163
Views
4
CrossRef citations to date
0
Altmetric
Diagnostic Profile

Detection of carbapenemase-producing Enterobacterales and the BD Phoenix CPO Detect panel

ORCID Icon, , , &
Pages 659-665 | Received 07 Jun 2019, Accepted 16 Jul 2019, Published online: 01 Aug 2019

References

  • Matsumura Y, Pitout JD. Recent advances in the laboratory detection of carbapenemase-producing Enterobacteriaceae. Expert Rev Mol Diagn. 2016;16(7):783–794.
  • WHO. Antimicrobial resistance: global report on surveillance 2014(2014).
  • WHO. WHO publishes list of bacteria for which new antibiotics are urgently needed. (2017).
  • Karaiskos I, Galani I, Souli M, et al. Novel beta-lactam-beta-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant Gram-negative pathogens. Expert Opin Drug Metab Toxicol. 2019;15(2):133–149.
  • Bassetti M, Vena A, Castaldo N, et al. New antibiotics for ventilator-associated pneumonia. Curr Opin Infect Dis. 2018;31(2):177–186.
  • Bush K, Bradford PA. Interplay between beta-lactamases and new beta-lactamase inhibitors. Nat Rev Microbiol. 2019;17(5):295–306.
  • Goodman KE, Simner PJ, Tamma PD, et al. Infection control implications of heterogeneous resistance mechanisms in carbapenem-resistant Enterobacteriaceae (CRE). Expert Rev Anti Infect Ther. 2016;14(1):95–108.
  • Tamma PD, Simner PJ. Phenotypic detection of carbapenemase-producing organisms from clinical isolates. J Clin Microbiol. 2018;56(11).
  • Lutgring JD. Carbapenem-resistant Enterobacteriaceae: an emerging bacterial threat. Semin Diagn Pathol. 2019;36:182–186.
  • Sfeir MM, Hayden JA, Fauntleroy KA, et al. EDTA-Modified carbapenem inactivation method: a phenotypic method for detecting metallo-beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol. 2019;57(5).
  • Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289(1036):321–331.
  • Bush K. Past and present perspectives on beta-lactamases. Antimicrob Agents Chemother. 2018;62(10).
  • Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440–458.
  • Probst-Kepper M, Geginat G. New antibiotics for treatment of highly resistant Gram-negative bacteria. Anasthesiol Intensivmed Notfallmed Schmerzther. 2018;53(7–08):529–542.
  • Vasoo S, Cunningham SA, Cole NC, et al. In vitro activities of ceftazidime-avibactam, aztreonam-avibactam, and a panel of older and contemporary antimicrobial agents against carbapenemase-producing Gram-negative bacilli. Antimicrob Agents Chemother. 2015;59(12):7842–7846.
  • Lomovskaya O, Sun D, Rubio-Aparicio D, et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61(11).
  • Lapuebla A, Abdallah M, Olafisoye O, et al. Activity of imipenem with relebactam against Gram-negative pathogens from New York City. Antimicrob Agents Chemother. 2015;59(8):5029–5031.
  • EUCAST. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 2.01. July 2017. EUCAST. 2017.
  • Fattouh R, Tijet N, McGeer A, Poutanen SM, Melano RG, Patel SN. What Is the appropriate meropenem MIC for screening of carbapenemase-producing Enterobacteriaceae in low-prevalence settings? Antimicrob Agents Chemother, 2015;60(3):1556–1559.
  • Lee K, Chong Y, Shin HB, et al. Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2001;7(2):88–91.
  • Lee K, Lim YS, Yong D, et al. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2003;41(10):4623–4629.
  • Tamma PD, Opene BN, Gluck A, et al. Comparison of 11 phenotypic assays for accurate detection of carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2017;55(4):1046–1055.
  • CLSI. Performance standards for antimicrobial susceptibility testing CLSI M100–S28. (2018)
  • van der Zwaluw K, de Haan A, Pluister GN, et al. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in Gram-negative rods. PLoS One. 2015;10(3):e0123690.
  • Ohsaki Y, Kubo R, Hobson J, et al. MASTDISCS combi Carba plus, a simple method for discriminating carbapenemase-producing Enterobacteriaceae, including OXA-48-type producers. Microbiol Immunol. 2018;62(1):60–65.
  • Hansen F, Hammerum AM, Skov RL, et al. Evaluation of ROSCO neo-sensitabs for phenotypic detection and subgrouping of ESBL-, AmpC- and carbapenemase-producing Enterobacteriaceae. APMIS. 2012;120(9):724–732.
  • Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1–2.5 hours. J Clin Microbiol. 2011;49(9):3321–3324.
  • Hrabak J, Walkova R, Studentova V, et al. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49(9):3222–3227.
  • Sparbier K, Schubert S, Weller U, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against beta-lactam antibiotics. J Clin Microbiol. 2012;50(3):927–937.
  • Burckhardt I, Zimmermann S. Susceptibility testing of bacteria using MALDI-TOF mass spectrometry. Front Microbiol. 2018;9:1744.
  • Rapp E, Samuelsen O, Sundqvist M. Detection of carbapenemases with a newly developed commercial assay using matrix assisted laser desorption ionization-time of flight. J Microbiol Methods. 2018;146:37–39.
  • Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012;18(9):1503–1507.
  • Dortet L, Poirel L, Nordmann P. Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrob Agents Chemother. 2012;56(12):6437–6440.
  • Pires J, Novais A, Peixe L. Blue-carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol. 2013;51(12):4281–4283.
  • Compain F, Gallah S, Eckert C, et al. Assessment of carbapenem resistance in enterobacteriaceae with the rapid and easy-to-use chromogenic beta carba test. J Clin Microbiol. 2016;54(12):3065–3068.
  • Hombach M, von Gunten B, Castelberg C, et al. Evaluation of the RAPIDEC Carba NP test for detection of carbapenemases in enterobacteriaceae. J Clin Microbiol. 2015;53(12):3828–3833.
  • Noel A, Huang TD, Berhin C, et al. Comparative evaluation of four phenotypic tests for detection of carbapenemase-producing gram-negative bacteria. J Clin Microbiol. 2017;55(2):510–518.
  • Tijet N, Boyd D, Patel SN, et al. Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(9):4578–4580.
  • Tijet N, Boyd D, Patel SN, et al. Reply to “further proofs of concept for the Carba NP test”. Antimicrob Agents Chemother. 2014;58(2):1270.
  • Bernabeu S, Dortet L, Naas T. Evaluation of the beta-CARBA test, a colorimetric test for the rapid detection of carbapenemase activity in Gram-negative bacilli. J Antimicrob Chemother. 2017;72(6):1646–1658.
  • Simon M, Richert K, Pfennigwerth N, et al. Carbapenemase detection using the beta-CARBA test: influence of test conditions on performance and comparison with the RAPIDEC CarbaNP assay. J Microbiol Methods. 2018;147:17–19.
  • Baeza LL, Pfennigwerth N, Greissl C, et al. Comparison of five methods for detection of carbapenemases in Enterobacterales with proposal of a new algorithm. Clin Microbiol Infect. 2019.
  • Traczewski MM, Carretto E, Canton R, et al. Multicenter Evaluation of the Xpert Carba-R assay for detection of carbapenemase genes in Gram-negative isolates. J Clin Microbiol. 2018;56(8).
  • Boutal H, Vogel A, Bernabeu S, et al. A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP- and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2018;73(4):909–915.
  • Kolenda C, Benoit R, Carricajo A, et al. Evaluation of the new multiplex immunochromatographic O.K.N.V. K-SeT assay for rapid detection of OXA-48-like, KPC, NDM, and VIM carbapenemases. J Clin Microbiol. 2018;56(11).
  • Hopkins KL, Meunier D, Naas T, et al. Evaluation of the NG-Test CARBA 5 multiplex immunochromatographic assay for the detection of KPC, OXA-48-like, NDM, VIM and IMP carbapenemases. J Antimicrob Chemother. 2018;73(12):3523–3526.
  • Dortet L, Fusaro M, Naas T. Improvement of the Xpert Carba-R kit for the detection of carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;60(6):3832–3837.
  • Thomson G, Turner D, Brasso W, et al. High-stringency evaluation of the automated BD Phoenix CPO detect and rapidec Carba NP tests for detection and classification of carbapenemases. J Clin Microbiol. 2017;55(12):3437–3443.
  • Ong CH, Ratnayake L, Ang MLT, et al. Diagnostic accuracy of BD Phoenix CPO detect for carbapenemase production in 190 Enterobacteriaceae isolates. J Clin Microbiol. 2018;56(12).
  • Simon M, Gatermann S, Pfeifer Y, et al. Evaluation of the automated BD Phoenix CPO detect panel in combination with the beta-CARBA assay for detection and classification of carbapenemase-producing Enterobacterales . J Microbiol Methods. 2019;156:29–33.
  • Park BY, Mourad D, Hong JS, et al. Performance evaluation of the newly developed BD Phoenix NMIC-500 panel using clinical isolates of Gram-negative bacilli. Ann Lab Med. 2019;39(5):470–477.
  • Maurer FP, Castelberg C, Quiblier C, et al. Evaluation of carbapenemase screening and confirmation tests with Enterobacteriaceae and development of a practical diagnostic algorithm. J Clin Microbiol. 2015;53(1):95–104.
  • Tamma PD, Fan Y, Bergman Y, et al. Applying rapid whole-genome sequencing to predict phenotypic antimicrobial susceptibility testing results among carbapenem-resistant Klebsiella pneumoniae clinical isolates. Antimicrob Agents Chemother. 2019;63:e01923–18.
  • Roer L, Hansen F, Thomsen MCF, et al. WGS-based surveillance of third-generation cephalosporin-resistant Escherichia coli from bloodstream infections in Denmark. J Antimicrob Chemother. 2017;72(7):1922–1929.
  • Strich JR, Wang H, Cisse OH, et al. Identification of the OXA-48 carbapenemase family by use of tryptic peptides and liquid chromatography-tandem mass spectrometry. J Clin Microbiol. 2019;57(5).
  • Wang H, Drake SK, Youn JH, et al. Peptide markers for rapid detection of KPC carbapenemase by LC-MS/MS. Sci Rep. 2017;7(1):2531.
  • Figueroa-Espinosa R, Costa A, Cejas D, et al. MALDI-TOF MS based procedure to detect KPC-2 directly from positive blood culture bottles and colonies. J Microbiol Methods. 2019;159:120–127.
  • Reischl U, Ehrenschwender M, Hiergeist A, et al. Bacterial and fungal genome detection PCR/NAT: discussion of the June 2018 distribution for external quality assessment of nucleic acid-based protocols in diagnostic medical microbiology by INSTAND e.V. GMS Z. forder. Qualitätssich Med Lab. 2019;10:1–27.
  • Lesho E, Clifford R, Onmus-Leone F, et al. The challenges of implementing next generation sequencing across a large healthcare system, and the molecular epidemiology and antibiotic susceptibilities of carbapenemase-producing bacteria in the healthcare system of the U.S. department of defense. PLoS One. 2016;11(5):e0155770.
  • Hutchins RJ, Phan KL, Saboor A, et al. Practical guidance to implementing quality management systems in public health laboratories performing next generation sequencing: personnel, equipment, and process management (phase 1). J Clin Microbiol. 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.