczynski Y, Evrard S, Ote I, et al. Evaluation of two new commercial immunochromatographic assays for the rapid detection of OXA-48 and KPC carbapenemases from cultured bacteria. J Antimicrob Chemother. 2016;71:1217–1222.
  • Dortet L, Jousset A, Sainte-Rose V, et al. Prospective evaluation of the OXA-48 K-SeT assay, an immunochromatographic test for the rapid detection of OXA-48-type carbapenemases. J Antimicrob Chemother. 2016;71:1834–1840.
  • Antonelli A, Di Palo DM, Galano A, et al. Intestinal carriage of Shewanella xiamenensis simulating carriage of OXA-48-producing Enterobacteriaceae. Diagn Microbiol Infect Dis. 2015;82:1–3.
  • Cunningham SA, Vasoo S, Patel R. Evaluation of the check-points check MDR CT103 and CT103 XL microarray kits by use of preparatory rapid cell lysis. J Clin Microbiol. 2016;54:1368–1371.
  • Findlay J, Hopkins KL, Meunier D, et al. Evaluation of three commercial assays for rapid detection of genes encoding clinically relevant carbapenemases in cultured bacteria. J Antimicrob Chemother. 2015;70:1338–1342.
  • Dortet L, Fusaro M, Naas T. Improvement of the Xpert® Carba-R kit for the detection of carbapenemase-producing enterobacteriaceae. Antimicrob Agents Chemother. 2016 May;60:3832–3837.
  • Lau AF, Fahle GA, Kemp MA, et al. Clinical performance of check-direct CPE, a multiplex PCR for direct detection of bla(KPC), bla(NDM) and/or bla(VIM), and bla(OXA)-48 from perirectal swabs. J Clin Microbiol. 2015;53:3729–3737.
  • Antonelli A, Arena F, Giani T, et al. Performance of the BD MAX™ instrument with check-direct CPE real-time PCR for the detection of carbapenemase genes from rectal swabs, in a setting with endemic dissemination of carbapenemase-producing enterobacteriaceae. Diagn Microbiol Infect Dis. 2016;86:30–34.
  • Bogaerts P, Cuzon G, Evrard S, et al. Evaluation of a DNA microarray for rapid detection of the most prevalent extended-spectrum β-lactamases, plasmid-mediated cephalosporinases and carbapenemases in enterobacteriaceae, pseudomonas and acinetobacter. Int J Antimicrob Agents. 2016;48:189–193.
  • Ledeboer NA, Lopansri BK, Dhiman N, et al. Identification of gram-negative bacteria and genetic resistance determinants from positive blood culture broths by use of the verigene gram-negative blood culture multiplex microarray-based molecular assay. J Clin Microbiol. 2015;53:2460–2472.
  • Mancini N, Infurnari L, Ghidoli N, et al. Potential impact of a microarray-based nucleic acid assay for rapid detection of Gram-negative bacteria and resistance markers in positive blood cultures. J Clin Microbiol. 2014;52:1242–1245.
  • Altun O, Almuhayawi M, Ullberg M, et al. Rapid identification of microorganisms from sterile body fluids by use of filmarray. J Clin Microbiol. 2015;53:710–712.
  • Almuhayawi M, Altun O, Strålin K, et al. Identification of microorganisms by filmarray and matrix-assisted laser desorption ionization-time of flight mass spectrometry prior to positivity in the blood culture system. J Clin Microbiol. 2014;52:3230–3236.
  • Salimnia H, Fairfax MR, Lephart PR, et al. Evaluation of the filmarray blood culture identification panel: results of a multicenter controlled trial. J Clin Microbiol. 2016;54:687–698.
  • Vasoo S, Cunningham SA, Greenwood-Quaintance KE, et al. Evaluation of the filmarray blood culture ID panel on biofilms dislodged from explanted arthroplasties for prosthetic joint infection diagnosis. J Clin Microbiol. 2015;53:2790–2792.
  • Hischebeth GT, Randau TM, Buhr JK, et al. Unyvero i60 implant and tissue infection (ITI) multiplex PCR system in diagnosing periprosthetic joint infection. J Microbiol Methods. 2016;121:27–32.
  • Oueslati S, Nordmann P, Poirel L. Heterogeneous hydrolytic features for OXA-48-like β-lactamases. J Antimicrob Chemother. 2015;70:1059–1063.
  • Jamal W, Al Roomi E, AbdulAziz LR, et al. Evaluation of Curetis Unyvero, a multiplex PCR-based testing system, for rapid detection of bacteria and antibiotic resistance and impact of the assay on management of severe nosocomial pneumonia. J Clin Microbiol. 2014;52:2487–2492.
  • Braun SD, Monecke S, Thürmer A, et al. Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay. Plos One. 2014 Jul 28;9(7): e102232. eCollection 2014.
  • Kaase M, Szabados F, Wassill L, et al. Detection of carbapenemases in enterobacteriaceae by a commercial multiplex PCR. J Clin Microbiol. 2012;50:3115–3118.
  • García-Fernández S, Morosini MI, Marco F, et al. Evaluation of the eazyplex® superbug CRE system for rapid detection of carbapenemases and ESBLs in clinical enterobacteriaceae isolates recovered at two Spanish hospitals. J Antimicrob Chemother. 2015;70:1047–1050.
  • Hinić V, Ziegler J, Straub C, et al. Extended-spectrum β-lactamase (ESBL) detection directly from urine samples with the rapid isothermal amplification-based eazyplex® SuperBug CRE assay: proof of concept. J Microbiol Methods. 2015;119:203–205.
  • Bogaerts P, Hamels S, De Mendonca R, et al. Analytical validation of a novel high multiplexing real-time PCR array for the identification of key pathogens causative of bacterial ventilator-associated pneumonia and their associated resistance genes. J Antimicrob Chemother. 2013;68:340–347.
  • Ceyssens PJ, Garcia-Graells C, Fux F, et al. Development of a Luminex xTAG® assay for cost-effective multiplex detection of β-lactamases in Gram-negative bacteria. J Antimicrob Chemother. 2016;71(9):2479–2483.
  • Kim DK, Kim HS, Pinto N, et al. Xpert CARBA-R assay for the detection of carbapenemase-producing organisms in intensive care unit patients of a Korean tertiary care hospital. Ann Lab Med. 2016;36:162–165.
  • Voelker R. Assay detects drug-resistance genes. JAMA. 2016;316(7):703.
  • Huang TD, Bogaerts P, Ghilani E, et al. Multicentre evaluation of the check-direct CPE® assay for direct screening of carbapenemase-producing enterobacteriaceae from rectal swabs. J Antimicrob Chemother. 2015;70:1669–1673.
  • Hinić V, Ziegler J, Straub C, et al. Extended-spectrum β-lactamase (ESBL) detection directly from urine samples with the rapid isothermal amplification-based eazyplex® superbug CRE assay: proof of concept. J Microbiol Methods. 2015;119:203–205.
  • Andersen H, Connolly N, Bangar H, et al. Use of shotgun metagenome sequencing to detect fecal colonization with multidrug-resistant bacteria in children. J Clin Microbiol. 2016;54:1804–1813.
  • Gazin M, Paasch F, Goossens H, et al. Current trends in culture-based and molecular detection of extended-spectrum-β-lactamase-harboring and carbapenem-resistant Enterobacteriaceae. J Clin Microbiol. 2012;50:1140–1146.
  • Naas T, Cotellon G, Ergani A, et al. Real-time PCR for detection of blaOXA-48 genes from stools. J Antimicrob Chemother. 2013;68:101–104.
  • Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:2640–2644.
  • Han E, Park DJ, Kim Y, et al. Rapid detection of Gram-negative bacteria and their drug resistance genes from positive blood cultures using an automated microarray assay. Diagn Microbiol Infect Dis. 2015;81:153–157.
  • Personne Y, Ozongwu C, Platt G, et al. ‘Sample-in, answer-out’? Evaluation and comprehensive analysis of the Unyvero P50 pneumonia assay. Diagn Microbiol Infect Dis. 2016;86:5–10.
  • Gniadek TJ, Carroll KC, Simner PJ. Carbapenem-resistant non-glucose-fermenting gram-negative bacilli: the missing piece to the puzzle. J Clin Microbiol. 2016;54:1700–1710.
  • van der Zee A, Roorda L, Bosman G, et al. Screening rectal swabs for carbapenemase genes. J Clin Microbiol. 2014;52:4401–4403.
  • Simner PJ, Martin I, Opene B, et al. Evaluation of multiple methods for detection of gastrointestinal colonization of carbapenem-resistant organisms from rectal swabs. J Clin Microbiol. 2016;54:1664–1667.
  • McEwan AS, Derome A, Meunier D, et al. Evaluation of the NucliSENS EasyQ KPC assay for detection of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2013;51:1948–1950.
  • Buchan BW, Ledeboer NA. Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev. 2014;27:783–822.
  • Laffler TG, Cummins LL, McClain CM, et al. Enhanced diagnostic yields of bacteremia and candidemia in blood specimens by PCR-electrospray ionization mass spectrometry. J Clin Microbiol. 2013;51:3535–3541.
  • Lutgring JD, Limbago BM. The problem of carbapenemase-producing-carbapenem-resistant-enterobacteriaceae detection. J Clin Microbiol. 2016;54:529–534.
  • Thaker MN, Kalan L, Waglechner N, et al. Vancomycin-variable enterococci can give rise to constitutive resistance during antibiotic therapy. Antimicrob Agents. 2015;59:1405–1410.
  • Tenover FC, Canton R, Kop J, et al. Detection of colonization by carbapenemase-producing Gram-negative Bacilli in patients by use of the Xpert MDRO assay. J Clin Microbiol. 2013;51:3780–3787.
  • Decousser JW, Poirel L, Desroches M, et al. Failure to detect carbapenem-resistant Escherichia coli producing OXA-48-like using the Xpert Carba-R assay®. Clin Microbiol Infect. 2015;21:e9–10.
  • Lafeuille E, Laouira S, Sougakoff W, et al. Detection of OXA-48-like carbapenemase genes by the Xpert® Carba-R test: room for improvement. Int J Antimicrob Agents. 2015;45:441–442.
  • Dortet L, Poirel L, Abbas S, et al. Genetic and biochemical characterization of FRI-1, a carbapenem-hydrolyzing class A β-lactamase from enterobacter cloacae. Antimicrob Agents Chemother. 2015;59:7420–7425.
  • Falagas ME, Lourida P, Poulikakos P, et al. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother. 2014;58:654–663.
  • Langley G, Besser J, Iwamoto M, et al. Effect of culture-independent diagnostic tests on future emerging infections program surveillance. Emerg Infect Dis. 2015;21:1582–1588.
  • Köser CU, Ellington MJ, Peacock SJ. Whole-genome sequencing to control antimicrobial resistance. Trends Genet. 2014;30:401–407.
  • van Dijk EL, Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology. Trends Genet. 2014;30:418–426.
  • Poirel L, Naas T, Nordmann P. Pyrosequencing as a rapid tool for identification of GES-type extended-spectrum beta-lactamases. J Clin Microbiol. 2006;44:3008–3011.
  • Naas T, Poirel L, Nordmann P. Pyrosequencing for rapid identification of carbapenem-hydrolysing OXA-type beta-lactamases in Acinetobacter baumannii. Clin Microbiol Infect. 2006;12:1236–1240.
  • Stoesser N, Batty EM, Eyre DW, et al. Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J Antimicrob Chemother. 2013;68:2234–2244.
  • Zankari E, Hasman H, Kaas RS, et al. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother. 2013;68:771–777.
  • Tyson GH, McDermott PF, Li C, et al. WGS accurately predicts antimicrobial resistance in Escherichia coli. J Antimicrob Chemother. 2015;70:2763–2769.
  • Clausen PT, Zankari E, Aarestrup FM, et al. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. J Antimicrob Chemother. 2016;71(9):2484–2488.
  • Gupta SK, Padmanabhan BR, Diene SM, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 2014;58:212–220.
  • Kos VN, Déraspe M, McLaughlin RE, et al. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother. 2015;59:427–436.
  • Xavier BB, Das AJ, Cochrane G, et al. Consolidating and exploring antibiotic resistance gene data resources. J Clin Microbiol. 2016;54:851–859.
  • Arena F, Rolfe PA, Doran G, et al. Rapid resistome fingerprinting and clonal lineage profiling of carbapenem-resistant Klebsiella pneumoniae isolates by targeted next-generation sequencing. J Clin Microbiol. 2014;52:987–990.
  • Stoesser N, Sheppard AE, Moore CE, et al. Extensive within-host diversity in fecally carried extended-spectrum-beta-lactamase-producing escherichia coli isolates: implications for transmission analyses. J Clin Microbiol. 2015;53:2122–2131.
  • Sydenham TV, Sóki J, Hasman H, et al. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing. Anaerobe. 2015;31:59–64.
  • Carattoli A, Zankari E, García-Fernández A, et al. In silico detection and typing of plasmids using PlasmidMLSTFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58:3895–3903.
  • Khaledi A, Schniederjans M, Pohl S, et al. Transcriptome profiling of antimicrobial resistance in pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60:4722–4733.
  • Van Belkum A, Dunne WM Jr. Next-generation antimicrobial susceptibility testing. J Clin Microbiol. 2013;51:2018–2024.
  • Choi J, Yoo J, Lee M, et al. A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci Transl Med. 2014;6:267ra174.
  • Silva AP, Faria-Ramos I, Ricardo E, et al. Rapid flow cytometry test for identification of different carbapenemases in enterobacteriaceae. Antimicrob Agents Chemother. 2016;60:3824–3826.
  • Bogaerts P, Yunus S, Massart M, et al. Evaluation of the BYG carba test, a new electrochemical assay for rapid detection of carbapenemase-producing enterobacteriaceae. J Clin Microbiol. 2016;54:349–358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.