183
Views
3
CrossRef citations to date
0
Altmetric
Review

The cellular prion protein and its derived fragments in human prion diseases and their role as potential biomarkers

, , , ORCID Icon, , , , & show all
Pages 1007-1018 | Received 13 Jul 2019, Accepted 10 Sep 2019, Published online: 26 Sep 2019

References

  • Soto C, Satani N. The intricate mechanisms of neurodegeneration in prion diseases. Trends Mol Med. 2011 Jan;17(1):14–24.
  • Appleby BS. Psychotropic medications and the treatment of human prion diseases. CNS Neurol Disord Drug Targets. 2009 Nov;8(5):353–362.
  • Prusiner SB. The prion diseases. Brain Pathol. 1998 Jul;8(3):499–513.
  • Aguzzi A, Heikenwalder M. Pathogenesis of prion diseases: current status and future outlook. Nat Rev Microbiol. 2006 Oct;4(10):765–775.
  • Wadsworth JD, Collinge J. Molecular pathology of human prion disease. Acta Neuropathol. 2011 Jan;121(1):69–77.
  • Gambetti P, Kong Q, Zou W, et al. Sporadic and familial CJD: classification and characterisation. Br Med Bull. 2003;66:213–239.
  • Pedersen JT, Heegaard NH. Analysis of protein aggregation in neurodegenerative disease. Anal Chem. 2013 May 7;85(9):4215–4227.
  • Kovac V, Curin Serbec V. Prion proteins without the glycophosphatidylinositol anchor: potential biomarkers in neurodegenerative diseases. Biomark Insights. 2018;13:1177271918756648.
  • Choi JK, Cali I, Surewicz K, et al. Amyloid fibrils from the N-terminal prion protein fragment are infectious. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13851–13856.
  • Flores-Rodriguez P, Ontiveros-Torres MA, Cardenas-Aguayo MC, et al. The relationship between truncation and phosphorylation at the C-terminus of tau protein in the paired helical filaments of Alzheimer’s disease. Front Neurosci. 2015;9:33.
  • van der Wateren IM, Knowles TPJ, Buell AK, et al. C-terminal truncation of alpha-synuclein promotes amyloid fibril amplification at physiological pH. Chem Sci. 2018 Jul 7;9(25):5506–5516.
  • Ozcelik S, Sprenger F, Skachokova Z, et al. Co-expression of truncated and full-length tau induces severe neurotoxicity. Mol Psychiatry. 2016 Dec;21(12):1790–1798.
  • Terada M, Suzuki G, Nonaka T, et al. The effect of truncation on prion-like properties of alpha-synuclein. J Biol Chem. 2018 Sep 7;293(36):13910–13920.
  • Fortelny N, Pavlidis P, Overall CM. The path of no return–truncated protein N-termini and current ignorance of their genesis. Proteomics. 2015 Jul;15(14):2547–2552.
  • Demir F, Niedermaier S, Kizhakkedathu JN, et al. Profiling of protein N-Termini and their modifications in complex samples. Methods Mol Biol. 2017;1574:35–50.
  • Bartha I, Rausell A, McLaren PJ, et al. The characteristics of heterozygous protein truncating variants in the human genome. PLoS Comput Biol. 2015 Dec;11(12):e1004647.
  • DeBoever C, Tanigawa Y, Lindholm ME, et al. Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study. Nat Commun. 2018 Apr 24;9(1):1612.
  • Rivas MA, Graham D, Sulem P, et al. A protein-truncating R179X variant in RNF186 confers protection against ulcerative colitis. Nat Commun. 2016 Aug 9;7:12342.
  • Abul-Husn NS, Cheng X, Li AH, et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med. 2018 Mar 22;378(12):1096–1106.
  • Jahn TR, Radford SE. Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys. 2008 Jan 1;469(1):100–117.
  • Chiti F, Dobson CM. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem. 2017 Jun;20(86):27–68.
  • Wang W, Nguyen LT, Burlak C, et al. Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein alpha-synuclein. Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9587–9592.
  • Dunys J, Valverde A, Are N- CF. C-terminally truncated Abeta species key pathological triggers in Alzheimer’s disease? J Biol Chem. 2018 Oct 5;293(40):15419–15428.
  • Villar-Pique A, Schmitz M, Candelise N, et al. Molecular and clinical aspects of protein aggregation assays in neurodegenerative diseases. Mol Neurobiol. 2018: Epub ahead of print
  • Kovac V, Zupancic B, Ilc G, et al. Truncated prion protein PrP226* - a structural view on its role in amyloid disease. Biochem Biophys Res Commun. 2017 Feb 26;484(1):45–50.
  • Tagliavini F, Prelli F, Porro M, et al. A soluble form of prion protein in human cerebrospinal fluid: implications for prion-related encephalopathies. Biochem Biophys Res Commun. 1992 May 15;184(3):1398–1404.
  • Wong BS, Green AJ, Li R, et al. Absence of protease-resistant prion protein in the cerebrospinal fluid of Creutzfeldt-Jakob disease. J Pathol. 2001 May;194(1):9–14.
  • Meyne F, Gloeckner SF, Ciesielczyk B, et al. Total prion protein levels in the cerebrospinal fluid are reduced in patients with various neurological disorders. J Alzheimers Dis. 2009;17(4):863–873.
  • Torres M, Cartier L, Matamala JM, et al. Altered Prion protein expression pattern in CSF as a biomarker for Creutzfeldt-Jakob disease. PLoS One. 2012;7(4):e36159.
  • Stahl N, Borchelt DR, Hsiao K, et al. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell. 1987 Oct 23;51(2):229–240.
  • Prado MA, Alves-Silva J, Magalhaes AC, et al. PrPC on the road: trafficking of the cellular prion protein. J Neurochem. 2004 Feb;88(4):769–781.
  • De Mario A, Peggion C, Massimino ML, et al. The prion protein regulates glutamate-mediated Ca(2+) entry and mitochondrial Ca(2+) accumulation in neurons. J Cell Sci. 2017 Aug 15;130(16):2736–2746.
  • Lauren J, Gimbel DA, Nygaard HB, et al. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature. 2009 Feb 26;457(7233):1128–1132.
  • Schmitz M, Hermann P, Oikonomou P, et al. Cytokine profiles and the role of cellular prion protein in patients with vascular dementia and vascular encephalopathy. Neurobiol Aging. 2015 Sep;36(9):2597–2606.
  • Castle AR, Gill AC. Physiological functions of the cellular prion protein. Front Mol Biosci. 2017;4:19.
  • Wulf MA, Senatore A, Aguzzi A. The biological function of the cellular prion protein: an update. BMC Biol. 2017 May 2;15(1):34.
  • Steele AD, Emsley JG, Ozdinler PH, et al. Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3416–3421.
  • Ramljak S, Schmitz M, Zafar S, et al. Cellular prion protein directly interacts with and enhances lactate dehydrogenase expression under hypoxic conditions. Exp Neurol. 2015;271:155–167.
  • Ferreira DG, Temido-Ferreira M, Vicente Miranda H, et al. Alpha-synuclein interacts with PrP(C) to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci. 2017 Nov;20(11):1569–1579.
  • Linsenmeier L, Mohammadi B, Wetzel S, et al. Structural and mechanistic aspects influencing the ADAM10-mediated shedding of the prion protein. Mol Neurodegener. 2018;13(1):18.
  • Linsenmeier L, Altmeppen HC, Wetzel S, et al. Diverse functions of the prion protein - does proteolytic processing hold the key? Biochim Biophys Acta Mol Cell Res. 2017 Nov;1864(11Pt B):2128–2137.
  • Altmeppen HC, Prox J, Krasemann S, et al. The sheddase ADAM10 is a potent modulator of prion disease. Elife. 2015 Feb 5;(4):1–50.
  • Beringue V, Mallinson G, Kaisar M, et al. Regional heterogeneity of cellular prion protein isoforms in the mouse brain. Brain. 2003 Sep;126(Pt 9):2065–2073.
  • Gasperini L, Legname G. Prion protein and aging. Front Cell Dev Biol. 2014;2:44
  • Zanusso G, Farinazzo A, Prelli F, et al. Identification of distinct N-terminal truncated forms of prion protein in different Creutzfeldt-Jakob disease subtypes. J Biol Chem. 2004 Sep 10;279(37):38936–38942.
  • Schmitz M, Lullmann K, Zafar S, et al. Association of prion protein genotype and scrapie prion protein type with cellular prion protein charge isoform profiles in cerebrospinal fluid of humans with sporadic or familial prion diseases. Neurobiol Aging. 2014 May;35(5):1177–1188.
  • Pan T, Li R, Wong BS, et al. Heterogeneity of normal prion protein in two- dimensional immunoblot: presence of various glycosylated and truncated forms. J Neurochem. 2002 Jun;81(5):1092–1101.
  • Pan T, Wong BS, Liu T, et al. Cell-surface prion protein interacts with glycosaminoglycans. Biochem J. 2002 Nov 15;368(Pt 1):81–90.
  • Pan T, Colucci M, Wong BS, et al. Novel differences between two human prion strains revealed by two-dimensional gel electrophoresis. J Biol Chem. 2001 Oct 5;276(40):37284–37288.
  • Laffont-Proust I, Hassig R, Haik S, et al. Truncated PrP(c) in mammalian brain: interspecies variation and location in membrane rafts. Biol Chem. 2006 Mar;387(3):297–300.
  • Jimenez-Huete A, Lievens PM, Vidal R, et al. Endogenous proteolytic cleavage of normal and disease-associated isoforms of the human prion protein in neural and non-neural tissues. Am J Pathol. 1998 Nov;153(5):1561–1572.
  • Haigh CL, Collins SJ. Endoproteolytic cleavage as a molecular switch regulating and diversifying prion protein function. Neural Regen Res. 2016 Feb;11(2):238–239.
  • Caughey B, Race RE, Ernst D, et al. Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells. J Virol. 1989 Jan;63(1):175–181.
  • Shyng SL, Huber MT, Harris DA. A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J Biol Chem. 1993 Jul 25;268(21):15922–15928.
  • Chen SG, Teplow DB, Parchi P, et al. Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem. 1995 Aug 11;270(32):19173–19180.
  • Lewis V, Johanssen VA, Crouch PJ, et al. Prion protein “gamma-cleavage”: characterizing a novel endoproteolytic processing event. Cell Mol Life Sci. 2016 Feb;73(3):667–683.
  • Lewis V, Hill AF, Haigh CL, et al. Increased proportions of C1 truncated prion protein protect against cellular M1000 prion infection. J Neuropathol Exp Neurol. 2009 Oct;68(10):1125–1135.
  • Altmeppen HC, Puig B, Dohler F, et al. Proteolytic processing of the prion protein in health and disease. Am J Neurodegener Dis. 2012;1(1):15–31.
  • McDonald AJ, Millhauser GL. PrP overdrive: does inhibition of alpha-cleavage contribute to PrP(C) toxicity and prion disease? Prion. 2014 Mar-Apr;8(2):183–191.
  • Mange A, Beranger F, Peoc’h K, et al. Alpha- and beta- cleavages of the amino-terminus of the cellular prion protein. Biol Cell. 2004 Mar;96(2):125–132.
  • Westergard L, Turnbaugh JA, Harris DA. A naturally occurring C-terminal fragment of the prion protein (PrP) delays disease and acts as a dominant-negative inhibitor of PrPSc formation. J Biol Chem. 2011 Dec 23;286(51):44234–44242.
  • Altmeppen HC, Prox J, Puig B, et al. Roles of endoproteolytic alpha-cleavage and shedding of the prion protein in neurodegeneration. Febs J. 2013 Sep;280(18):4338–4347.
  • Sanchez-Lopez C, Fernandez CO, Quintanar L. Neuroprotective alpha-cleavage of the human prion protein significantly impacts Cu(ii) coordination at its His111 site. Dalton Trans. 2018 Jul 17;47(28):9274–9282.
  • Liang J, Kong Q. Alpha-Cleavage of cellular prion protein. Prion. 2012 Nov-Dec;6(5):453–460.
  • Caughey B, Raymond GJ, Ernst D, et al. N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol. 1991 Dec;65(12):6597–6603.
  • Watt NT, Taylor DR, Gillott A, et al. Reactive oxygen species-mediated beta-cleavage of the prion protein in the cellular response to oxidative stress. J Biol Chem. 2005 Oct 28;280(43):35914–35921.
  • Perini F, Vidal R, Ghetti B, et al. PrP27-30 is a normal soluble prion protein fragment released by human platelets. Biochem Biophys Res Commun. 1996 Jun 25;223(3):572–577.
  • MacGregor I, Hope J, Barnard G, et al. Application of a time-resolved fluoroimmunoassay for the analysis of normal prion protein in human blood and its components. Vox Sang. 1999;77(2):88–96.
  • Glatzel M, Linsenmeier L, Dohler F, et al. Shedding light on prion disease. Prion. 2015;9(4):244–256.
  • Altmeppen HC, Prox J, Puig B, et al. Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Mol Neurodegener. 2011 May 27;6:36.
  • Taylor DR, Parkin ET, Cocklin SL, et al. Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein. J Biol Chem. 2009 Aug 21;284(34):22590–22600.
  • Tucher J, Linke D, Koudelka T, et al. LC-MS based cleavage site profiling of the proteases ADAM10 and ADAM17 using proteome-derived peptide libraries. J Proteome Res. 2014 Apr 4;13(4):2205–2214.
  • Schmitz M, Schlomm M, Hasan B, et al. Codon 129 polymorphism and the E200K mutation do not affect the cellular prion protein isoform composition in the cerebrospinal fluid from patients with Creutzfeldt-Jakob disease. Eur J Neurosci. 2010 Jun;31(11):2024–2031.
  • Castagna A, Campostrini N, Farinazzo A, et al. Comparative two-dimensional mapping of prion protein isoforms in human cerebrospinal fluid and central nervous system. Electrophoresis. 2002 Jan;23(2):339–346.
  • Schulz-Schaeffer WJ, Tschoke S, Kranefuss N, et al. The paraffin-embedded tissue blot detects PrP(Sc) early in the incubation time in prion diseases. Am J Pathol. 2000 Jan;156(1):51–56.
  • Büeler H, Raeber A, Sailer A, et al. High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol Med. 1994 Nov;1(1):19–30.
  • Moreno JA, Radford H, Peretti D, et al. Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration. Nature. 2012 May 6;485(7399):507–511.
  • Safar JG, DeArmond SJ, Kociuba K, et al. Prion clearance in bigenic mice. J Gen Virol. 2005 Oct;86(Pt 10):2913–2923.
  • Mays CE, Kim C, Haldiman T, et al. Prion disease tempo determined by host-dependent substrate reduction. J Clin Invest. 2014 Feb;124(2):847–858.
  • Jansen C, Parchi P, Capellari S, et al. Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP. Acta Neuropathol. 2010 Feb;119(2):189–197.
  • Dvorakova E, Vranac T, Janouskova O, et al. Detection of the GPI-anchorless prion protein fragment PrP226* in human brain. BMC Neurol. 2013 Sep 25;13:126.
  • Lukan A, Cernilec M, Vranac T, et al. Regional distribution of anchorless prion protein, PrP226*, in the human brain. Prion. 2014 Mar-Apr;8(2):203–209.
  • Curin Serbec V, Bresjanac M, Popovic M, et al. Monoclonal antibody against a peptide of human prion protein discriminates between Creutzfeldt-Jacob’s disease-affected and normal brain tissue. J Biol Chem. 2004 Jan 30;279(5):3694–3698.
  • Minikel EV, Kuhn E, Cocco A, et al. Domain-specific quantification of prion protein in cerebrospinal fluid by targeted mass spectrometry. bioRxiv. 2019 Apr 16;116(16):7793–7798.
  • Geschwind MD. Prion Diseases. Continuum (Minneap Minn). 2015 Dec;21(6 Neuroinfectious Disease):1612–1638.
  • Imran M, Mahmood S. An overview of human prion diseases. Virol J. 2011 Dec;24(8):559.
  • Sikorska B, Liberski PP. Human prion diseases: from Kuru to variant Creutzfeldt-Jakob disease. Subcell Biochem. 2012;65:457–496.
  • Zerr I, Kallenberg K, Summers DM, et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain. 2009 Oct;132(Pt 10):2659–2668.
  • Atarashi R, Satoh K, Sano K, et al. Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med. 2011 Feb;17(2):175–178.
  • McGuire LI, Peden AH, Orru CD, et al. Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease. Ann Neurol. 2012 Aug;72(2):278–285.
  • Cramm M, Schmitz M, Karch A, et al. Stability and reproducibility underscore utility of RT-QuIC for Diagnosis of Creutzfeldt-Jakob Disease. Mol Neurobiol. 2016 Apr;53(3):1896–1904.
  • Schmitz M, Cramm M, Llorens F, et al. The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases. Nat Protoc. 2016 Nov;11(11):2233–2242.
  • Schmitz M, Candelise N, Llorens F, et al. Amplification and detection of minuscule amounts of misfolded prion protein by using the real-time quaking-induced conversion. Methods Mol Biol. 2018;1779:257–263.
  • Llorens F, Kruse N, Karch A, et al. Validation of alpha-synuclein as a CSF biomarker for Sporadic Creutzfeldt-Jakob disease. Mol Neurobiol. 2018 Mar;55(3):2249–2257.
  • Sanchez-Juan P, Green A, Ladogana A, et al. CSF tests in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology. 2006 Aug 22;67(4):637–643.
  • Llorens F, Schmitz M, Karch A, et al. Comparative analysis of cerebrospinal fluid biomarkers in the differential diagnosis of neurodegenerative dementia. Alzheimers Dement. 2016 May;12(5):577–589.
  • Collins SJ, Sanchez-Juan P, Masters CL, et al. Determinants of diagnostic investigation sensitivities across the clinical spectrum of sporadic Creutzfeldt-Jakob disease. Brain. 2006 Sep;129(Pt 9):2278–2287.
  • Llorens F, Schmitz M, Ferrer I, et al. CSF biomarkers in neurodegenerative and vascular dementias. Prog Neurobiol. 2016 Mar-May;36–53:138–140.
  • Castellani RJ, Colucci M, Xie Z, et al. Sensitivity of 14-3-3 protein test varies in subtypes of sporadic Creutzfeldt-Jakob disease. Neurology. 2004 Aug 10;63(3):436–442.
  • Llorens F, Ansoleaga B, Garcia-Esparcia P, et al. PrP mRNA and protein expression in brain and PrP(c) in CSF in Creutzfeldt-Jakob disease MM1 and VV2. Prion. 2013 Sep-Oct;7(5):383–393.
  • Llorens F, Lopez-Gonzalez I, Thune K, et al. Subtype and regional-specific neuroinflammation in sporadic Creutzfeldt-Jakob disease. Front Aging Neurosci. 2014;6:198.
  • Abu Rumeileh S, Lattanzio F, Stanzani Maserati M, et al. Diagnostic accuracy of a combined analysis of cerebrospinal fluid t-PrP, t-tau, p-tau, and Abeta42 in the differential Diagnosis of Creutzfeldt-Jakob Disease from Alzheimer’s Disease with emphasis on atypical disease variants. J Alzheimers Dis. 2017;55(4):1471–1480.
  • Dorey A, Tholance Y, Vighetto A, et al. Association of cerebrospinal fluid prion protein levels and the distinction between Alzheimer disease and Creutzfeldt-Jakob disease. JAMA Neurol. 2015 Mar;72(3):267–275.
  • Villar-Pique A, Schmitz M, Lachmann I, et al. Cerebrospinal fluid total prion protein in the spectrum of prion diseases. Mol Neurobiol. 2019 Apr;56(4):2811–2821.
  • Schmitz M, Cramm M, Llorens F, et al. Application of an in vitro-amplification assay as a novel pre-screening test for compounds inhibiting the aggregation of prion protein scrapie. Sci Rep. 2016 Jul;07(6):28711.
  • Llorens F, Schmitz M, Zerr I. Progress in CSF biomarker discovery in sCJD. Oncotarget. 2017 Jan 24;8(4):5666–5667.
  • Gaetani L, Blennow K, Calabresi P, et al. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry. 2019 Aug;90(8):870–881.
  • Baldacci F, Lista S, Palermo G, et al. The neuroinflammatory biomarker YKL-40 for neurodegenerative diseases: advances in development. Expert Rev Proteomics. 2019 Jul;16(7):593–600.
  • Vallabh SM, Nobuhara CK, Llorens F, et al. Prion protein quantification in human cerebrospinal fluid as a tool for prion disease drug development. Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7793–7798.
  • Ghetti B, Piccardo P, Spillantini MG, et al. Vascular variant of prion protein cerebral amyloidosis with tau-positive neurofibrillary tangles: the phenotype of the stop codon 145 mutation in PRNP. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):744–748.
  • Revesz T, Holton JL, Lashley T, et al. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol. 2009 Jul;118(1):115–130.
  • Notari S, Strammiello R, Capellari S, et al. Characterization of truncated forms of abnormal prion protein in Creutzfeldt-Jakob disease. J Biol Chem. 2008 Nov 07;283(45):30557–30565.
  • Zou WQ, Capellari S, Parchi P, et al. Identification of novel proteinase K-resistant C-terminal fragments of PrP in Creutzfeldt-Jakob disease. J Biol Chem. 2003 Oct 17;278(42):40429–40436.
  • Honda H, Matsuzono K, Fushimi S, et al. C-Terminal-deleted prion protein fragment is a major accumulated component of systemic PrP deposits in hereditary prion disease with a 2-Bp (CT) deletion in PRNP Codon 178. J Neuropathol Exp Neurol. 2016Sep;15(75):1008–1019.
  • Kovac V, Hafner-Bratkovic I, Curin Serbec V. Anchorless forms of prion protein - impact of truncation on structure destabilization and prion protein conversion. Biochem Biophys Res Commun. 2016 Dec 2;481(1–2):1–6.
  • Parchi P, Chen SG, Brown P, et al. Different patterns of truncated prion protein fragments correlate with distinct phenotypes in P102L Gerstmann-Straussler-Scheinker disease. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8322–8327.
  • Tagliavini F, Prelli F, Ghiso J, et al. Amyloid protein of Gerstmann-Straussler-Scheinker disease (Indiana kindred) is an 11 kd fragment of prion protein with an N-terminal glycine at codon 58. Embo J. 1991 Mar;10(3):513–519.
  • Meyer RK, McKinley MP, Bowman KA, et al. Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2310–2314.
  • Parchi P, Zou W, Wang W, et al. Genetic influence on the structural variations of the abnormal prion protein. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10168–10172.
  • Parchi P, Capellari S, Chen SG, et al. Typing prion isoforms. Nature. 1997 Mar 20;386(6622):232–234.
  • Satoh K, Muramoto T, Tanaka T, et al. Association of an 11–12 kDa protease-resistant prion protein fragment with subtypes of dura graft-associated Creutzfeldt-Jakob disease and other prion diseases. J Gen Virol. 2003 Oct;84(Pt 10):2885–2893.
  • Kobayashi A, Parchi P, Yamada M, et al. Transmission properties of atypical Creutzfeldt-Jakob disease: a clue to disease etiology? J Virol. 2015 Apr;89(7):3939–3946.
  • Singh N, Gu Y, Bose S, et al. Processing and mis-processing of the prion protein: insights into the pathogenesis of familial prion disorders. In: D. Brown, editors. Neurodegeneration and Prion Disease. New York: Life Sciences, Springer; 2005. p. 299–318.
  • Zhu JB, Tan CC, Tan L, et al. State of play in Alzheimer’s disease genetics. J Alzheimers Dis. 2017;58(3):631–659.
  • Agbas A. Trends of protein aggregation in neurodegenerative diseases. In: T. Heinbockel and A. B. Csoka, editors. Neurochemical Basis of Brain Function and Dysfunction. Kansas City: Department of Basic Sciences, Kansas City University of Medicine and Biosciences; 2018. p. 1–19. .
  • Brower CS, Piatkov KI, Varshavsky A. Neurodegeneration-associated protein fragments as short-lived substrates of the N-end rule pathway. Mol Cell. 2013 Apr 25;50(2):161–171.
  • Skrabana R, Kovacech B, Filipcik P, et al. Neuronal expression of truncated tau efficiently promotes neurodegeneration in animal models: pitfalls of toxic oligomer analysis. J Alzheimers Dis. 2017;58(4):1017–1025.
  • Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006 Oct 6;314(5796):130–133.
  • Polyakova O, Dear D, Stern I, et al. Proteolysis of prion protein by cathepsin S generates a soluble beta-structured intermediate oligomeric form, with potential implications for neurotoxic mechanisms. Eur Biophys J. 2009 Feb;38(2):209–218.
  • Yadavalli R, Guttmann RP, Seward T, et al. Calpain-dependent endoproteolytic cleavage of PrPSc modulates scrapie prion propagation. J Biol Chem. 2004 May 21;279(21):21948–21956.
  • Wang X, Wang F, Sy MS, et al. Calpain and other cytosolic proteases can contribute to the degradation of retro-translocated prion protein in the cytosol. J Biol Chem. 2005 Jan 7;280(1):317–325.
  • Dimcheff DE, Portis JL, Caughey B. Prion proteins meet protein quality control. Trends Cell Biol. 2003 Jul;13(7):337–340.
  • Georgieva D, Koker M, Redecke L, et al. Oligomerization of the proteolytic products is an intrinsic property of prion proteins. Biochem Biophys Res Commun. 2004 Oct 29;323(4):1278–1286.
  • Llorens F, Thune K, Sikorska B, et al. Altered Ca(2+) homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease. Acta Neuropathol Commun. 2017 Apr 27;5(1):35.
  • Xiang W, Windl O, Wunsch G, et al. Identification of differentially expressed genes in scrapie-infected mouse brains by using global gene expression technology. J Virol. 2004 Oct;78(20):11051–11060.
  • Turk B, Turk D, Turk V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta. 2000 Mar 7;1477(1–2):98–111.
  • Capellari S, Baiardi S, Rinaldi R, et al. Two novel PRNP truncating mutations broaden the spectrum of prion amyloidosis. Ann Clin Transl Neurol. 2018 Jun;5(6):777–783.
  • Gerstmann J, Sträussler E, Scheinker I. Über eine eigenartige hereditär-familiäre Erkrankung des Zentralnervensystems. Zugleich ein Beitrag zur Frage des vorzeitigen lokalen Alterns. 1936;154:736–762. Z ges Neurol Psychiat.
  • Schmitz M, Dittmar K, Llorens F, et al. hereditary human prion diseases: an update. Mol Neurobiol. 2017 Aug;54(6):4138–4149.
  • Tagliavini F, Lievens PM, Tranchant C, et al. A 7-kDa prion protein (PrP) fragment, an integral component of the PrP region required for infectivity, is the major amyloid protein in Gerstmann-Straussler-Scheinker disease A117V. J Biol Chem. 2001 Feb 23;276(8):6009–6015.
  • Bugiani O, Giaccone G, Piccardo P, et al. Neuropathology of Gerstmann-Straussler-Scheinker disease. Microsc Res Tech. 2000 Jul 1;50(1):10–15.
  • Cracco L, Xiao X, Nemani SK, et al. Gerstmann-Straussler-Scheinker disease revisited: accumulation of covalently-linked multimers of internal prion protein fragments. Acta Neuropathol Commun. 2019 May 29;7(1):1.
  • Kovacs GG, Budka H. Molecular pathology of human prion diseases. Int J Mol Sci. 2009 Mar;10(3):976–999.
  • Llorens F, Barrio T, Correia A, et al. Cerebrospinal fluid prion disease biomarkers in pre-clinical and clinical naturally occurring scrapie. Mol Neurobiol. 2018 Nov;55(11):8586–8591.
  • Watts JC, Prusiner SB. Experimental models of inherited PrP prion diseases. Cold Spring Harb Perspect Med. 2017 Nov 1;7(11).
  • Mercer RCC, Daude N, Dorosh L, et al. A novel Gerstmann-Straussler-Scheinker disease mutation defines a precursor for amyloidogenic 8 kDa PrP fragments and reveals N-terminal structural changes shared by other GSS alleles. PLoS Pathog. 2018 Jan;14(1):e1006826.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.