1,303
Views
4
CrossRef citations to date
0
Altmetric
Review

The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities

, , &
Pages 133-145 | Received 10 Nov 2017, Accepted 04 Jan 2018, Published online: 15 Jan 2018

References

  • Pavlou MP, Diamandis EP, Blasutig IM. The long journey of cancer biomarkers from the bench to the clinic. Clin Chem. 2013;59:147–157. DOI:10.1373/clinchem.2012.184614
  • Byron SA, Van Keuren-Jensen KR, Engelthaler DM, et al. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet. 2016;17:257–271. DOI:10.1038/nrg.2016.10
  • Gordon BL, Finnerty BM, Aronova A, et al. Genomic medicine for cancer diagnosis. J Surg Oncol. 2015;111:24–30.
  • Stephens PJ, Greenman CD, Fu B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27–40.
  • Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients : quantitations and evidence for their origin from apoptotic and necrotic cells DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necr. Cancer Res. 2001;61:1659–1665.
  • Diehl F, Li M, Dressman D, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci. 2005;102:16368–16373.
  • Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2013;489:57–74.
  • Stroun M, Anker P, Belianski M, et al. Presence of RNA in the nucleoprotein complex spontaneously released by human lymphocytes and frog auricles in culture. Cancer Res. 1978;38:3546–3554. Available from: http://cancerres.aacrjournals.org/content/38/10/3546.long
  • Lo KW, Lo YMD, Leung SF, et al. Analysis of cell-free Epstein-Barr virus-associated RNA in the plasma of patients with nasopharyngeal carcinoma. Clin Chem. 1999;45:1292–1294. Available from: http://clinchem.aaccjnls.org/content/clinchem/45/8/1292.full.pdf
  • Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–675.
  • Wu X, Brewer G. The regulation of mRNA stability in mammalian cells: 2.0. Gene. NIH Public Access. 2012;500:10–21.
  • Koczera P, Martin L, Marx G, et al. The ribonuclease a superfamily in humans: canonical RNases as the buttress of innate immunity. Int J Mol Sci. 2016;17. DOI:10.3390/ijms17081278
  • Hynle I, Meuffels M, Poznanski WJ. Determination of phosphodiesterase I activity in human blood serum. Clin Chem. 1975;2110:1383–1387. Available from: http://clinchem.aaccjnls.org/content/clinchem/21/10/1383.full.pdf
  • Lüthje J, Ogilvie A. 5ʹ-Nucleotide phosphodiesterase isoenzymes in human serum: quantitative measurement and some biochemical properties. Clin Chim Acta. 1987;164:275–284. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3036404
  • Bryzgunova OE, Laktionov PP. Extracellular nucleic acids in urine: sources, structure, diagnostic potential. Acta Naturae. 2015;7:48–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26483959
  • Tsui NBY, Ng EKO, Lo YMMD. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem. 2002;48:1647–1653. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11468248
  • Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer - a survey. Biochim Biophys Acta Rev Cancer. 2007;1775:181–232. DOI:10.1016/j.bbcan.2006.10.001
  • Hasselmann DO, Rappl G, Tilgen W, et al. Extracellular tyrosinase mRNA within apoptotic bodies is protected from degradation in human serum. Clin Chem. 2001;47:1488–1489.
  • Crescitelli R, Lässer C, Szabó TG, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2:1–10. DOI:10.3402/jev.v2i0.20677
  • Gallo A, Tandon M, Alevizos I, et al. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 2012;7:e30679.
  • Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108:5003–5008.
  • Wagner J, Riwanto M, Besler C, et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol. 2013;33:1392–1400.
  • Huang W, Zhao M, Wei N, et al. Site-specific RNase A activity was dramatically reduced in serum from multiple types of cancer patients. PLoS One. 2014;9. DOI:10.1371/journal.pone.0096490
  • Spencer JD, Schwaderer AL, Eichler T, et al. An endogenous ribonuclease inhibitor regulates the antimicrobial activity of ribonuclease 7 in the human urinary tract. Kidney Int. 2014;85:1179–1191.
  • Ohashi A, Murata A, Cho Y, et al. Analysis of the expression and localization of RNase and RNase inhibitor in blood cells and vascular endothelial cells involved in homeostasis in the vascular system. J Thromb Haemost. 2015;13:575.
  • Smyth T, Kullberg M, Malik N, et al. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release. 2015;199:145–155.
  • Takahashi Y, Nishikawa M, Shinotsuka H, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 2013;165:77–84.
  • Marsh JB, Welty FK, Schaefer EJ. Stable isotope turnover of apolipoproteins of high-density lipoproteins in humans. Curr Opin Lipidol. 2000;11:261–266.
  • Watts GF, Moroz P, Barrett PHR. Kinetics of very-low-density lipoprotein apolipoprotein B-100 in normolipidemic subjects: pooled analysis of stable-isotope studies. Metabolism. 2000;49:1204–1210.
  • Poon IKH, Lucas CD, Rossi AG, et al. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol. 2014;14:166–180.
  • Javidi MA, Ahmadi AH, Bakhshinejad B, et al. Cell-free microRNAs as cancer biomarkers: the odyssey of miRNAs through body fluids. Med Oncol. 2014;31:295.
  • Pellegrini KL, Sanda MG, Moreno CS. RNA biomarkers to facilitate the identification of aggressive prostate cancer. Mol Aspects Med. 2015;45:37–46.
  • Gallo A, Vukic D, Michalík D, et al. ADAR RNA editing in human disease; more to it than meets the I. Hum Genet. 2017;136:1265–1278.
  • Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13:358–369.
  • Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. DOI: 10.1038/nrg2934
  • Modelska A, Quattrone A, Re A. Molecular portraits: the evolution of the concept of transcriptome-based cancer signatures. Brief Bioinform. 2015;16:1000–1007.
  • Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005;115:1503–1521.
  • Marisa L, de Reyniès A, Duval A, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. Public Library of Science. 2013;10:e1001453.
  • Brodtkorb M, Lingjærde OC, Huse K, et al. Whole-genome integrative analysis reveals expression signatures predicting transformation in follicular lymphoma. Blood. 2014;123:1051–1054.
  • Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838.
  • Søkilde R, Vincent M, Møller AK, et al. Efficient identification of miRNAs for classification of tumor origin. J Diagn. 2014;16:106–115. DOI:10.1016/j.jmoldx.2013.10.001
  • Rosenfeld N, Aharonov R, Meiri E, et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol. 2008;26:462–469.
  • Pease J, Kinross C. Improved RNA-seq of blood-derived RNA increases gene discovery and coverage. Nat Methods. 2013;10:i–ii.
  • Shin H, Shannon CP, Fishbane N, et al. Variation in RNA-Seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion. PLoS One. 2014;9. DOI:10.1371/journal.pone.0091041
  • Kaczkowski B, Tanaka Y, Kawaji H, et al. Transcriptome analysis of recurrently deregulated genes across multiple cancers identifies new pan-cancer biomarkers. Cancer Res. 2016;76:216–226.
  • Cann GM, Gulzar ZG, Cooper S, et al. mRNA-seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer. PLoS One. 2012;7. DOI:10.1371/journal.pone.0049144
  • Fernandez-Mercado M, Manterola L, Larrea E, et al. The circulating transcriptome as a source of non-invasive cancer biomarkers: concepts and controversies of non-coding and coding RNA in body fluids. J Cell Mol Med. 2015;19. DOI:10.1111/jcmm.12625
  • Kishikawa T, Otsuka M, Ohno M, et al. Circulating RNAs as new biomarkers for detecting pancreatic cancer. World J Gastroenterol. 2015;21:8527–8540.
  • Cheng G. Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev. 2015;81:75–93.
  • Previdi MC, Carotenuto P, Zito D, et al. Noncoding RNAs as novel biomarkers in pancreatic cancer: what do we know? Futur Oncol. Future Medicine Ltd London, UK. 2017;13:443–453.
  • Schou J, Johansen J, Nielsen D, et al. Circulating microRNAs as prognostic and predictive biomarkers in patients with colorectal cancer. Non-Coding RNA. 2016;2:5.
  • Qiu X, Zhang J, Shi W, et al. Circulating microRNA-26a in plasma and its potential diagnostic value in gastric cancer. PLoS One. 2016;11. DOI:10.1371/journal.pone.0151345
  • Larrea E, Sole C, Manterola L, et al. New concepts in cancer biomarkers: circulating miRNAs in liquid biopsies. Int J Mol Sci. 2016;17:627.
  • Wang W-T, Chen Y-Q. Circulating miRNAs in cancer: from detection to therapy. J Hematol Oncol. 2014;7:86.
  • He Y, Lin J, Kong D, et al. Current state of circulating microRNAs as cancer biomarkers. Clin Chem. 2015;61:1138–1155.
  • Qi P, Zhou X-Y DX. Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer. 2016;15:39.
  • Deng H, Wang JM, Li M, et al. Long non-coding RNAs: new biomarkers for prognosis and diagnosis of colon cancer. Tumor Biol. 2017;39:101042831770633.
  • Shi T, Gao G, Cao Y. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis Markers. 2016;2016. DOI:10.1155/2016/9085195
  • Bolha L, Ravnik-Glavač M, Glavač D. Long noncoding RNAs as biomarkers in cancer. Dis Markers. 2017;2017. DOI:10.1155/2017/7243968
  • Saus E, Brunet-Vega A, Iraola-Guzmán S, et al. Long non-coding RNAs as potential novel prognostic biomarkers in colorectal cancer. Front Genet. 2016;7. DOI:10.3389/fgene.2016.00054
  • Liang W, Lv T, Shi X, et al. Circulating long noncoding RNA GAS5 is a novel biomarker for the diagnosis of nonsmall cell lung cancer. Diagn Accuracy Study. 2016;1–7. DOI:10.1097/MD.0000000000004608
  • Zhang K, Shi H, Xi H, et al. Genome-wide lncRNA microarray profiling identifies novel circulating lncrnas for detection of gastric cancer. Theranostics. 2017;7:213–227.
  • Chen S, Liang H, Yang H, et al. LincRNa-p21: function and mechanism in cancer. Med Oncol. 2017;34:98.
  • Assumpção CB, Calcagno DQ, Araújo TMT, et al. The role of piRNA and its potential clinical implications in cancer. Epigenomics. NIH Public Access. 2015;7:975–984.
  • Suzuki R, Honda S, Kirino Y. PIWI expression and function in cancer. Front Genet. 2012;3. DOI:10.3389/fgene.2012.00204
  • Liu Y. MicroRNAs and PIWI-interacting RNAs in oncology (Review). Oncol Lett. 2016;12:2289–2292.
  • Siddiqi S, Matushansky I. Piwis and piwi-interacting RNAs in the epigenetics of cancer. J Cell Biochem. 2012;113:373–380.
  • Kishikawa T, Otsuka M, Yoshikawa T, et al. Quantitation of circulating satellite RNAs in pancreatic cancer patients. JCI Insight. 2016;1:e86646.
  • Kishikawa T, Otsuka M, Yoshikawa T, et al. Satellite RNAs promote pancreatic oncogenic processes via the dysfunction of YBX1. Nat Commun. 2016;7:13006.
  • Feng H, Qin Z, Zhang X. Opportunities and methods for studying alternative splicing in cancer with RNA-Seq. Cancer Lett. 2013;340:179–191.
  • Bösl A, Spitzmüller A, Jasarevic Z, et al. MammaPrint versus EndoPredict: poor correlation in disease recurrence risk classification of hormone receptor positive breast cancer. PLoS One. 2017;12. DOI:10.1371/journal.pone.0183458
  • Nagayasu K, Komiyama H, Ishiyama S, et al. Investigation of free cancer cells in peripheral blood using CEA mRNA expression in perioperative colorectal cancer patients. Mol Clin Oncol. 2013;1:668–674.
  • De Souza MF, Kuasne H, Barros-Filho M de C, et al. Circulating mRNAs and miRNAs as candidate markers for the diagnosis and prognosis of prostate cancer. PLoS One. 2017;12:e0184094.
  • March-Villalba JA, Martínez-Jabaloyas JM, Herrero MJ, et al. Cell-free circulating plasma hTERT mRNA is a useful marker for prostate cancer diagnosis and is associated with poor prognosis tumor characteristics. PLoS One. 2012;7. DOI:10.1371/journal.pone.0043470
  • García V, García JM, Peña C, et al. Free circulating mRNA in plasma from breast cancer patients and clinical outcome. Cancer Lett. 2008;263:312–320.
  • Yuan T, Huang X, Woodcock M, et al. Plasma extracellular RNA profiles in healthy and cancer patients. Sci Rep. 2016;6:19413. DOI:10.1038/srep19413
  • Huang X, Yuan T, Tschannen M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013;14:319.
  • Lázaro-Ibáñez E, Lunavat TR, Jang SC, et al. Distinct prostate cancer-related mRNA cargo in extracellular vesicle subsets from prostate cell lines. BMC Cancer. 2017;17:92.
  • Nilsson J, Skog J, Nordstrand A, et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009;100:1603–1607.
  • Goldvaser H, Gutkin A, Beery E, et al. Characterisation of blood-derived exosomal hTERT mRNA secretion in cancer patients: a potential pan-cancer marker. Br J Cancer. 2017;117:353–357.
  • Miguel Garcia J, Garcia V, Pena C, et al. Extracellular plasma RNA from colon cancer patients is confined in a vesicle-like structure and is mRNA-enriched. RNA. 2008;14:1424–1432.
  • Lanzós A, Carlevaro-Fita J, Mularoni L, et al. Discovery of cancer driver long noncoding RNAs across 1112 tumour genomes: new candidates and distinguishing features. Sci Rep. 2017;7:41544.
  • Jin HY, Lai M, Xiao C. microRNA-17-92 is a powerful cancer driver and a therapeutic target. Cell Cycle. 2014;13:495–496.
  • Pon JR, Marra MA. Driver and passenger mutations in cancer. Annu Rev Pathol Mech Dis. 2015;10:25–50.
  • Danielson KM, Rubio R, Abderazzaq F, et al. High throughput sequencing of extracellular RNA from human plasma. Margis R, editor. PLoS One. 2017;12:e0164644.
  • Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–15529.
  • Munker R, Calin GA. MicroRNA profiling in cancer. Clin Sci. 2011;121:141–158.
  • Rupaimoole R, Calin GA, Lopez-Berestein G, et al. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 2016;6:235–246.
  • Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–1741.
  • Russo F, Di Bella S, Vannini F, et al. miRandola 2017: a curated knowledge base of non-invasive biomarkers. Nucleic Acids Res. 2017. DOI:10.1093/nar/gkx854
  • Sozzi G, Boeri M, Rossi M, et al. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol. 2014;32:768–773. DOI:10.1200/JCO.2013.50.4357
  • Montani F, Marzi MJ, Dezi F, et al. miR-Test: a blood test for lung cancer early detection. J Natl Cancer Inst. 2015;107:djv063.
  • Sozzi G, Boeri M. Potential biomarkers for lung cancer screening. Transl Lung Cancer Res. 2014;3:139–148.
  • Ponnusamy M, Yan KW, Liu CY, et al. PIWI family emerging as a decisive factor of cell fate: an overview. Eur J Cell Biol. 2017;96:746–757.
  • Ng KW, Anderson C, Marshall EA, et al. Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol Cancer. 2016;15:5.
  • Martinez VD, Vucic EA, Thu KL, et al. Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci Rep. 2015;5. DOI:10.1038/srep10423
  • Stepanov GA, Filippova JA, Komissarov AB, et al. Regulatory role of small nucleolar RNAs in human diseases. Biomed Res Int. 2015;2015:1–10.
  • Thorenoor N, Slaby O. Small nucleolar RNAs functioning and potential roles in cancer. Tumor Biol. 2015;36:41–53.
  • Mannoor K, Liao J, Jiang F. Small nucleolar RNAs in cancer. DOI: 10.1016/j.bbcan.2012.03.005
  • Köhler J, Schuler M, Gauler TC, et al. Circulating U2 small nuclear RNA fragments as a diagnostic and prognostic biomarker in lung cancer patients. J Cancer Res Clin Oncol. 2016;142:795–805.
  • Kuhlmann JD, Baraniskin A, Hahn SA, et al. Circulating U2 small nuclear RNA fragments as a novel diagnostic tool for patients with epithelial ovarian cancer. Clin Chem. 2014;60:206–213.
  • Baraniskin A, Nöpel-Dünnebacke S, Ahrens M, et al. Circulating U2 small nuclear RNA fragments as a novel diagnostic biomarker for pancreatic and colorectal adenocarcinoma. Int J Cancer. 2013;132:E48–E57.
  • Su J, Liao J, Gao L, et al. Analysis of small nucleolar RNAs in sputum for lung cancer diagnosis. Oncotarget. 2015;7. Available from: www.impactjournals.com/oncotarget
  • Liao J, Yu L, Mei Y, et al. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer. 2010;9:198.
  • Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–159.
  • Marchese FP, Huarte M. Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code. Epigenetics. 2014;9:21–26.
  • Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci. 2009;106:11667–11672.
  • Prensner JR, Iyer MK, Sahu A, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 2013;45:1392–1403.
  • Wang KC, Yang YW, Liu B, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472:120–126.
  • Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21. DOI:10.1038/nm.3981
  • Liz J, Esteller M. lncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta Gene Regul Mech. 2016;1859:169–176.
  • Deniz E, Erman B. Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Funct Integr Genomics. 2017;17:135–143.
  • Kartha RV, Subramanian S. Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation. Front Genet. 2014;5:1–9.
  • Weber DG, Johnen G, Casjens S, et al. Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC Res Notes. 2013;6:518.
  • Isin M, Ozgur E, Cetin G, et al. Investigation of circulating lncRNAs in B-cell neoplasms. Clin Chim Acta. 2014;431:255–259.
  • Fayda M, Isin M, Tambas M, et al. Do circulating long non-coding RNAs (lncRNAs) (LincRNA-p21, GAS 5, HOTAIR) predict the treatment response in patients with head and neck cancer treated with chemoradiotherapy? Tumor Biol. 2016;37:3969–3978.
  • Tang H, Wu Z, Zhang J, et al. Salivary lncRNA as a potential marker for oral squamous cell carcinoma diagnosis. Mol Med Rep. 2013;7:761–766.
  • Rivas A, Burzio V, Landerer E, et al. Determination of the differential expression of mitochondrial long non-coding RNAs as a noninvasive diagnosis of bladder cancer. BMC Urol. 2012;12:1.
  • Leyten GHJM, Hessels D, Jannink SA, et al. Platinum priority – prostate cancer prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol. 2014;65:534–542.
  • McKiernan J, Donovan MJ, O’Neill V, et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2016;2:882–889.
  • Boeri M, Verri C, Conte D, et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci. 2011;108:3713–3718.
  • Durand X, Moutereau S, Xylinas E. et al. ProgensaTM PCA3 test for prostate cancer. Expert Rev Mol Diagn. 2011;11:137–144.
  • Cornu J-N, Cancel-Tassin G, Egrot C, et al. Urine TMPRSS2:ERG fusion transcript integrated with PCA3 score, genotyping, and biological features are correlated to the results of prostatic biopsies in men at risk of prostate cancer. Prostate. 2013;73:242–249.
  • Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–338.
  • Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–388.
  • Du WW, Fang L, Yang W, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 2016;24:357–370.
  • Rong D, Sun H, Li Z, et al. An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget. 2017. DOI:10.18632/oncotarget.19154
  • Kristensen LS, Hansen TB, Venø MT, et al. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene. 2017. DOI:10.1038/onc.2017.361
  • Yang W, Du WW, Li X, et al. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene. 2016;35:3919–3931.
  • Wang F, Nazarali AJ, Ji S. Circular RNAs as potential biomarkers for cancer diagnosis and therapy. Am J Cancer Res. 2016 [ e-Century Publishing Corporation];6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27429839
  • Memczak S, Papavasileiou P, Peters O, et al. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One. 2015;10:1–13.
  • Huang M, Huang Q, He Y-R, et al. Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J Gastroenterol. 2017;23:6330.
  • Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 2015;444:132–136.
  • Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25:981–984.
  • Balatti V, Nigita G, Veneziano D, et al. tsRNA signatures in cancer. Proc Natl Acad Sci. 2017;114:8071–8076.
  • Pekarsky Y, Balatti V, Palamarchuk A, et al. Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer. Proc Natl Acad Sci. 2016;113:5071–5076.
  • Guo Y, Bosompem A, Mohan S, et al. Transfer RNA detection by small RNA deep sequencing and disease association with myelodysplastic syndromes. BMC Genomics. 2015;16:727.
  • Sun C, Fu Z, Wang S, et al. Roles of tRNA-derived fragments in human cancers. Cancer Lett. 2018;414:16–25.
  • Tolkach Y, Stahl AF, Niehoff EM, et al. YRNA expression predicts survival in bladder cancer patients. BMC Cancer. 2017;17. DOI:10.1186/s12885-017-3746-y
  • Nientiedt M, Schmidt D, Kristiansen G, et al. YRNA expression profiles are altered in clear cell renal cell carcinoma. Eur Urol Focus. 2016. DOI:10.1016/j.euf.2016.08.004
  • Dhahbi SS, Atamna H, Boffelli D, et al. Deep sequencing of serum small RNAs identifies patterns of 5’ tRNA half and YRNA fragment expression associated with breast cancer. Biomark Cancer. 2014;37. DOI:10.4137/BIC.S20764
  • Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell. 2011;146:353–358.
  • Witwer KW. Circulating microRNA biomarker studies: pitfalls and potential solutions. Clin Chem. 2015;61:56–63.
  • Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–157.
  • Sourvinou IS, Markou A, Lianidou ES. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J Diagn. 2013;15:827–834.
  • Glinge C, Clauss S, Boddum K, et al. Stability of circulating blood-based microRNAs – pre-analytic methodological considerations. PLoS One. 2017;12:e0167969.
  • Beatty M, Guduric-Fuchs J, Brown E, et al. Small RNAs from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma. BMC Genomics. 2014;15:933.
  • Moldovan L, Batte KE, Trgovcich J, et al. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med. 2014;18:371–390.
  • Witwer KW, Buzás EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2:20360.
  • Kingston RE. Preparation and analysis of RNA. Curr Protoc Mol Biol. 2010. DOI:10.1002/0471142727.mb0400s58
  • Moret I, Sańchez-Izquierdo D, Borra M, et al. Assessing an improved protocol for plasma microRNA extraction. PLoS One. 2013;8:1–10.
  • Brunet-Vega A, Pericay C, Quílez ME, et al. Variability in microRNA recovery from plasma: comparison of five commercial kits. Anal Biochem. 2015;488:28–35.
  • Page K, Guttery DS, Zahra N, et al. Influence of plasma processing on recovery and analysis of circulating nucleic acids. PLoS One. 2013;8:2–11.
  • Kim YK, Yeo J, Kim B, et al. Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell. 2012;46:893–895. DOI:10.1016/j.molcel.2012.05.036
  • Rapisuwon S, Vietsch EE, Wellstein A. Circulating biomarkers to monitor cancer progression and treatment. Comput Struct Biotechnol J. 2016;14:211–222.
  • Mestdagh P, Hartmann N, Baeriswyl L, et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods. 2014;11:809–815.
  • Diamandis EP. The failure of protein cancer biomarkers to reach the clinic: why, and what can be done to address the problem? . BioMed Cent. 2012;10:87.
  • Pritchard CC, Kroh E, Wood B, et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila). 2012;5:492–497.
  • Parkinson DR, McCormack RT, Keating SM, et al. Evidence of clinical utility: an unmet need in molecular diagnostics for patients with cancer. Clin Cancer Res. 2014;20:1428–1444.
  • Quinn JF, Patel T, Wong D, et al. Extracellular RNAs: development as biomarkers of human disease. J Extracell Vesicles. 2015;4. DOI:10.3402/jev.v4.27495
  • Majewski IJ, Bernards R. Taming the dragon: genomic biomarkers to individualize the treatment of cancer. Nat Med. 2011;304–312. DOI:10.1038/nm.2311
  • Grossman RL, Abel B, Angiuoli S, et al. Collaborating to compete: Blood Profiling Atlas in Cancer (BloodPAC) Consortium [Internet]. Clin Pharmacol Ther. 2017;101:589–592.
  • Ainsztein AM, Brooks PJ, Dugan VG, et al. The NIH Extracellular RNA Communication Consortium. J Extracell Vesicles. 2015;4. DOI:10.3402/jev.v4.27493

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.