373
Views
22
CrossRef citations to date
0
Altmetric
Special Report

Molecular diagnosis of coenzyme Q10 deficiency: an update

, , , , &
Pages 491-498 | Received 02 Apr 2018, Accepted 15 May 2018, Published online: 30 May 2018

References

  • Villalba JM, Navas P. Plasma membrane redox system in the control of stress-induced apoptosis. Antioxid Redox Signal. 2000;2:213–230.
  • Crane FL. Discovery of ubiquinone (coenzyme Q) and an overview of function. Mitochondrion. 2007;7 Suppl:S2–7.
  • Genova ML, Lenaz G. New developments on the functions of coenzyme Q in mitochondria. Biofactors. 2011;37:330–354.
  • Alcázar-Fabra M, Navas P, Brea-Calvo G. Coenzyme Q biosynthesis and its role in the respiratory chain structure. Biochim Biophys Acta. 2016;1857(8):1073–1078.
  • Weber C, Bysted A, Holmer G. Coenzyme Q10 in the diet–daily intake and relative bioavailability. Mol Aspects Med. 1997;18 Suppl:S251–4.
  • Miles MV. The uptake and distribution of coenzyme Q10. Mitochondrion. 2007;7 Suppl:S72–7.
  • Stefely JA, Licitra F, Laredj L, et al. Cerebellar ataxia and coenzyme Q deficiency through loss of unorthodox kinase activity. Mol Cell. 2016;63:608–620.
  • Lohman DC, Forouhar F, Beebe ET, et al. Mitochondrial COQ9 is a lipid-binding protein that associates with COQ7 to enable coenzyme Q biosynthesis. Proc Natl Acad Sci USA. 2014;111:E4697–705.
  • Floyd BJ, Wilkerson EM, Veling MT, et al. Mitochondrial protein interaction mapping identifies regulators of respiratory chain function. Mol. Cell. 2016;63:621–632.
  • Gempel K, Topaloglu H, Talim B, et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain. 2007;130(Pt 8):2037–2044.
  • Aeby A, Sznajer Y, Cavé H, et al. Cardiofaciocutaneous (CFC) syndrome associated with muscular coenzyme Q10 deficiency. J Inherit Metab Dis. 2007;30(5):827.
  • Haas D, Niklowitz P, Hörster F, et al. Coenzyme Q(10) is decreased in fibroblasts of patients with methylmalonic aciduria but not in mevalonic aciduria. J Inherit Metab Dis. 2009;32(4):570–575.
  • Quinzii CM, López LC, Von-Moltke J, et al. Respiratory chain dysfunction and oxidative stress correlate with severity of primary CoQ10 deficiency. FASEB J. 2008;22(6):1874–1885.
  • Quinzii CM, Garone C, Emmanuele V, et al. Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice. FASEB J. 2013;27(2):612–621.
  • Fazakerley DJ, Chaudhuri R, Yang P, et al. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. Elife. 2018;7:e32111.
  • López-Martín JM, Salviati L, Trevisson E, et al. Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. Hum Mol Genet. 2007;16:1091–1097.
  • Heeringa SF, Chernin G, Chaki M, et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest. 2011;121:2013–2024.
  • Rodríguez-Hernández A, Cordero MD, Salviati L, et al. Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy. 2009;5(1):19–32.
  • Cotan D, Cordero MD, Garrido-Maraver J, et al. Secondary coenzyme Q10 deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts. FASEB J. 2011;25:2669–2687.
  • Luna-Sánchez M, Hidalgo-Gutiérrez A, Hildebrandt TM, et al. CoQ deficiency causes disruption of mitochondrial sulfide oxidation, a new pathomechanism associated with this syndrome. EMBO Mol Med. 2017;9(1):78–95.
  • Ziosi M, Di Meo I, Kleiner G, et al. Coenzyme Q deficiency causes impairment of the sulfide oxidation pathway. EMBO Mol Med. 2017;9(1):96–111.
  • Saiki R, Lunceford AL, Shi Y, et al. Coenzyme Q10 supplementation rescues renal disease in Pdss2kd/kd mice with mutations in prenyl diphosphate synthase subunit 2. Am J Physiol Renal Physiol. 2008;295(5):F1535–44.
  • Emma F, Montini G, Parikh SM, et al. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol. 2016;12(5):267–280.
  • Miles MV, Miles L, Tang PH, et al. Systematic evaluation of muscle coenzyme Q10 content in children with mitochondrial respiratory chain enzyme deficiencies. Mitochondrion. 2008;8:170–180.
  • Mollet J, Delahodde A, Serre V, et al. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet. 2008;82:623–630.
  • Park E, Ahn YH, Kang HG, et al. COQ6 mutations in children with steroid-resistant focal segmental glomerulosclerosis and sensorineural hearing loss. Am J Kidney Dis. 2017;70(1):139–144.
  • Quinzii CM, Kattah AG, Naini A, et al. Coenzyme Q deficiency and cerebellar ataxia associated with an apataxin mutation. Neurology. 2005;64:539–541.
  • Desbats MA, Lunardi G, Doimo M, et al. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ10) deficiency. J Inherit Metab Dis. 2015;38:145–156.
  • Emmanuele V, López LC, Berardo A, et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch Neurol. 2012;69:978–983.
  • Yubero D, Montero R, Martín MA, et al. secondary coenzyme Q10 deficiencies in oxidative phosphorylation (OXPHOS) and non-OXPHOS disorders. Mitochondrion. 2016;30:51–58.
  • Fragaki K, Chaussenot A, Benoist JF, et al. Coenzyme Q10 defects may be associated with a deficiency of Q10-independent mitochondrial respiratory chain complexes. Biol Res. 2016;49:4.
  • Doimo M, Desbats MA, Cerqua C, et al. Genetics of Coenzyme Q10 deficiency. Mol Syndromol. 2014;5:156–162.
  • Salviati L, Trevisson E, Doimo M, et al. Primary coenzyme Q10 deficiency. GeneReviews®[Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018 [cited 2017 Jan 26].
  • Fu R, Yanjanin NM, Bianconi S, et al. Oxidative stress in Niemann-Pick disease, type C. Mol Genet Metab. 2010;101(2–3):214–218.
  • Cooper JM, Korlipara LV, Hart PE, et al. Coenzyme Q10 and vitamin E deficiency in Friedreich’s ataxia: predictor of efficacy of vitamin E and coenzyme Q10 therapy. Eur J Neurol. 2008;15(12):1371–1379.
  • Haas D, Niklowitz P, Hoffmann GF, et al. Plasma and thrombocyte levels of coenzyme Q10 in children with Smith-Lemli-Opitz syndrome (SLOS) and the influence of HMG-CoA reductase inhibitors. Biofactors. 2008;32(1–4):191–197.
  • Oudshoorn JH, Lecluse AL, van den Berg R, et al. Decreased coenzyme Q10 concentration in plasma of children with cystic fibrosis. J Pediatr Gastroenterol Nutr. 2006;43(5):646–650.
  • Andrich J, Saft C, Gerlach M, et al. Coenzyme Q10 serum levels in Huntington’s disease. J Neural Transm Suppl. 2004;68:111–116.
  • Menke T, Niklowitz P, Reinehr T, et al. Plasma levels of coenzyme Q10 in children with hyperthyroidism. Horm Res. 2004;61(4):153–158.
  • Cooney RV, Dai Q, Gao YT, et al. Low plasma coenzyme Q(10) levels and breast cancer risk in Chinese women. Cancer Epidemiol Biomarkers Prev. 2011;20(6):1124–1130.
  • Molyneux SL, Florkowski CM, George PM, et al. Coenzyme Q10: an independent predictor of mortality in chronic heart failure. J Am Coll Cardiol. 2008;52(18):1435–1441.
  • Watts GF, Playford DA. Dyslipoproteinaemia and hyperoxidative stress in the pathogenesis of endothelial dysfunction in non-insulin dependent diabetes mellitus: an hypothesis. Atherosclerosis. 1998;141(1):17–30.
  • Miyamae T, Seki M, Naga T, et al. Increased oxidative stress and coenzyme Q10 deficiency in juvenile fibromyalgia: amelioration of hypercholesterolemia and fatigue by ubiquinol-10 supplementation. Redox Rep. 2013;18(1):12–19.
  • Bianchi GP, Fiorella PL, Bargossi AM, et al. Reduced ubiquinone plasma levels in patients with liver cirrhosis and in chronic alcoholics. Liver. 1994;14(3):138–140.
  • Artuch R, Brea-Calvo G, Briones P, et al. Cerebellar ataxia with coenzyme Q(10) deficiency: diagnosis and follow-up after coenzyme Q(10) supplementation. J Neurol Sci. 2006;246:153–158.
  • Haas H. The evidence basis for coenzyme Q therapy in oxidative phosphorylation disease. Mitochondrion. 2007;7(S):S136–45.
  • Pineda M, Montero R, Aracil A, et al. Coenzyme Q(10)-responsive ataxia: 2-year-treatment follow-up. Mov Disord. 2010;25:1262–1268.
  • Diomedi-Camassei F, Di Giandomenico S, Santorelli FM, et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol. 2007;18:2773–2780.
  • Montini G, Malaventura C, Salviati L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med. 2008;358(26):2849–2850.
  • Rodríguez-Aguilera JC, Cortés AB, Fernández-Ayala DJ, et al. Biochemical assessment of coenzyme Q10 deficiency. J Clin Med. 2017;6(3):E27.
  • López LC, Luna-Sánchez M, García-Corzo L, et al. Pathomechanisms in coenzyme q10-deficient human fibroblasts. Mol Syndromol. 2014;5:163–169.
  • Montero R, Artuch R, Briones P, et al. Muscle coenzyme Q10 concentrations in patients with probable and definite diagnosis of respiratory chain disorders. Biofactors. 2005;25:109–115.
  • Montero R, Sánchez-Alcázar JA, Briones P, et al. Analysis of coenzyme Q10 in muscle and fibroblasts for the diagnosis of CoQ10 deficiency syndromes. Clin Biochem. 2008;41:697–700.
  • Yubero D, Adin A, Montero R, et al. A statistical algorithm showing coenzyme Q10 and citrate synthase as biomarkers for mitochondrial respiratory chain enzyme activities. Sci Rep. 2016;6(1):15.
  • Asencio C, Rodríguez-Hernandez MA, Briones P, et al. Severe encephalopathy associated to pyruvate dehydrogenase mutations and unbalanced coenzyme Q10 content. Eur J Hum Genet. 2016;24(3):367–372.
  • Buján N, Arias A, Montero R, et al. Characterization of CoQ10 biosynthesis in fibroblasts of patients with primary and secondary CoQ10deficiency. J Inherit Metab Dis. 2014;37:53–62.
  • Desbats MA, Vetro A, Limongelli I, et al. Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure. Eur J Hum Genet. 2015;23(9):1254–1258.
  • Barca E, Musumeci O, Montagnese F, et al. Cerebellar ataxia and severe muscle CoQ10 deficiency in a patient with a novel mutation in ADCK3. Clin Genet. 2016;90(2):156–160.
  • Duberley KE, Hargreaves IP, Chaiwatanasirikul KA, et al. Coenzyme Q10 quantification in muscle, fibroblasts and cerebrospinal fluid by liquid chromatography/tandem mass spectrometry using a novel deuterated internal standard. Rapid Commun Mass Spectrom. 2013;27(9):924–930.
  • Duncan AJ, Heales SJ, Mills K, et al. Determination of coenzyme Q10 status in blood mononuclear cells, skeletal muscle and plasma by HPLC with di-propoxy-coenzyme Q10 as an internal standard. Clin Chem. 2005;51:2380–2382.
  • Shults CW, Haas RH, Passor D, et al. Coenzyme Q10 is reduced in mitochondria from Parkinsonian patients. Ann Neurol. 1997;42:261–265.
  • Mortensen SA, Heidt P, Sehested J. Clinical perspectives in treatment of cardiovascular diseases with coenzyme Q 10. In: Lenza G, Barnabei RA, Battion M, editors. Highlights in ubiquinone research. London: Taylor and Francis; 1998. p. 226–227.
  • Martinefski M, Samassa P, Lucangioli S, et al. A novel non-invasive sampling method using buccal mucosa cells for determination of coenzyme Q10. Anal Bioanal Chem. 2015;407(18):5529–5533.
  • Yubero D, Montero R, Ramos M, et al. Determination of urinary coenzyme Q10 by HPLC with electrochemical detection: reference values for a paediatric population. Biofactors. 2015;41(6):424–430.
  • Park E, Kang HG, Choi YH. Focal segmental glomerulosclerosis and medullary nephrocalcinosis in children with ADCK4 mutations. Pediatr Nephrol. 2017.
  • Ashraf S, Gee HY, Woerner S, et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest. 2013;123:5179–5189.
  • Artuch R, Vilaseca MA, Moreno J, et al. Decreased serum ubiquinone-10 concentrations in phenylketonuria. Am J Clin Nutr. 1999;70(5):892–895.
  • Hübner C, Hoffmann GF, Charpentier C, et al. Decreased plasma ubiquinone-10 concentration in patients with mevalonate kinase deficiency. Pediatr Res. 1993;34(2):129–133.
  • Yubero D, Montero R, O’Callaghan M, et al. Coenzyme Q10 and Pyridoxal phosphate deficiency is a common feature in mucopolysaccharidosis type III. JIMD Rep. 2016;25:1–7.
  • Degenhardt F, Niklowitz P, Szymczak S, et al. Genome-wide association study of serum coenzyme Q10 levels identifies susceptibility loci linked to neuronal diseases. Hum Mol Genet. 2016;25(13):2881–2891.
  • Wong LJ. Challenges of bringing next generation sequencing technologies to clinical molecular diagnostic laboratories. Neurotherapeutics. 2013;10:262–272.
  • DaRe JT, Vasta V, Penn J, et al. Targeted exome sequencing for mitochondrial disorders reveals high genetic heterogeneity. BMC Med Genet. 2013;14:118.
  • Stefely JA, Pagliarini DJ. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem Sci. 2017;42(10):824–843.
  • Freyer C, Stranneheim H, Naess K, et al. Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4-dihydroxybensoic acid. J Med Genet. 2015;52(11):779–783.
  • Wang Y, Smith C, Parboosingh JS, et al. Pathogenicity of two COQ7 mutations and responses to 2,4-dihydroxybenzoate bypass treatment. J Cell Mol Med. 2017;21(10):2329–2343.
  • Malicdan MCV, Vilboux T, Ben-Zeev B, et al. A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 C-methyltransferase deficiency. Hum Mutat. 2018;39(1):69–79.
  • Spiegel R, Saada A, Halvardson J, et al. Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy. Eur J Hum Genet. 2014;22(7):902–906.
  • Paul A, Drecourt A, Petit F, et al. FDXR Mutations cause sensorial neuropathies and expand the spectrum of mitochondrial Fe-S-synthesis diseases. Am J Hum Genet. 2017;101(4):630–637.
  • Veling MT, Reidenbach AG, Freiberger EC, et al. Multi-omic mitoprotease profiling defines a role for Oct1p in Coenzyme Q production. Mol Cell. 2017;68(5):970–977.e11.
  • Al-Shamsi A, Hertecant JL, Souid AK, et al. Whole exome sequencing diagnosis of inborn errors of metabolism and other disorders in United Arab Emirates. Orphanet J Rare Dis. 2016;11(1):94.
  • Quinzii CM, Emmanuele V, Hirano M. Clinical presentations of coenzyme q10 deficiency syndrome. Mol Syndromol. 2014;5(3–4):141–146.
  • Luna-Sánchez M, Díaz-Casado E, Barca E, et al. The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene. EMBO Mol Med. 2015;7(5):670–687.
  • Desbats MA, Morbidoni V, Silic-Benussi M, et al. The COQ2 genotype predicts the severity of coenzyme Q10 deficiency. Hum Mol Genet. 2016;25(19):4256–4265.
  • Acosta MJ, Vazquez Fonseca L, Desbats MA, et al. Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta. 2016;1857(8):1079–1085.
  • Dinwiddie DL, Smith LD, Miller NA, et al. Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome. Genomics. 2013;102:148–156.
  • Matsuoka T, Maeda H, Goto Y, et al. Muscle coenzyme Q10 in mitochondrial encephalomyopathies. Neuromuscul Disord. 1991;1(6):443–447.
  • Montero R, Grazina M, López-Gallardo E, et al. Coenzyme Q₁₀ deficiency in mitochondrial DNA depletion syndromes. Mitochondrion. 2013;13(4):337–341.
  • Garone C, Gurgel-Giannetti J, Sanna-Cherchi S, et al. A Novel SUCLA2 mutation presenting as a complex childhood movement disorder. J Child Neurol. 2017;32(2):246–250.
  • Zierz S, Jahns G, Jerusalem F. Coenzyme Q in serum and muscle of 5 patients with Kearns-Sayre syndrome and 12 patients with ophthalmoplegia plus. J Neurol. 1989;236(2):97–101.
  • Sacconi S, Trevisson E, Salviati L, et al. Coenzyme Q10 is frequently reduced in muscle of patients with mitochondrial myopathy. Neuromuscul Disord. 2010;20(1):44–48.
  • Baruteau J, Hargreaves I, Krywawych S, et al. Successful reversal of propionic acidaemia associated cardiomyopathy: evidence for low myocardial coenzyme Q10 status and secondary mitochondrial dysfunction as an underlying pathophysiological mechanism. Mitochondrion. 2014;17:150–156.
  • Balreira A, Boczonadi V, Barca E, et al. ANO10 mutations cause ataxia and coenzyme Q₁₀ deficiency. J Neurol. 2014;261(11):2192–2198.
  • Chamard L, Sylvestre G, Koenig M, et al. Executive and attentional disorders, epilepsy and porencephalic cyst in autosomal recessive cerebellar ataxia type 3 due to ANO10 mutation. Eur Neurol. 2016;75(3–4):186–190.
  • Barca E, Kleiner G, Tang G, et al. Decreased Coenzyme Q10 levels in multiple system atrophy cerebellum. J Neuropathol Exp Neurol. 2016;75(7):663–672.
  • Yubero D, Montero R, Armstrong J, et al. Molecular diagnosis of coenzyme Q10 deficiency. Expert Rev Mol Diagn. 2015;15(8):1049–1059.
  • LaDuca H, Farwell KD, Vuong H, et al. Exome sequencing covers >98% of mutations identified on targeted next generation sequencing panels. PLoS One. 2017;12(2):e0170843.
  • Shen T, Lee A, Shen C, et al. The long tail and rare disease research: the impact of next-generation sequencing for rare Mendelian disorders. Genet Res (Camb). 2015;97:e15.
  • Sawyer SL, Hartley T, Dyment DA, et al. Utility of whole-exome sequencing for those near the end of the diagnostic odyssey: time to address gaps in care. Clin Genet. 2016;89(3):275–284.
  • Petersen BS, Fredrich B, Hoeppner MP, et al. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet. 2017;18(1):14.
  • Gaff CL, Winship IM, Forrest SM, et al. Preparing for genomic medicine: a real world demonstration of health system change. NPJ Genom Med. 2017;2:16.
  • Meyts I, Bosch B, Bolze A, et al. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol. 2016;138(4):957–969.
  • Nakagawa H, Fujita M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci. 2018;109(3):513–522.
  • Berberich AJ, Ho R, Hegele RA. Whole genome sequencing in the clinic: empowerment or too much information? CMAJ. 2018;190(5):E124–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.