1,048
Views
34
CrossRef citations to date
0
Altmetric
Review

Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies

, & ORCID Icon
Pages 151-167 | Received 17 Jun 2019, Accepted 30 Sep 2019, Published online: 18 Sep 2019

References

  • Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. PubMed PMID: 11240971.
  • Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. Epub 2012/ 09/08. PubMed PMID: 22955616; PubMed Central PMCID: PMCPMC3439153.
  • Holley RW, Apgar J, Everett GA, et al. Structure of a Ribonucleic Acid. Science. 1965 19;147(3664):1462–1465. Epub 1965/ 03/. PubMed PMID: 14263761.
  • Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999;286(5441):950–952. Epub 1999/ 11/05. PubMed PMID: 10542148.
  • Hadjiolov AA, Venkov PV, Tsanev RG. Ribonucleic acids fractionation by density-gradient centrifugation and by agar gel electrophoresis: a comparison. Anal Biochem. 1966;17(2):263–267. Epub 1966/ 11/01. PubMed PMID: 5339429. DOI:10.1016/0003-2697(66)90204-1.
  • Fu XD. Non-coding RNA: a new frontier in regulatory biology. Natl Sci Rev. 2014;1(2):190–204. Epub 2015/ 03/31. PubMed PMID: 25821635; PubMed Central PMCID: PMCPMC4374487.
  • Wang J, Samuels DC, Zhao S, et al. Current Research on Non-Coding Ribonucleic Acid (RNA). Genes (Basel). 2017;8(12). Epub 2017/ 12/06. PubMed PMID: 29206165; PubMed Central PMCID: PMCPMC5748684.Doi: 10.3390/genes8120366.
  • Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–283. Epub 2016/ 04/05. PubMed PMID: 27040487. DOI:10.1038/nrg.2016.20.
  • Santosh B, Varshney A, Yadava PK. Non-coding RNAs: biological functions and applications. Cell Biochem Funct. 2015;33(1):14–22. PubMed PMID: 25475931.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5): 843–854. PubMed PMID: 8252621.
  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993 Epub 1993/12/03. PubMed PMID: 8252622;75(5):855–862.
  • Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res. cited 32 Database issue]. D109-11]. Available from. 2004;32:109D-111. http://mirbase.org.
  • Schubert M, Junker K, Heinzelmann J. Prognostic and predictive miRNA biomarkers in bladder, kidney and prostate cancer: where do we stand in biomarker development? J Cancer Res Clin Oncol. 2016;142(8):1673–1695. Epub 2015/ 12/15. PubMed PMID: 26660324.
  • Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley interdiscip rev RNA. 2012;3(3):311–330. Epub 2011/ 11/11. PubMed PMID: 22072587.
  • O’Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) Epub 2018/ 08/21. PubMed PMID: 30123182; PubMed Central PMCID: PMCPMC6085463. 2018;9:402.
  • Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21(5):542–551. Epub 2019/05/03. PubMed PMID: 31048766.
  • Dahariya S, Paddibhatla I, Kumar S, et al. Long non-coding RNA: classification, biogenesis and functions in blood cells. Mol Immunol Epub 2019/ 05/13. PubMed PMID: 31079005. 2019;112:82–92.
  • Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62. Epub 2015/ 12/17. PubMed PMID: 26666209.
  • Ren S, Wang F, Shen J, et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer. 2013;49(13):2949–2959. PubMed PMID: 23726266.
  • Corbel C, Diabangouaya P, Gendrel AV, et al. Unusual chromatin status and organization of the inactive X chromosome in murine trophoblast giant cells. Development. 2013;140(4):861–872. Epub 2013/01/31. PubMed PMID: 23362347. DOI:10.1242/dev.087429.
  • Liu XH, Sun M, Nie FQ, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer. 2014;13:92. Epub 2014/04/30. PubMed PMID: 24775712; PubMed Central PMCID: PMCPMC4021402. Doi: 10.1186/1476-4598-13-92.
  • Thery C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles . 2018;7(1):1535750. PubMed PMID: 30637094; PubMed Central PMCID: PMCPMC6322352.
  • Akers JC, Gonda D, Kim R, et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. Epub 2013/ 03/05. PubMed PMID: 23456661.
  • Duijvesz D, Luider T, Bangma CH, et al. Exosomes as biomarker treasure chests for prostate cancer. Eur Urol. 2011;59(5):823–831. Epub 2011/01/05. PubMed PMID: 21196075. DOI:10.1016/j.eururo.2010.12.031.
  • van der Pol E, Boing AN, Gool EL, et al. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J Thromb Haemost. 2016;14(1):48–56. Epub 2015/11/14. PubMed PMID: 26564379.
  • Stridsberg M, Fabiani R, Lukinius A, et al. Prostasomes are neuroendocrine-like vesicles in human semen. PubMed PMID: 8899001 Prostate. 1996;29(5):287–295. .
  • Carlsson L, Nilsson O, Larsson A, et al. Characteristics of human prostasomes isolated from three different sources. PubMed PMID: 12539232 Prostate. 2003;54(4):322–330.
  • Aalberts M, Stout TA, Stoorvogel W. Prostasomes: extracellular vesicles from the prostate. PubMed PMID: 24149515 Reproduction. 2014;147(1):R1–14.
  • Zijlstra C, Stoorvogel W. Prostasomes as a source of diagnostic biomarkers for prostate cancer. PubMed PMID: 27035806; PubMed Central PMCID: PMCPMC4811138 J Clin Invest. 2016;126(4):1144–1151.
  • Tang YT, Huang YY, Zheng L, et al. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med. 2017;40(3):834–844. PubMed PMID: 28737826; PubMed Central PMCID: PMCPMC5548045. DOI:10.3892/ijmm.2017.3080.
  • Ding M, Wang C, Lu X, et al. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Anal Bioanal Chem. 2018;410(16):3805–3814. PubMed PMID: 29671027.
  • Chiriaco MS, Bianco M, Nigro A, et al. Lab-on-Chip for Exosomes and Microvesicles Detection and Characterization. Sensors (Basel). 2018;18(10). PubMed PMID: 30241303; PubMed Central PMCID: PMCPMC6210978. DOI:10.3390/s18103175.
  • Sharma S, LeClaire M, Gimzewski JK. Ascent of atomic force microscopy as a nanoanalytical tool for exosomes and other extracellular vesicles. PubMed PMID: 29376505 Nanotechnology. 2018;29(13):132001.
  • Grasso L, Wyss R, Weidenauer L, et al. Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Anal Bioanal Chem. 2015;407(18):5425–5432. PubMed PMID: 25925862; PubMed Central PMCID: PMCPMC4477949. DOI:10.1007/s00216-015-8711-5.
  • O’Driscoll L. Expanding on exosomes and ectosomes in cancer. PubMed PMID: 26061842 N Engl J Med. 2015;372(24):2359–2362.
  • Junker K, Heinzelmann J, Beckham C, et al. Extracellular vesicles and their role in urologic malignancies. Eur Urol. 2016;70(2):323–331. Epub 2016/03/01. PubMed PMID: 26924769. DOI:10.1016/j.eururo.2016.02.046.
  • Kosaka N, Yoshioka Y, Fujita Y, et al. Versatile roles of extracellular vesicles in cancer. PubMed PMID: 26974161; PubMed Central PMCID: PMCPMC4811151 J Clin Invest. 2016;126(4):1163–1172.
  • Madeo M, Colbert PL, Vermeer DW, et al. Cancer exosomes induce tumor innervation. Nat Commun. 2018;9(1):4284. PubMed PMID: 30327461; PubMed Central PMCID: PMCPMC6191452.
  • Ringuette Goulet C, Bernard G, Tremblay S, et al. Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFbeta signaling. PubMed PMID: 29636362 Mol Cancer Res. 2018;16(7):1196–1204. DOI: 10.1158/1541-7786.MCR-17-0784.
  • Lobb RJ, van Amerongen R, Wiegmans A, et al. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. PubMed PMID: 28445609 Int J Cancer. 2017;141(3):614–620.
  • Qu L, Ding J, Chen C. et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 2016; 29(5): 653–668. Epub 2016/04/28. PubMed PMID: 27117758.
  • Hoshino A, Costa-Silva B, Shen TL. et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015; 527(7578): 329–335. Epub 2015/ 11/03. PubMed PMID: 26524530; PubMed Central PMCID: PMCPMC4788391.
  • Zhang L, Zhang S, Yao J, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature . 2015;527(7576):100–104. PubMed PMID: 26479035; PubMed Central PMCID: PMCPMC4819404.
  • Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–5008. PubMed PMID: 21383194; PubMed Central PMCID: PMCPMC3064324. DOI:10.1073/pnas.1019055108.
  • Gallo A, Tandon M, Alevizos I, et al. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PubMed PMID: 22427800; PubMed Central PMCID: PMCPMC3302865 PLoS One. 2012;7(3):e30679. .
  • Endzelins E, Melne V, Kalnina Z, et al. Diagnostic, prognostic and predictive value of cell-free miRNAs in prostate cancer: a systematic review. Mol Cancer. 2016;15(1):41. PubMed PMID: 27189160; PubMed Central PMCID: PMCPMC4870749. DOI:10.1186/s12943-016-0523-5.
  • Motawi TK, Rizk SM, Ibrahim TM, et al. Circulating microRNAs, miR-92a, miR-100 and miR-143, as non-invasive biomarkers for bladder cancer diagnosis. Cell Biochem Funct. 2016;34(3): 142–148. PubMed PMID: 26916216.
  • Feng Y, Liu J, Kang Y, et al. miR-19a acts as an oncogenic microRNA and is up-regulated in bladder cancer. J Exp Clin Cancer Res. 2014;33:67, PubMed PMID: 25107371.
  • Feng Y, Kang Y, He Y, et al. microRNA-99a acts as a tumor suppressor and is down-regulated in bladder cancer. BMC Urol. 2014;14:50, PubMed PMID: 24957100.
  • Fang Z, Dai W, Wang X, et al. Circulating miR-205: a promising biomarker for the detection and prognosis evaluation of bladder cancer. Tumour Biol. 2016;37(6):8075–8082. PubMed PMID: 26715266.
  • Pignot G, Cizeron-Clairac G, Vacher S, et al. microRNA expression profile in a large series of bladder tumors: identification of a 3-miRNA signature associated with aggressiveness of muscle-invasive bladder cancer. Int J Cancer J Inter Du Cancer. 2013;132(11):2479–2491. Epub 2012/ 11/22. PubMed PMID: 23169479.
  • La L, Huang K, You Y, et al. Hypoxia-induced miR-210 in epithelial ovarian cancer enhances cancer cell viability via promoting proliferation and inhibiting apoptosis. Int J Oncol. 2014;44(6):2111–2120. PubMed PMID: 24715221.
  • Yang Y, Qu A, Liu J, et al. Serum miR-210 contributes to tumor detection, stage prediction and dynamic surveillance in patients with bladder cancer. PloS One. 2015;10(8):e0135168. PubMed PMID: 26252880.
  • Adam L, Wszolek MF, Liu CG, et al. Plasma microRNA profiles for bladder cancer detection. Urol Oncol. 2013;31(8):1701–1708. Epub 2012/ 08/07. PubMed PMID: 22863868.
  • Jiang X, Du L, Wang L, et al. Serum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancer. Int J Cancer J Inter Du Cancer. 2014. Epub 2014/ 06/26. PubMed PMID: 24961907. Doi: 10.1002/ijc.29041.
  • Jiang X, Du L, Duan W, et al. Serum microRNA expression signatures as novel noninvasive biomarkers for prediction and prognosis of muscle-invasive bladder cancer. Oncotarget. 2016;7(24):36733–36742. PubMed PMID: 27167342.
  • Du M, Shi D, Yuan L, et al. Circulating miR-497 and miR-663b in plasma are potential novel biomarkers for bladder cancer. Sci Rep. 2015;5:10437, PubMed PMID: 26014226.
  • Lian J, Lin S-H, Ye Y, et al. Serum microRNAs as predictors of risk for non-muscle invasive bladder cancer. Oncotarget. 2018;9(19):14895–14908. PubMed PMID: 29599914.
  • Usuba W, Urabe F, Yamamoto Y, et al. Circulating miRNA panels for specific and early detection in bladder cancer. Cancer Sci. 2019;110(1):408–419. PubMed PMID: 30382619.
  • Duan W, Du L, Jiang X, et al. Identification of a serum circulating lncRNA panel for the diagnosis and recurrence prediction of bladder cancer. Oncotarget. 2016;7(48):78850–78858. PubMed PMID: 27793008.
  • Zhan Y, Du L, Wang L, et al. Expression signatures of exosomal long non-coding RNAs in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Mol Cancer. 2018;17(1):142. PubMed PMID: 30268126.
  • Berrondo C, Flax J, Kucherov V, et al. Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PloS One. 2016;11(1):e0147236. Epub 2016/01/23. PubMed PMID: 26800519; PubMed Central PMCID: PMC4723257.
  • Zhang S, Du L, Wang L, et al. Evaluation of serum exosomal LncRNA-based biomarker panel for diagnosis and recurrence prediction of bladder cancer. J Cell Mol Med. 2019;23(2):1396–1405. PubMed PMID: 30467945.
  • Kriebel S, Schmidt D, Holdenrieder S, et al. Analysis of tissue and serum microRNA expression in patients with upper urinary tract urothelial cancer. PloS One. 2015;10(1):e0117284. PubMed PMID: 25629698.
  • Tao J, Yang X, Li P, et al. Identification of circulating microRNA signatures for upper tract urothelial carcinoma detection. Mol Med Rep. 2015;12(5):6752–6760. PubMed PMID: 26323574.
  • Montalbo R, Izquierdo L, Ingelmo-Torres M, et al. Prognostic value of circulating microRNAs in upper tract urinary carcinoma. Oncotarget. 2018;9(24):16691–16700. PubMed PMID: 29682178.
  • van Agthoven T, Looijenga LHJ. Accurate primary germ cell cancer diagnosis using serum based microRNA detection (ampTSmiR test). PubMed PMID: ISI:000408941900010 Oncotarget. 2017;8(35):58037–58049. DOI: 10.18632/oncotarget.10867.
  • Syring I, Bartels J, Holdenrieder S, et al. Circulating serum miRNA (miR-367-3p, miR-371a-3p, miR-372-3p and miR-373-3p) as biomarkers in patients with testicular germ cell cancer. J Urology. 2015;193(1):331–337. PubMed PMID: ISI:000346171500108.
  • Dieckmann KP, Radtke A, Spiekermann M, et al. Serum levels of microRNA miR-371a-3p: a sensitive and specific new biomarker for germ cell tumours. Eur Urol. 2017;71(2):213–220. PubMed PMID: ISI:000390565700037.
  • Dieckmann K-P, Radtke A, Geczi L, et al. Serum levels of microRNA-371a-3p (M371 test) as a new biomarker of testicular germ cell tumors: results of a prospective multicentric study. J Clin Oncol. 2019;37(16):1412–1423. PubMed PMID: 30875280.
  • Belge G, Dieckmann K-P, Spiekermann M, et al. Serum levels of microRNAs miR-371-3: a novel class of serum biomarkers for testicular germ cell tumors? Eur Urol. 2012;61(5): 1068–1069. PubMed PMID: 22386195.
  • Leao R, van Agthoven T, Figueiredo A, et al. Serum miRNA predicts viable disease after chemotherapy in patients with testicular nonseminoma germ cell tumor. J Urol. 2018;200(1):126–135. PubMed PMID: 29474847.
  • Terbuch A, Adiprasito JB, Stiegelbauer V, et al. MiR-371a-3p serum levels are increased in recurrence of testicular germ cell tumor patients. Int J Mol Sci. 2018;19(10). PubMed PMID: ISI:000448951000285. DOI:10.3390/Ijms19103130.
  • Richard PO, Jewett MA, Bhatt JR, et al. Renal tumor biopsy for small renal masses: a single-center 13-year experience. Eur Urol. 2015;68(6):1007–1013. Epub 2015/ 04/23. PubMed PMID: 25900781.
  • Dabestani S, Thorstenson A, Lindblad P, et al. Renal cell carcinoma recurrences and metastases in primary non-metastatic patients: a population-based study. World J Urol. 2016;34(8):1081–1086. Epub 2016/ 02/06. PubMed PMID: 26847337.
  • Wu Y, Wang YQ, Weng WW, et al. A serum-circulating long noncoding RNA signature can discriminate between patients with clear cell renal cell carcinoma and healthy controls. Oncogenesis. 2016;5:e192. Epub 2016/02/16. PubMed PMID: 26878386; PubMed Central PMCID: PMCPMC5154346.
  • Heinemann FG, Tolkach Y, Deng M, et al. Serum miR-122-5p and miR-206 expression: non-invasive prognostic biomarkers for renal cell carcinoma. Clin Epigenetics. 2018;10:11. Epub 2018/ 02/08. PubMed PMID: 29410711; PubMed Central PMCID: PMCPMC5781339.
  • Kohls K, Schmidt D, Holdenrieder S, et al. [Detection of cell-free lncRNA in serum of cancer patients]. Der Urologe Ausg A. 2015;54(6):819–825. Epub 2014/ 10/15. PubMed PMID: 25312755.
  • Butz H, Nofech-Mozes R, Ding Q, et al. Exosomal microRNAs are diagnostic biomarkers and can mediate cell-cell communication in renal cell carcinoma. Eur Urol Focus. 2016;2(2):210–218. Epub 2017/ 07/21. PubMed PMID: 28723537.
  • Fedorko M, Juracek J, Stanik M, et al. Detection of let-7 miRNAs in urine supernatant as potential diagnostic approach in non-metastatic clear-cell renal cell carcinoma. Biochem Med (Zagreb). 2017;27(2):411–417. Epub 2017/ 07/12. PubMed PMID: 28694731; PubMed Central PMCID: PMCPMC5493171.
  • von Brandenstein M, Pandarakalam JJ, Kroon L, et al. MicroRNA 15a, inversely correlated to PKCalpha, is a potential marker to differentiate between benign and malignant renal tumors in biopsy and urine samples. Am J Pathol. 2012;180(5):1787–1797. Epub 2012/03/21. PubMed PMID: 22429968.
  • Mytsyk Y, Dosenko V, Borys Y, et al. MicroRNA-15a expression measured in urine samples as a potential biomarker of renal cell carcinoma. Int Urol Nephrol. 2018;50(5):851–859. Epub 2018/03/20. PubMed PMID: 29549624. DOI:10.1007/s11255-018-1841-x.
  • Petrozza V, Pastore AL, Palleschi G, et al. Secreted miR-210-3p as non-invasive biomarker in clear cell renal cell carcinoma. Oncotarget. 2017;8(41):69551–69558. Epub 2017/10/21. PubMed PMID: 29050224; PubMed Central PMCID: PMCPMC5642499.
  • Zhang W, Ni M, Su Y, et al. MicroRNAs in Serum Exosomes as Potential Biomarkers in Clear-cell Renal Cell Carcinoma. Eur Urol Focus. 2018;4(3):412–419. Epub 2017/ 07/30. PubMed PMID: 28753793.
  • Wang X, Wang T, Chen C, et al. Serum exosomal miR-210 as a potential biomarker for clear cell renal cell carcinoma. J Cell Biochem. 2018. Epub 2018/10/12. PubMed PMID: 30304555. Doi: 10.1002/jcb.27347.
  • Du M, Giridhar KV, Tian Y. et al. Plasma exosomal miRNAs-based prognosis in metastatic kidney cancer. Oncotarget. 2017; 8(38): 63703–63714. Epub 2017/10/04. PubMed PMID: 28969022; PubMed Central PMCID: PMCPMC5609954.
  • Fujii N, Hirata H, Ueno K, et al. Extracellular miR-224 as a prognostic marker for clear cell renal cell carcinoma. Oncotarget. 2017;8(66):109877–109888. Epub 2018/ 01/05. PubMed PMID: 29299115; PubMed Central PMCID: PMCPMC5746350.
  • Zhao A, Li G, Peoc’h M, et al. Serum miR-210 as a novel biomarker for molecular diagnosis of clear cell renal cell carcinoma. Exp Mol Pathol. 2013;94(1):115–120. Epub 2012/ 10/16. PubMed PMID: 23064048.
  • Iwamoto H, Kanda Y, Sejima T, et al. Serum miR-210 as a potential biomarker of early clear cell renal cell carcinoma. Int J Oncol. 2014;44(1):53–58. Epub 2013/ 11/12. PubMed PMID: 24212760.
  • Fedorko M, Stanik M, Iliev R, et al. Combination of MiR-378 and MiR-210 serum levels enables sensitive detection of renal cell carcinoma. Int J Mol Sci. 2015;16(10):23382–23389. Epub 2015/10/02. PubMed PMID: 26426010; PubMed Central PMCID: PMCPMC4632704.
  • Chen Y, Wang X, Zhu X, et al. Detection performance of circulating microRNA-210 for renal cell carcinoma: a meta-analysis. Clin Lab. 2018;64(4):569–576. Epub 2018/ 05/09. PubMed PMID: 29739083.
  • Redova M, Poprach A, Nekvindova J, et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med. 2012;10:55. PubMed PMID: 22440013; PubMed Central PMCID: PMC3340316.
  • Wang C, Hu J, Lu M, et al. A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci Rep. 2015;5:7610. Epub 2015/01/06. PubMed PMID: 25556603; PubMed Central PMCID: PMCPMC5154588.
  • Wulfken LM, Moritz R, Ohlmann C, et al. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PloS One. 2011;6(9):e25787. Epub 2011/ 10/11. PubMed PMID: 21984948; PubMed Central PMCID: PMCPMC3184173.
  • Yadav S, Khandelwal M, Seth A, et al. Serum microRNA expression profiling: potential diagnostic implications of a panel of serum microRNAs for clear cell renal cell cancer. Urology Epub 2017/ 03/25. PubMed PMID: 28336290. 2017;104:64–69.
  • Teixeira AL, Ferreira M, Silva J, et al. Higher circulating expression levels of miR-221 associated with poor overall survival in renal cell carcinoma patients. Tumour Biol. 2014;35(5):4057–4066. PubMed PMID: 24379138.
  • Tusong H, Maolakuerban N, Guan J, et al. Functional analysis of serum microRNAs miR-21 and miR-106a in renal cell carcinoma. Cancer Biomark. 2017;18(1):79–85. Epub 2016/ 11/05. PubMed PMID: 27814278.
  • Chanudet E, Wozniak MB, Bouaoun L, et al. Large-scale genome-wide screening of circulating microRNAs in clear cell renal cell carcinoma reveals specific signatures in late-stage disease. Int J Cancer J Inter Du Cancer. 2017;141(9):1730–1740. Epub 2017/06/24. PubMed PMID: 28639257.
  • von Brandenstein M, Schlosser M, Herden J, et al. MicroRNAs as urinary biomarker for oncocytoma. Dis Markers Epub 2018/08/18. PubMed PMID: 30116406; PubMed Central PMCID: PMCPMC6079495. 2018;2018:6979073.
  • Zhang Q, Di W, Dong Y, et al. High serum miR-183 level is associated with poor responsiveness of renal cancer to natural killer cells. Tumour Biol. 2015;36(12):9245–9249. Epub 2015/ 06/21. PubMed PMID: 26091793. DOI:10.1007/s13277-015-3604-y.
  • Busch J, Ralla B, Jung M, et al. Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. J Exp Clin Cancer Res. 2015;34:61. Epub 2015/06/14. PubMed PMID: 26071182; PubMed Central PMCID: PMCPMC4467205.
  • Li Y, Wu X, Gao H, et al. Piwi-interacting RNAs (piRNAs) are dysregulated in renal cell carcinoma and associated with tumor metastasis and cancer-specific survival. Mol Med. 2015;21:381–388. Epub 2015/ 05/23. PubMed PMID: 25998508; PubMed Central PMCID: PMCPMC4534471.
  • Litwin MS, Tan HJ. The diagnosis and treatment of prostate cancer: a review. PubMed PMID: 28655021 JAMA. 2017;317(24):2532–2542.
  • Smith-Palmer J, Takizawa C, Valentine W. Literature review of the burden of prostate cancer in Germany, France, the United Kingdom and Canada. PubMed PMID: 30885200; PubMed Central PMCID: PMCPMC6421711 BMC Urol. 2019;19(1):19. .
  • Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69:363–385. PubMed PMID: 31184787.
  • Robinson D, Garmo H, Lissbrant IF, et al. Prostate cancer death after radiotherapy or radical prostatectomy: a nationwide population-based observational study. Eur Urol. 2018;73(4):502–511. PubMed PMID: 29254629. DOI:10.1016/j.eururo.2017.11.039.
  • Kelly SP, Anderson WF, Rosenberg PS, et al. Past, current, and future incidence rates and burden of metastatic prostate cancer in the United States. PubMed PMID: 29162421; PubMed Central PMCID: PMCPMC6217835 Eur Urol Focus. 2018;4(1):121–127. .
  • Fizazi K, Tran N, Fein L, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med. 2017;377:352–360. PubMed PMID: 28578607.
  • James ND, de Bono JS, Spears MR, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med. 2017;377:338–351. PubMed PMID: 28578639.
  • Feyerabend S, Saad F, Li T, et al. Survival benefit, disease progression and quality-of-life outcomes of abiraterone acetate plus prednisone versus docetaxel in metastatic hormone-sensitive prostate cancer: A network meta-analysis. Eur J Cancer. 2018;103:78–87. PubMed PMID: 30218976.
  • James ND, Sydes MR, Clarke NW, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387(10024):1163–1177. PubMed PMID: 26719232; PubMed Central PMCID: PMCPMC4800035.
  • Sweeney CJ, Chen YH, Carducci M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med. 2015;373(8):737–746. PubMed PMID: 26244877; PubMed Central PMCID: PMCPMC4562797.
  • Gravis G, Boher JM, Joly F, et al. Androgen deprivation therapy (ADT) plus docetaxel versus adt alone in metastatic non castrate prostate cancer: impact of metastatic burden and long-term survival analysis of the randomized phase 3 GETUG-AFU15 trial. Eur Urol. 2016;70(2):256–262. PubMed PMID: 26610858.
  • Sartor O, de Bono JS. Metastatic prostate cancer. N Engl J Med. 2018;378:645–657. PubMed PMID: 29412780. DOI:10.1056/NEJMra1701695.
  • Culig Z, Santer FR. Androgen receptor signaling in prostate cancer. PubMed PMID: 24384911 Cancer Metastasis Rev. 2014;33(2–3):413–427.
  • Coutinho I, Day TK, Tilley WD, et al. Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence. Endocr Relat Cancer. 2016 Dec;23:T179–T97. PubMed PMID: 27799360.
  • Wei L, Wang J, Lampert E, et al. Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators. Eur Urol. 2017;71(2):183–192. PubMed PMID: 27451135; PubMed Central PMCID: PMCPMC5906059.
  • Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487(7406):239–243. PubMed PMID: 22722839; PubMed Central PMCID: PMCPMC3396711.
  • Cooperberg MR, Erho N, Chan JM, et al. The diverse genomic landscape of clinically low-risk prostate cancer. Eur Urol. 2018;74:444–452. PubMed PMID: 29853306.
  • Fraser M, Sabelnykova VY, Yamaguchi TN, et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature. 2017;541(7637):359–364. PubMed PMID: 28068672.
  • Xu Y, Qin S, An T, et al. MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. PubMed PMID: 28617988 Prostate. 2017;77(10):1167–1175. .
  • Koppers-Lalic D, Hackenberg M, de Menezes R, et al. Noninvasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget. 2016;7(16):22566–22578. PubMed PMID: 26992225; PubMed Central PMCID: PMCPMC5008382.
  • Bryant RJ, Pawlowski T, Catto JW, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106(4):768–774. PubMed PMID: 22240788; PubMed Central PMCID: PMCPMC3322952.
  • Foj L, Ferrer F, Serra M, et al. Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate. 2017;77(6):573–583. PubMed PMID: 27990656.
  • Wani S, Kaul D, Mavuduru RS, et al. Urinary-exosomal miR-2909: A novel pathognomonic trait of prostate cancer severity. J Biotechnol. 2017;259:135–139. PubMed PMID: 28764970.
  • Rodriguez M, Bajo-Santos C, Hessvik NP, et al. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer. 2017;16(1):156. PubMed PMID: 28982366; PubMed Central PMCID: PMCPMC5629793.
  • Srivastava A, Goldberger H, Dimtchev A, et al. MicroRNA profiling in prostate cancer–the diagnostic potential of urinary miR-205 and miR-214. PloS One. 2013;8(10):e76994. PubMed PMID: 24167554; PubMed Central PMCID: PMCPMC3805541.
  • Guzel E, Karatas OF, Semercioz A, et al. Identification of microRNAs differentially expressed in prostatic secretions of patients with prostate cancer. Int J Cancer J Inter Du Cancer. 2015;136(4):875–879. PubMed PMID: 24976077.
  • Korzeniewski N, Tosev G, Pahernik S, et al. Identification of cell-free microRNAs in the urine of patients with prostate cancer. PubMed PMID: 25445383 Urol Oncol. 2015;33(1):16 e7- e22. .
  • Yun SJ, Jeong P, Kang HW, et al. Urinary microRNAs of prostate cancer: virus-encoded hsv1-miRH18 and hsv2-miR-H9-5p could be valuable diagnostic markers. Int Neurourol J. 2015;19(2):74–84. PubMed PMID: 26126436; PubMed Central PMCID: PMCPMC4490318.
  • Isin M, Uysaler E, Ozgur E, et al. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front Genet. 2015;6:168. PubMed PMID: 25999983; PubMed Central PMCID: PMCPMC4422020.
  • Lee GL, Dobi A, Srivastava S. Prostate cancer: diagnostic performance of the PCA3 urine test. PubMed PMID: 21394175 Nat Rev Urol. 2011;8(3):123–124. .
  • Groskopf J, Aubin SM, Deras IL, et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem. 2006;52(6):1089–1095. PubMed PMID: 16627561. DOI:10.1373/clinchem.2005.063289.
  • Sanda MG, Feng Z, Howard DH, et al. Association between combined TMPRSS2: eRGand PCA3 RNA urinary testing and detection of aggressive prostate cancer. JAMA Oncol. 2017;3(8):1085–1093. PubMed PMID: 28520829; PubMed Central PMCID: PMCPMC5710334.
  • Zhang W, Ren SC, Shi XL, et al. A novel urinary long non-coding RNA transcript improves diagnostic accuracy in patients undergoing prostate biopsy. Prostate. 2015;75(6):653–661. PubMed PMID: 25597901.
  • Lee B, Mazar J, Aftab MN, et al. Long noncoding RNAs as putative biomarkers for prostate cancer detection. J Mol Diagn. 2014;16(6):615–626. PubMed PMID: 25307116; PubMed Central PMCID: PMCPMC4210464.
  • Li Z, Ma YY, Wang J, et al. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther. 2016;9:139–148. PubMed PMID: 26770063; PubMed Central PMCID: PMCPMC4706124.
  • Hessvik NP, Sandvig K, Llorente A. Exosomal miRNAs as biomarkers for prostate cancer. Front Genet Epub 2013/03/23. PubMed PMID: 23519132; PubMed Central PMCID: PMC3604630. 2013;4:36.
  • Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–10518. PubMed PMID: 18663219; PubMed Central PMCID: PMCPMC2492472.
  • Lodes MJ, Caraballo M, Suciu D, et al. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PubMed PMID: 19597549; PubMed Central PMCID: PMCPMC2704963 PloS One. 2009;4(7):e6229. .
  • Yaman Agaoglu F, Kovancilar M, Dizdar Y, et al. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol. 2011;32(3):583–588. PubMed PMID: 21274675.
  • Mahn R, Heukamp LC, Rogenhofer S, et al. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. PubMed PMID: 21539977 Urology. 2011;77(5):1265 e9–16. .
  • Moltzahn F, Olshen AB, Baehner L, et al. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res. 2011;71(2):550–560. PubMed PMID: 21098088; PubMed Central PMCID: PMCPMC3022112.
  • Chen ZH, Zhang GL, Li HR, et al. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate. 2012;72(13):1443–1452. PubMed PMID: 22298030.
  • Cheng HH, Mitchell PS, Kroh EM, et al. Circulating microRNA profiling identifies a subset of metastatic prostate cancer patients with evidence of cancer-associated hypoxia. PloS One. 2013;8(7):e69239. PubMed PMID: 23935962; PubMed Central PMCID: PMCPMC3728349.
  • Watahiki A, Macfarlane RJ, Gleave ME, et al. Plasma miRNAs as biomarkers to identify patients with castration-resistant metastatic prostate cancer. Int J Mol Sci. 2013;14(4):7757–7770. PubMed PMID: 23574937; PubMed Central PMCID: PMCPMC3645714.
  • Haldrup C, Kosaka N, Ochiya T, et al. Profiling of circulating microRNAs for prostate cancer biomarker discovery. Drug Deliv Transl Res. 2014;4(1):19–30. PubMed PMID: 25786615.
  • Kelly BD, Miller N, Sweeney KJ, et al. A circulating microRNA signature as a biomarker for prostate cancer in a high risk group. J Clin Med. 2015;4(7):1369–1379. PubMed PMID: 26239681; PubMed Central PMCID: PMCPMC4519795.
  • Wang YH, Ji J, Wang BC, et al. Tumor-derived exosomal long noncoding RNAs as promising diagnostic biomarkers for prostate cancer. Cell Physiol Biochem. 2018;46(2):532–545. PubMed PMID: 29614511.
  • Xue D, Zhou CX, Shi YB, et al. MD-miniRNA could be a more accurate biomarker for prostate cancer screening compared with serum prostate-specific antigen level. PubMed PMID: 25557788 Tumour Biol. 2015;36(5):3541–3547. .
  • Crea F, Watahiki A, Quagliata L, et al. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget. 2014;5(3):764–774. PubMed PMID: 24519926; PubMed Central PMCID: PMCPMC3996663. DOI:10.18632/oncotarget.1769.
  • Brase JC, Johannes M, Schlomm T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer J Inter Du Cancer. 2011;128(3):608–616. PubMed PMID: 20473869.
  • Nguyen HC, Xie W, Yang M, et al. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate. 2013;73(4):346–354. PubMed PMID: 22887127; PubMed Central PMCID: PMCPMC3980954.
  • Selth LA, Townley SL, Bert AG, et al. Circulating microRNAs predict biochemical recurrence in prostate cancer patients. Br J Cancer. 2013;109(3):641–650. PubMed PMID: 23846169; PubMed Central PMCID: PMCPMC3738112.
  • Mihelich BL, Maranville JC, Nolley R, et al. Elevated serum microRNA levels associate with absence of high-grade prostate cancer in a retrospective cohort. PubMed PMID: 25874774; PubMed Central PMCID: PMCPMC4396984 PloS One. 2015;10(4):e0124245.
  • Tsodikov A, Gulati R, Heijnsdijk EAM, et al. Reconciling the effects of screening on prostate cancer mortality in the ERSPC and PLCO trials. Ann Intern Med. 2017;167(7):449–455. PubMed PMID: 28869989; PubMed Central PMCID: PMCPMC5734053.
  • Catalona WJ. Prostate cancer screening. PubMed PMID: 29406053; PubMed Central PMCID: PMCPMC5935113 Med Clin North Am. 2018;102(2):199–214. .
  • Schiffmann J, Wenzel P, Salomon G, et al. Heterogeneity in D’Amico classification-based low-risk prostate cancer: differences in upgrading and upstaging according to active surveillance eligibility. Urol Oncol. 2015;33(7):329 e13–9. PubMed PMID: 25960411.
  • Leyh-Bannurah SR, Abou-Haidar H, Dell’Oglio P, et al. Primary Gleason pattern upgrading in contemporary patients with D’Amico low-risk prostate cancer: implications for future biomarkers and imaging modalities. BJU Int. 2017;119(5):692–699. PubMed PMID: 27367469.
  • Ploussard G, de la Taille A. The role of prostate cancer antigen 3 (PCA3) in prostate cancer detection. Expert Rev Anticancer Ther. 2018 Oct;18:1013–1020. PubMed PMID: 30016891.
  • Bussemakers MJ, van Bokhoven A, Verhaegh GW, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59(23):5975–5979. PubMed PMID: 10606244.
  • Auprich M, Haese A, Walz J, et al. External validation of urinary PCA3-based nomograms to individually predict prostate biopsy outcome. Eur Urol. 2010;58(5):727–732. PubMed PMID: 20619529.
  • Chun FK, de la Taille A, van Poppel H, et al. Prostate cancer gene 3 (PCA3): development and internal validation of a novel biopsy nomogram. Eur Urol. 2009;56(4):659–667. PubMed PMID: 19304372.
  • de Kok JB, Verhaegh GW, Roelofs RW, et al. DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002;62(9):2695–2698. PubMed PMID: 11980670.
  • de la Taille A, Irani J, Graefen M, et al. Clinical evaluation of the PCA3 assay in guiding initial biopsy decisions. J Urol. 2011;185(6):2119–2125. PubMed PMID: 21496856.
  • Deras IL, Aubin SM, Blase A, et al. PCA3: a molecular urine assay for predicting prostate biopsy outcome. J Urol. 2008;179(4):1587–1592. PubMed PMID: 18295257.
  • Haese A, de la Taille A, van Poppel H, et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur Urol. 2008;54(5):1081–1088. PubMed PMID: 18602209.
  • Hessels D, Klein Gunnewiek JM, van Oort I, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. 2003;44(1):8–15. discussion −6. PubMed PMID: 12814669.
  • Sokoll LJ, Ellis W, Lange P, et al. A multicenter evaluation of the PCA3 molecular urine test: pre-analytical effects, analytical performance, and diagnostic accuracy. Clin Chim Acta. 2008;389(1–2):1–6. PubMed PMID: 18061575.
  • van Poppel H, Haese A, Graefen M, et al. The relationship between prostate CAncer gene 3 (PCA3) and prostate cancer significance. BJU Int. 2012;109(3):360–366. PubMed PMID: 21883822.
  • Nicholson A, Mahon J, Boland A, et al. The clinical effectiveness and cost-effectiveness of the PROGENSA(R) prostate cancer antigen 3 assay and the prostate health index in the diagnosis of prostate cancer: a systematic review and economic evaluation. Health Technol Assess. 2015;19(87):i-xxxi, 1–191. PubMed PMID: 26507078; PubMed Central PMCID: PMCPMC4780983.
  • Dijkstra S, Leyten GH, Jannink SA, et al. KLK3, PCA3, and TMPRSS2-ERG expression in the peripheral blood mononuclear cell fraction from castration-resistant prostate cancer patients and response to docetaxel treatment. Prostate. 2014;74(12):1222–1230. PubMed PMID: 25043536.
  • Donovan MJ, Noerholm M, Bentink S, et al. A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis. 2015;18(4):370–375. PubMed PMID: 26345389.
  • Salami SS, Schmidt F, Laxman B, et al. Combining urinary detection of TMPRSS2: eRGand PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol Oncol. 2013;31(5):566–571. PubMed PMID: 21600800; PubMed Central PMCID: PMCPMC3210917.
  • Robert G, Jannink S, Smit F, et al. Rational basis for the combination of PCA3 and TMPRSS2: eRGgene fusion for prostate cancer diagnosis. Prostate. 2013;73(2):113–120. PubMed PMID: 22674214. DOI:10.1002/pros.22546.
  • Roberts MJ, Chow CW, Schirra HJ, et al. Diagnostic performance of expression of PCA3, hepsin and miR biomarkers inejaculate in combination with serum PSA for the detection of prostate cancer. Prostate. 2015;75(5):539–549. PubMed PMID: 25597828.
  • Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–648. PubMed PMID: 16254181.
  • Mehra R, Tomlins SA, Shen R, et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod Pathol. 2007;20(5):538–544. PubMed PMID: 17334343.
  • Berg KD, Roder MA, Thomsen FB, et al. The predictive value of ERG protein expression for development of castration-resistant prostate cancer in hormone-naive advanced prostate cancer treated with primary androgen deprivation therapy. Prostate. 2015;75(14):1499–1509. PubMed PMID: 26053696. DOI:10.1002/pros.23026.
  • McKiernan J, Donovan MJ, O’Neill V, et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2016;2(7):882–889. PubMed PMID: 27032035.
  • McKiernan J, Donovan MJ, Margolis E, et al. A prospective adaptive utility trial to validate performance of a novel urine exosome gene expression assay to predict high-grade prostate cancer in patients with prostate-specific antigen 2-10ng/ml at initial biopsy. Eur Urol. 2018. PubMed PMID: 30237023. DOI:10.1016/j.eururo.2018.08.019.
  • Leyten GH, Hessels D, Jannink SA, et al. Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol. 2014;65(3):534–542. PubMed PMID: 23201468. DOI:10.1016/j.eururo.2012.11.014.
  • Tomlins SA, Day JR, Lonigro RJ, et al. Urine TMPRSS2: eRGPlus PCA3 for individualized prostate cancer risk assessment. Eur Urol. 2016;70(1):45–53. PubMed PMID: 25985884; PubMed Central PMCID: PMCPMC4644724.
  • Prensner JR, Iyer MK, Sahu A, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet . 2013;45(11):1392–1398. PubMed PMID: 24076601; PubMed Central PMCID: PMCPMC3812362.
  • Prensner JR, Zhao S, Erho N, et al. RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol. 2014;15(13):1469–1480. PubMed PMID: 25456366; PubMed Central PMCID: PMCPMC4559342.
  • Chua MLK, Lo W, Pintilie M, et al. A prostate cancer “nimbosus”: genomic instability and SChLAP1 dysregulation underpin aggression of intraductal and cribriform subpathologies. Eur Urol. 2017;72(5):665–674. PubMed PMID: 28511883.
  • Wang F, Ren S, Chen R, et al. Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer. Oncotarget. 2014;5(22):11091–11102. PubMed PMID: 25526029; PubMed Central PMCID: PMCPMC4294360.
  • Huang X, Yuan T, Liang M, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67(1):33–41. PubMed PMID: 25129854; PubMed Central PMCID: PMCPMC4252606.
  • Bhagirath D, Yang TL, Bucay N, et al. microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res . 2018;78(7):1833–1844. PubMed PMID: 29437039; PubMed Central PMCID: PMCPMC5890910.
  • Zhang HL, Yang LF, Zhu Y, et al. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate. 2011;71(3):326–331. PubMed PMID: 20842666.
  • Lin HM, Castillo L, Mahon KL, et al. Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer. Br J Cancer. 2014;110(10):2462–2471. PubMed PMID: 24714754; PubMed Central PMCID: PMCPMC4021524.
  • Endzelins E, Berger A, Melne V, et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer. 2017;17(1):730. PubMed PMID: 29121858; PubMed Central PMCID: PMCPMC5679326.
  • Koo KM, Mainwaring PN, Tomlins SA, et al. Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. PubMed PMID: 30962568 Nat Rev Urol. 2019;16(5):302–317. .
  • Feng YG, Liu J, Kang YM, et al. miR-19a acts as an oncogenic microRNA and is up-regulated in bladder cancer. J Exp Clin Canc Res. 2014;33. PubMed PMID: ISI:000340800900001. DOI:10.1186/s13046-014-0067-8.
  • Li G, Zhang Y, Mao J, et al. lncRNA TUC338 is a potential diagnostic biomarker for bladder cancer. J Cell Biochem. 2019;120(10):18014–18019. PubMed PMID: 31162712.
  • Luo H, Xu C, Le W, et al. lncRNA CASC11 promotes cancer cell proliferation in bladder cancer through miRNA-150. J Cell Biochem. 2019;120(8):13487–13493. PubMed PMID: 30916832.
  • Zheng R, Du M, Wang X, et al. Exosome-transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol Cancer. 2018;17(1):143. PubMed PMID: 30285771.
  • Wang Y, Xu Z, Wang X. miRNA-373 promotes urinary bladder cancer cell proliferation, migration and invasion through upregulating epidermal growth factor receptor. Exp Ther Med. 2019;17(2): 1190–1195. PubMed PMID: 30679992.
  • Xue M, Chen W, Xiang A, et al. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer. 2017;16. PubMed PMID: ISI:000408316500001. DOI:10.1186/S12943-017-0714-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.