405
Views
4
CrossRef citations to date
0
Altmetric
Review

Systematic review on recent potential biomarkers of chronic obstructive pulmonary disease

ORCID Icon, ORCID Icon & ORCID Icon
Pages 37-45 | Received 18 Aug 2018, Accepted 05 Dec 2018, Published online: 18 Dec 2018

References

  • Vestbo J, Hurd SS, Agustí AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–365.
  • Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378(9795):1015–1026.
  • Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol. 2009;4:435–459.
  • Sin DD, Vestbo J. Biomarkers in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6(6):543–545.
  • Minino AM, Murphy SL, Xu J, et al. Deaths: final data for 2008. Natl Vital Stat Rep. 2011;59(10):1–126.
  • Zemans RL, Jacobson S, Keene J, et al. Multiple biomarkers predict disease severity, progression and mortality in COPD. Respir Res. 2017;18(1).
  • Lange P, Halpin DM, O’Donnell DE, et al. Diagnosis, assessment, and phenotyping of COPD: beyond FEV₁. Int J Chron Obstruct Pulmon Dis. 2016;11(Spec):3–12.
  • Woodruff PG, Agusti A, Roche N, et al. Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: making progress towards personalised management. Lancet. 2015;385(9979):1789–1798.
  • Ghosh N, Dutta M, Singh B, et al. Transcriptomics, proteomics and metabolomics driven biomarker discovery in COPD: an update. Expert Rev Mol Diagn. 2016;16(8):897–913.
  • Forshed J. Experimental Design in Clinical ‘Omics Biomarker Discovery. J Proteome Res. 2017;16(11):3954–3960.
  • Chen H, Wang D, Bai C, et al. Proteomics-based biomarkers in chronic obstructive pulmonary disease. J Proteome Res. 2010;9(6):2798–2808.
  • Bai Y, Galetskiy D, Damoc E, et al. Lung alveolar proteomics of bronchoalveolar lavage from a pulmonary alveolar proteinosis patient using high-resolution FTICR mass spectrometry. Anal Bioanal Chem. 2007;389(4):1075–1085.
  • Pastor MD, Nogal A, Molina-Pinelo S, et al. Identification of proteomic signatures associated with lung cancer and COPD. J Proteomics. 2013;89:227–237.
  • Chen H, Wang Y, Bai C, et al. Alterations of plasma inflammatory biomarkers in the healthy and chronic obstructive pulmonary disease patients with or without acute exacerbation. J Proteomics. 2012;75(10):2835–2843.
  • Kelly E, Owen CA, Pinto-Plata V, et al. The role of systemic inflammatory biomarkers to predict mortality in chronic obstructive pulmonary disease. Expert Rev Respir Med. 2013;7(1):57–64.
  • Sara Ongay FK, Horvatovich P, Bischoff R. Nick HT ten Hacken. Prioritization of COPD protein biomarkers, based on a systematic study of the literature. Adv Precis Med. 2016;1(1):12–24.
  • Administration FaD. Qualification of Biomarker—plasma Fibrinogen in Studies Examining Exacerbations and/or All-Cause Mortality in Patients With Chronic Obstructive Pulmonary Disease. 2015. 80 FR 38694 38694–38695.
  • Tabberer M, Benson VS, Gelhorn H, et al. The COPD Biomarkers Qualification Consortium Database: baseline Characteristics of the St George’s Respiratory Questionnaire Dataset. Chronic Obstr Pulm Dis. 2017;4(2):112–123.
  • Casaburi R, Celli B, Crapo J, et al. The COPD Biomarker Qualification Consortium (CBQC). Copd. 2013;10(3):367–377.
  • CA16113 CACA. CliniMARK: ‘good biomarker practice’ to increase the number of clinically validated biomarkers. (Ed.^(Eds). 2017. [cited 2018 Jul 27]. Available from: http://clinimark.eu
  • Ohlmeier S, Nieminen P, Gao J, et al. Lung tissue proteomics identifies elevated transglutaminase 2 levels in stable chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2016;310(11):L1155–1165.
  • Diao WQ, Shen N, Du YP, et al. Fetuin-B (FETUB): a Plasma Biomarker Candidate Related to the Severity of Lung Function in COPD. Sci Rep. 2016;6:30045.
  • Leung JM, Chen V, Hollander Z, et al. COPD exacerbation biomarkers validated using multiple reaction monitoring mass spectrometry. PLoS ONE. 2016;11(8).
  • Zarei S, Mirtar A, Morrow JD, et al. Subtyping Chronic Obstructive Pulmonary Disease Using Peripheral Blood Proteomics. Chronic Obstr Pulm Dis. 2017;4(2):97–108.
  • Sand JMB, Leeming DJ, Byrjalsen I, et al. High levels of biomarkers of collagen remodeling are associated with increased mortality in COPD - results from the ECLIPSE study. Respir Res. 2016;17(1).
  • Shirahata T, Nakamura H, Nakajima T, et al. Plasma sE-cadherin and the plasma sE-cadherin/sVE-cadherin ratio are potential biomarkers for chronic obstructive pulmonary disease. Biomarkers. 2018;23(5):414–421.
  • Nakajima T, Nakamura H, Owen CA, et al. Plasma Cathepsin S and Cathepsin S/Cystatin C Ratios Are Potential Biomarkers for COPD. Dis Markers. 2016;2016:9.
  • Han SS, Lee WH, Hong Y, et al. Comparison of serum biomarkers between patients with asthma and with chronic obstructive pulmonary disease. J Asthma. 2016;53(6):583–588.
  • Guiot J, Henket M, Corhay JL, et al. Sputum biomarkers in IPF: evidence for raised gene expression and protein level of IGFBP-2, IL-8 and MMP-7. PLoS ONE. 2017;12(2).
  • Labonté LE, Bourbeau J, Daskalopoulou SS, et al. Club cell-16 and RelB as novel determinants of arterial stiffness in exacerbating COPD patients. PLoS ONE. 2016;11(2).
  • Bihlet AR, Karsdal MA, Sand JMB, et al. Biomarkers of extracellular matrix turnover are associated with emphysema and eosinophilic-bronchitis in COPD. Respir Res. 2017;18(1).
  • Sand JMB, Martinez G, Midjord AK, et al. Characterization of serological neo-epitope biomarkers reflecting collagen remodeling in clinically stable chronic obstructive pulmonary disease. Clin Biochem. 2016;49(15):1144–1151.
  • Stolz D, Leeming DJ, Kristensen JHE, et al. Systemic Biomarkers of Collagen and Elastin Turnover Are Associated With Clinically Relevant Outcomes in COPD. Chest. 2017;151(1):47–59.
  • Feng W, Wu X, Li S, et al. Association of serum galectin-3 with the acute exacerbation of chronic obstructive pulmonary disease. Med Sci Monit. 2017;23:4612–4618.
  • Hu G, Wu Y, Zhou Y, et al. Cystatin C as a predictor of in-hospital mortality after exacerbation of COPD. Respir Care. 2016;61(7):950–957.
  • Rabinovich RA, Miller BE, Wrobel K, et al. Circulating desmosine levels do not predict emphysema progression but are associated with cardiovascular risk and mortality in COPD. Eur Respir J. 2016;47(5):1365–1373.
  • Ruan W, Wu M, Shi L, et al. Serum levels of IGFBP7 are elevated during acute exacerbation in COPD patients. Int J COPD. 2017;12:1775–1780.
  • Koo HK, Hong Y, Lim MN, et al. Relationship between plasma matrix metalloproteinase levels, pulmonary function, bronchodilator response, and emphysema severity. Int J COPD. 2016;11(1):1129–1137.
  • Aggarwal T, Wadhwa R, Rohil V, et al. Biomarkers of oxidative stress and protein-protein interaction in chronic obstructive pulmonary disease. Arch Physiol Biochem. 2018;124(3):226–231.
  • Cane JL, Mallia-Millanes B, Forrester DL, et al. Matrix metalloproteinases-8 and-9 in the Airways, Blood and Urine during Exacerbations of COPD. COPD. 2016;13(1):26–34.
  • Linder R, Ronmark E, Pourazar J, et al. Proteolytic biomarkers are related to prognosis in COPD- report from a population-based cohort. Respir Res. 2018;19(1):64.
  • Konstantelou E, Papaioannou AI, Loukides S, et al. Serum periostin in patients hospitalized for COPD exacerbations. Cytokine. 2017;93:51–56.
  • Wang H, Yang T, Li D, et al. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease. Int J COPD. 2016;11(1):2369–2376.
  • Waschki B, Watz H, Holz O, et al. Plasminogen activator inhibitor-1 is elevated in patients with COPD independent of metabolic and cardiovascular function. Int J COPD. 2017;12:981–987.
  • Diao W, Shen N, Du Y, et al. Identification of thyroxine-binding globulin as a candidate plasma marker of chronic obstructive pulmonary disease. Int J COPD. 2017;12:1549–1564.
  • Ben Anes A, Ben Nasr H, Garrouch A, et al. Alterations in acetylcholinesterase and butyrylcholinesterase activities in chronic obstructive pulmonary disease: relationships with oxidative and inflammatory markers. Mol Cell Biochem. 2018;445:1–11.
  • Shi L, Zhu B, Xu M, et al. Selection of AECOPD-specific immunomodulatory biomarkers by integrating genomics and proteomics with clinical informatics. Cell Biol Toxicol. 2018;34(2):109–123.
  • Loi ALT, Hoonhorst S, van Aalst C, et al. Proteomic profiling of peripheral blood neutrophils identifies two inflammatory phenotypes in stable COPD patients. Respir Res. 2017;18(1):100.
  • Dilektasli AG, Cetinoglu ED, Uzaslan E, et al. Serum CCL-18 level is a risk factor for COPD exacerbations requiring hospitalization. Int J COPD. 2017;12:199–208.
  • Zhang M, Tang J, Yin J, et al. The clinical implication of serum cyclophilin A in patients with chronic obstructive pulmonary disease. Int J COPD. 2018;13:357–363.
  • Putcha N, Paul GG, Azar A, et al. Lower serum IgA is associated with COPD exacerbation risk in SPIROMICS. PLoS One. 2018;13(4):e0194924.
  • Hampson JA, Stockley RA, Turner AM. Free light chains: potential biomarker and predictor of mortality in alpha-1-antitrypsin deficiency and usual COPD. Respir Res. 2016;17(1).
  • Damera G, Pham TH, Zhang J, et al. A Sputum Proteomic Signature That Associates with Increased IL-1β Levels and Bacterial Exacerbations of COPD. Lung. 2016;194(3):363–369.
  • Zou Y, Chen X, Liu J, et al. Serum IL-1β and IL-17 levels in patients with COPD: associations with clinical parameters. Int J COPD. 2017;12:1247–1254.
  • Kim SW, Rhee CK, Kim KU, et al. Factors associated with plasma IL-33 levels in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:395–402.
  • Thulborn SJ, Dilpazir M, Haldar K, et al. Investigating the role of pentraxin 3 as a biomarker for bacterial infection in subjects with COPD. Int J COPD. 2017;12:1199–1205.
  • Akiki Z, Fakih D, Jounblat R, et al. Surfactant protein D, a clinical biomarker for chronic obstructive pulmonary disease with excellent discriminant values. Exp Ther Med. 2016;11(3):723–730.
  • Barnes PJ. New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov. 2013;12(7):543–559.
  • Waschki B, Kirsten AM, Holz O, et al. Angiopoietin-like protein 4 and cardiovascular function in COPD. BMJ Open Respir Res. 2016;3(1).
  • James AJ, Reinius LE, Verhoek M, et al. Increased YKL-40 and chitotriosidase in asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2016;193(2):131–142.
  • Tong X, Wang D, Liu S, et al. The YKL-40 protein is a potential biomarker for COPD: A meta-analysis and systematic review. Int J COPD. 2018;13:409–418.
  • Dres M, Hausfater P, Foissac F, et al. Mid-regional pro-adrenomedullin and copeptin to predict short-term prognosis of COPD exacerbations: A multicenter prospective blinded study. Int J COPD. 2017;12:1047–1056.
  • Bernardo I, Bozinovski S, Vlahos R. Targeting oxidant-dependent mechanisms for the treatment of COPD and its comorbidities. Pharmacol Ther. 2015;155:60–79.
  • Voelkel NF, Gomez-Arroyo J, Mizuno S. COPD/emphysema: the vascular story. Pulm Circ. 2011;1(3):320–326.
  • Barberà JA, Peinado VI, Santos S. Pulmonary hypertension in chronic obstructive pulmonary disease. Eur Respir J. 2003;21(5):892–905.
  • Winther JA, Brynildsen J, Høiseth AD, et al. Prognostic and diagnostic significance of copeptin in acute exacerbation of chronic obstructive pulmonary disease and acute heart failure: data from the ACE 2 study. Respir Res. 2017;18(1).
  • Adrish M, Nannaka VB, Cano EJ, et al. Significance of NT-pro-BNP in acute exacerbation of COPD patients without underlying left ventricular dysfunction. Int J COPD. 2017;12:1183–1189.
  • Pavasini R, Tavazzi G, Biscaglia S, et al. Amino terminal pro brain natriuretic peptide predicts all-cause mortality in patients with chronic obstructive pulmonary disease: systematic review and meta-analysis. Chron Respir Dis. 2017;14(2):117–126.
  • Sato M, Inoue S, Igarashi A, et al. Heart-type fatty acid binding protein as a prognostic factor in patients with exacerbated chronic obstructive pulmonary disease. Respir Investig. 2018;56(2):128–135.
  • Barnes PJ. New Concepts in Chronic Obstructive Pulmonary Disease. Annu Rev Med. 2003;54:113–129.
  • Boots AW, Haenen GRMM, Bast A. Oxidant metabolism in chronic obstructive pulmonary disease. Eur Respir J. 2003;22(46):14s–27s.
  • Sin DD, Hollander Z, DeMarco ML, et al. Biomarker Development for Chronic Obstructive Pulmonary Disease From Discovery to Clinical Implementation. Am J Respir Crit Care Med. 2015;192(10):1162–1170.
  • Miller BE, Tal-Singer R, Rennard SI, et al. Plasma Fibrinogen Qualification as a Drug Development Tool in Chronic Obstructive Pulmonary Disease. Perspective of the Chronic Obstructive Pulmonary Disease Biomarker Qualification Consortium. Am J Respir Crit Care Med. 2016;193(6):607–613.
  • Furst DE. Serum Immunoglobulins and Risk of Infection: how Low Can You Go? Semin Arthritis Rheum. 2009;39(1):18–29.
  • Hutchison CA, Landgren O. Polyclonal immunoglobulin free light chains as a potential biomarker of immune stimulation and inflammation. Clin Chem. 2011;57(10):1387–1389.
  • Scholtens S, Smidt N, Swertz MA, et al. Cohort Profile: lifeLines, a three-generation cohort study and biobank. Int J Epidemiol. 2015;44(4):1172–1180.
  • Mermelekas G, Vlahou A, Zoidakis J. SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine. Expert Rev Mol Diagn. 2015;15(11):1441–1454.
  • Chen H, Wang X. Significance of bioinformatics in research of chronic obstructive pulmonary disease. J Clin Bioinforma. 2011;1:1.
  • Ioannidis JPA, Bossuyt PMM. Waste, leaks, and failures in the biomarker pipeline. Clin Chem. 2017;63(5):963–972.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.