758
Views
10
CrossRef citations to date
0
Altmetric
Review

Molecular diagnosis of antimicrobial resistance in Escherichia coli

, , &
Pages 207-217 | Received 20 Nov 2017, Accepted 07 Feb 2018, Published online: 19 Feb 2018

References

  • O’Neill J. Review on Antimicrobial Resistance. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. London, 2014. Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf
  • World Health Organization (WHO). global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Geneva, 2017. Available from: http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/
  • Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016 Nov;37(11):1288–1301.
  • Al-Hasan MN, Lahr BD, Eckel-Passow JE, et al. Antimicrobial resistance trends of escherichia coli bloodstream isolates: A population-based study, 1998-2007. J Antimicrob Chemother. 2009 Jul;64(1):169–174.
  • Sogaard M, Norgaard M, Dethlefsen C, et al. Temporal changes in the incidence and 30-day mortality associated with bacteremia in hospitalized patients from 1992 through 2006: A population-based cohort study. Clin Infect Dis. 2011 Jan 1;52(1):61–69.
  • Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013 Aug 29;369(9):840–851.
  • Opal SM, Garber GE, LaRosa SP, et al. Systemic host responses in severe sepsis analyzed by causative microorganism and treatment effects of drotrecogin alfa (activated). Clin Infect Dis. 2003 Jul 1;37(1):50–58.
  • Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012 May 31;366(22):2055–2064.
  • Ku LC, Boggess KA, Cohen-Wolkowiez M. Bacterial meningitis in the infant. Clin Perinatol. 2014 Dec 6;42(1):29–45.
  • DuPont HL, Ericsson CD. Prevention and treatment of traveler’s diarrhea. N Engl J Med. 1993 Jun 24;328(25):1821–1827.
  • Adachi JA, Jiang ZD, Mathewson JJ, et al. Enteroaggregative escherichia coli as a major etiologic agent in traveler’s diarrhea in 3 regions of the world. Clin Infect Dis. 2001 Jun 15;32(12):1706–1709.
  • Goldstein EJ, Snydman DR. Intra-abdominal infections: review of the bacteriology, antimicrobial susceptibility and the role of ertapenem in their therapy. J Antimicrob Chemother. 2004 Jun;53(Suppl 2):ii29–36.
  • Hilborn ED, Mermin JH, Mshar PA, et al. A multistate outbreak of escherichia coli O157: h7infections associated with consumption of mesclun lettuce. Arch Intern Med. 1999 Aug 9–23;159(15):1758–1764.
  • Tadesse DA, Zhao S, Tong E, et al. Antimicrobial drug resistance in escherichia coli from humans and food animals, united states, 1950-2002. Emerg Infect Dis. 2012 May;18(5):741–749.
  • Erb A, Sturmer T, Marre R, et al. Prevalence of antibiotic resistance in escherichia coli: overview of geographical, temporal, and methodological variations. Eur J Clin Microbiol Infect Dis. 2007 Feb;26(2):83–90.
  • Von Baum H, Marre R. Antimicrobial resistance of escherichia coli and therapeutic implications. Int J Med Microbiol. 2005 Oct;295(6–7):503–511.
  • Jean SS, Hsueh PR. High burden of antimicrobial resistance in asia. Int J Antimicrob Agents. 2011 Apr;37(4):291–295.
  • Investigators of the Delhi Neonatal Infection Study (DeNIS) collaboration. Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in delhi, india: A cohort study. Lancet Glob Health. 2016 Oct;4(10):e752–e760.
  • Hawser SP, Bouchillon SK, Hoban DJ, et al. Emergence of high levels of extended-spectrum-beta-lactamase-producing gram-negative bacilli in the asia-pacific region: data from the study for monitoring antimicrobial resistance trends (SMART) program, 2007. Antimicrob Agents Chemother. 2009 Aug;53(8):3280–3284.
  • Talan DA, Takhar SS, Krishnadasan A, et al. Fluoroquinolone-resistant and extended-spectrum beta-lactamase-producing escherichia coli infections in patients with pyelonephritis, united states(1). Emerg Infect Dis. 2016 Sep;22(9). DOI:10.3201/eid2209.160148.
  • Dalhoff A. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip Perspect Infect Dis. 2012;2012:976273.
  • Bryce A, Hay AD, Lane IF, et al. Global prevalence of antibiotic resistance in paediatric urinary tract infections caused by escherichia coli and association with routine use of antibiotics in primary care: systematic review and meta-analysis. Bmj. 2016 Mar;15(352):i939.
  • Canton R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol. 2006 Oct;9(5):466–475.
  • Stoesser N, Sheppard AE, Pankhurst L, et al. Evolutionary history of the global emergence of the escherichia coli epidemic clone ST131. MBio. 2016 Mar 22;7(2):e02162–15.
  • Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant enterobacteriaceae. Clin Microbiol Rev. 2015 Jul;28(3):565–591.
  • Johnson JR, Porter S, Thuras P, et al. Epidemic emergence in the united states of escherichia coli sequence type 131-H30 (ST131-H30), 2000 to 2009. Antimicrob Agents Chemother. 2017 Jul 25;61(8). DOI:10.1128/AAC.00732,17
  • Blair JM, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015 Jan;13(1):42–51.
  • Patel J, Richter S. Mechanisms of resistance to antibacterial agents. In: Jorgensen J, Pfaller M, Carroll K, et al., editors. Manual of clinical microbiology. 11th ed. Washington (DC): ASM Press; 2015. p. 1212.
  • Azucena E, Mobashery S. Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist Updat. 2001. 4. Apr(2):106–117.
  • Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010 Dec;13(6):151–171.
  • Rosenberg EY, Ma D, Nikaido H. AcrD of escherichia coli is an aminoglycoside efflux pump. J Bacteriol. 2000 Mar;182(6):1754–1756.
  • Aires JR, Nikaido H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of escherichia coli. J Bacteriol. 2005 Mar;187(6):1923–1929.
  • Yang J, Ye L, Wang W, et al. Diverse prevalence of 16S rRNA methylase genes armA and rmtB amongst clinical multidrug-resistant escherichia coli and klebsiella pneumoniae isolates. Int J Antimicrob Agents. 2011 Oct;38(4):348–351.
  • Bajaj P, Singh NS, Virdi JS. Escherichia coli beta-lactamases: what really matters. Front Microbiol. 2016 Mar;30(7):417.
  • Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):321–331.
  • Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010 Mar;54(3):969–976.
  • Walsh TR, Toleman MA, Poirel L, et al. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005 Apr;18(2):306–325.
  • Jacoby GA, Munoz-Price LS. The new beta-lactamases. N Engl J Med. 2005 Jan 27;352(4):380–391.
  • Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009 Jan;22(1):161.
  • Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012 Jul;67(7):1597–1606.
  • Conrad S, Oethinger M, Kaifel K, et al. gyrA mutations in high-level fluoroquinolone-resistant clinical isolates of escherichia coli. J Antimicrob Chemother. 1996 Sep;38(3):443–455.
  • Komp Lindgren P, Karlsson A, Hughes D. Mutation rate and evolution of fluoroquinolone resistance in escherichia coli isolates from patients with urinary tract infections. Antimicrob Agents Chemother. 2003 Oct;47(10):3222–3232.
  • Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis. 2005 Jul 15;41(Suppl 2):S120–6.
  • Friedman SM, Lu T, Drlica K. Mutation in the DNA gyrase A gene of escherichia coli that expands the quinolone resistance-determining region. Antimicrob Agents Chemother. 2001 Aug;45(8):2378–2380.
  • Yoshida H, Bogaki M, Nakamura M, et al. Quinolone resistance-determining region in the DNA gyrase gyrA gene of escherichia coli. Antimicrob Agents Chemother. 1990 Jun;34(6):1271–1272.
  • Oram M, Fisher LM. 4-quinolone resistance mutations in the DNA gyrase of escherichia coli clinical isolates identified by using the polymerase chain reaction. Antimicrob Agents Chemother. 1991 Feb;35(2):387–389.
  • Piddock LJ. Mechanisms of fluoroquinolone resistance: an update 1994-1998. Drugs. 1999;58(Suppl 2):11–18.
  • Okusu H, Ma D, Nikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of escherichia coli multiple-antibiotic-resistance (mar) mutants. J Bacteriol. 1996 Jan;178(1):306–308.
  • Oethinger M, Kern WV, Jellen-Ritter AS, et al. Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in escherichia coli in the absence of the AcrAB efflux pump. Antimicrob Agents Chemother. 2000 Jan;44(1):10–13.
  • Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother. 2005 Jul;56(1):20–51.
  • Cattoir V, Nordmann P. Plasmid-mediated quinolone resistance in gram-negative bacterial species: an update. Curr Med Chem. 2009;16(8):1028–1046.
  • Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006 Oct;6(10):629–640.
  • Poirel L, Pitout JD, Calvo L, et al. In vivo selection of fluoroquinolone-resistant escherichia coli isolates expressing plasmid-mediated quinolone resistance and expanded-spectrum beta-lactamase. Antimicrob Agents Chemother. 2006 Apr;50(4):1525–1527.
  • Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5638–5642.
  • Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5. DOI:10.3389/fmicb.2014.00643.
  • Li XZ, Plesiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin Microbiol Rev. 2015 Apr;28(2):337–418.
  • Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in china: A microbiological and molecular biological study. Lancet Infect Dis. 2016 Feb;16(2):161–168.
  • Baron S, Hadjadj L, Rolain JM, et al. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents. 2016 Dec;48(6):583–591.
  • Gao R, Hu Y, Li Z, et al. Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathog. 2016 Nov 28;12(11):e1005957.
  • Xavier BB, Lammens C, Ruhal R, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in escherichia coli, belgium, june 2016. Euro Surveill. 2016 Jul 7;21(27). DOI:10.2807/1560,7917.ES.2016.21.27.30280
  • Skold O. Resistance to trimethoprim and sulfonamides. Vet Res. 2001 May-Aug;32(3–4):261–273.
  • Huovinen P. Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis. 2001 Jun 1;32(11):1608–1614.
  • Skold O. Sulfonamide resistance: mechanisms and trends. Drug Resist Updat. 2000 Jun;3(3):155–160.
  • Leclercq R, Courvalin P. Intrinsic and unusual resistance to macrolide, lincosamide, and streptogramin antibiotics in bacteria. Antimicrob Agents Chemother. 1991 Jul;35(7):1273–1276.
  • Phuc Nguyen MC, Woerther PL, Bouvet M, et al. Escherichia coli as reservoir for macrolide resistance genes. Emerg Infect Dis. 2009 Oct;15(10):1648–1650.
  • Zhong P, Shortridge VD. The role of efflux in macrolide resistance. Drug Resist Updat. 2000 Dec;3(6):325–329.
  • Ojo KK, Ulep C, Van Kirk N, et al. The mef(A) gene predominates among seven macrolide resistance genes identified in gram-negative strains representing 13 genera, isolated from healthy portuguese children. Antimicrob Agents Chemother. 2004 Sep;48(9):3451–3456.
  • Roberts MC, Sutcliffe J, Courvalin P, et al. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother. 1999 Dec;43(12):2823–2830.
  • Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis. 2002 Feb 15;34(4):482–492.
  • Turnidge J. Susceptbility test methods: general considerations. In: Jorgensen J, Pfaller M, Carroll K, et al., editors. Manual of clinical microbiology. 11th ed. Washington (DC): ASM Press; 2015. p. 1246.
  • Turnidge J, Paterson DL. Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev. 2007 Jul;20(3):391–408.
  • Hombach M, Bottger EC, Roos M. The critical influence of the intermediate category on interpretation errors in revised EUCAST and CLSI antimicrobial susceptibility testing guidelines. Clin Microbiol Infect. 2013 Feb;19(2):E59–71.
  • Valsesia G, Roos M, Bottger EC, et al. A statistical approach for determination of disk diffusion-based cutoff values for systematic characterization of wild-type and non-wild-type bacterial populations in antimicrobial susceptibility testing. J Clin Microbiol. 2015 Jun;53(6):1812–1822.
  • Turnidge J, Kahlmeter G, Kronvall G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin Microbiol Infect. 2006 May;12(5):418–425.
  • Kahlmeter G. Defining antibiotic resistance-towards international harmonization. Ups J Med Sci. 2014 May;119(2):78–86.
  • CLSI. Performance standards for antimicrobial susceptibility testing; Twenty-sixth informational supplement. Wayne (PA): Clinical and Laboratory Standards Institute; 2016. (CLSI document M100-S26).
  • The European committee on antimicrobial susceptibility testing [Internet]. Available from: http://www.eucast.org
  • US Food and Drug Administration. Class II special controls guidance document: antimicrobial susceptibility test (AST) systems. Rockville (MD): US Department of Health and Human Services, Food and Drug Administration, Office of In Vitro Diagnostic Device (OIVD) Evaluation and Safety, Center for Devices and Radiological Health; 2009 [ [Internet]]. Available from: http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM388961.pdf
  • Jorgensen J, Turnidge J. Susceptbility test methods: dilution and disk diffusion methods. In: Jorgensen J, Pfaller M, Carroll K, et al., editors. Manual of clinical microbiology. 11th ed. Washington (DC): ASM Press; 2015. p. 1253.
  • Baker CN, Stocker SA, Culver DH, et al. Comparison of the E test to agar dilution, broth microdilution, and agar diffusion susceptibility testing techniques by using a special challenge set of bacteria. J Clin Microbiol. 1991 Mar;29(3):533–538.
  • Van Belkum A, Dunne WM Jr. Next-generation antimicrobial susceptibility testing. J Clin Microbiol. 2013 Jul;51(7):2018–2024.
  • Humphries RM, Hindler JA. Emerging resistance, new antimicrobial agents … but no tests! the challenge of antimicrobial susceptibility testing in the current US regulatory landscape. Clin Infect Dis. 2016 Jul 1;63(1):83–88.
  • Karlowsky J, Richter S. Antimicrobial susceptibility testing systems. In: Jorgensen J, Pfaller M, Carroll K, et al., editors. Manuel of clinical microbiology. 11th ed. Washington (DC): ASM Press; 2015. p. 1274.
  • Thomson KS. Controversies about extended-spectrum and AmpC beta-lactamases. Emerg Infect Dis. 2001 Mar-Apr;7(2):333–336.
  • Kaur J, Chopra S, Sheevani, et al. Modified double disc synergy test to detect ESBL production in urinary isolates of escherichia coli and klebsiella pneumoniae. J Clin Diagn Res. 2013 Feb;7(2):229–233.
  • Girlich D, Poirel L, Nordmann P. Value of the modified hodge test for detection of emerging carbapenemases in enterobacteriaceae. J Clin Microbiol. 2012 Feb;50(2):477–479.
  • Wang P, Chen S, Guo Y, et al. Occurrence of false positive results for the detection of carbapenemases in carbapenemase-negative escherichia coli and klebsiella pneumoniae isolates. PLoS One. 2011;6(10):e26356.
  • Pasteran F, Mendez T, Guerriero L, et al. Sensitive screening tests for suspected class A carbapenemase production in species of enterobacteriaceae. J Clin Microbiol. 2009 Jun;47(6):1631–1639.
  • Tijet N, Boyd D, Patel SN, et al. Evaluation of the carba NP test for rapid detection of carbapenemase-producing enterobacteriaceae and pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013 Sep;57(9):4578–4580.
  • Mathers AJ, Carroll J, Sifri CD, et al. Modified hodge test versus indirect carbapenemase test: prospective evaluation of a phenotypic assay for detection of klebsiella pneumoniae carbapenemase (KPC) in enterobacteriaceae. J Clin Microbiol. 2013 Apr;51(4):1291–1293.
  • Pierce VM, Simner PJ, Lonsway DR, et al. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among enterobacteriaceae. J Clin Microbiol. 2017 Aug;55(8):2321–2333.
  • Ledeboer NA, Hodinka RL. Molecular detection of resistance determinants. J Clin Microbiol. 2011 Sep;49(9 Suppl):S20–4.
  • Abbott A, Fang F. Molecular detection of antibacterial drug resistance. In: Jorgensen J, Pfaller M, Carroll K, et al., editors. Manual of clinical microbiology. 11th ed. Washington (DC): ASM Press; 2015. p. 1379.
  • Tato M, Ruiz-Garbajosa P, Traczewski M, et al. Multisite evaluation of cepheid xpert carba-R assay for detection of carbapenemase-producing organisms in rectal swabs. J Clin Microbiol. 2016 Jul;54(7):1814–1819.
  • McMullen AR, Yarbrough ML, Wallace MA, et al. Evaluation of genotypic and phenotypic methods to detect carbapenemase production in gram-negative bacilli. Clin Chem. 2017 Mar;63(3):723–730.
  • Tanner H. Verification of the cepheid xpert carba-R assay for the detection of carbapenemase genes in bacterial isolates cultured on alternative solid culture media. J Hosp Infect. 2017 Nov;97(3):254–257.
  • Moore NM, Canton R, Carretto E, et al. Rapid identification of five classes of carbapenem resistance genes directly from rectal swabs by use of the xpert carba-R assay. J Clin Microbiol. 2017 Jul;55(7):2268–2275.
  • Miller SA, Hindler JA, Chengcuenca A, et al. Use of ancillary carbapenemase tests to improve specificity of phenotypic definitions for carbapenemase-producing enterobacteriaceae. J Clin Microbiol. 2017 Jun;55(6):1827–1836.
  • Salimnia H, Fairfax MR, Lephart PR, et al. Evaluation of the FilmArray blood culture identification panel: results of a multicenter controlled trial. J Clin Microbiol. 2016 Mar;54(3):687–698.
  • Dodemont M, De Mendonca R, Nonhoff C, et al. Performance of the verigene gram-negative blood culture assay for rapid detection of bacteria and resistance determinants. J Clin Microbiol. 2014 Aug;52(8):3085–3087.
  • Siu GK, Chen JH, Ng TK, et al. Performance evaluation of the verigene gram-positive and gram-negative blood culture test for direct identification of bacteria and their resistance determinants from positive blood cultures in hong kong. PLoS One. 2015 Oct 2;10(10):e0139728.
  • Hayakawa K, Mezaki K, Kobayakawa M, et al. Impact of rapid identification of positive blood cultures using the verigene system on antibiotic prescriptions: A prospective study of community-onset bacteremia in a tertiary hospital in japan. PLoS One. 2017 Jul 24;12(7):e0181548.
  • Arroyo MA, Denys GA. Parallel evaluation of the MALDI sepsityper and verigene BC-GN assays for rapid identification of gram-negative bacilli from positive blood cultures. J Clin Microbiol. 2017 Sep;55(9):2708–2718.
  • Kim JS, Kang GE, Kim HS, et al. Evaluation of verigene blood culture test systems for rapid identification of positive blood cultures. Biomed Res Int. 2016;2016:1081536.
  • Ward C, Stocker K, Begum J, et al. Performance evaluation of the verigene(R) (nanosphere) and FilmArray(R) (BioFire(R)) molecular assays for identification of causative organisms in bacterial bloodstream infections. Eur J Clin Microbiol Infect Dis. 2015 Mar;34(3):487–496.
  • Ledeboer NA, Lopansri BK, Dhiman N, et al. Identification of gram-negative bacteria and genetic resistance determinants from positive blood culture broths by use of the verigene gram-negative blood culture multiplex microarray-based molecular assay. J Clin Microbiol. 2015 Aug;53(8):2460–2472.
  • Stoesser N, Batty EM, Eyre DW, et al. Predicting antimicrobial susceptibilities for escherichia coli and klebsiella pneumoniae isolates using whole genomic sequence data. J Antimicrob Chemother. 2013 Oct;68(10):2234–2244.
  • Matsumura Y, Pitout JD. Recent advances in the laboratory detection of carbapenemase-producing enterobacteriaceae. Expert Rev Mol Diagn. 2016 Jul;16(7):783–794.
  • Zankari E, Hasman H, Kaas RS, et al. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother. 2013 Apr;68(4):771–777.
  • Shelburne SA, Kim J, Munita JM, et al. Whole-genome sequencing accurately identifies resistance to extended-spectrum beta-lactams for major gram-negative bacterial pathogens. Clin Infect Dis. 2017 Sep 1;65(5):738–745.
  • Ellington MJ, Ekelund O, Aarestrup FM, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST subcommittee. Clin Microbiol Infect. 2017 Jan;23(1):2–22.
  • Reuter S, Ellington MJ, Cartwright EJ, et al. Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern Med. 2013 Aug 12;173(15):1397–1404.
  • Zhanel GG, Lawson CD, Adam H, et al. Ceftazidime-avibactam: A novel cephalosporin/beta-lactamase inhibitor combination. Drugs. 2013 Feb;73(2):159–177.
  • Castanheira M, Huband MD, Mendes RE, et al. Meropenem-vaborbactam tested against contemporary gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, KPC-producing, multidrug-resistant, and extensively drug-resistant enterobacteriaceae. Antimicrob Agents Chemother. 2017 Aug 24;61(9). DOI:10.1128/AAC.00567-17

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.