146
Views
4
CrossRef citations to date
0
Altmetric
Review

Detection, prediction, and prognosis: blood circulating microRNA as novel molecular markers of head and neck cancer patients

ORCID Icon, & ORCID Icon
Pages 31-39 | Received 16 Aug 2019, Accepted 26 Nov 2019, Published online: 03 Dec 2019

References

  • World Health Organization report. [cited 2019 Aug 10]. Available from: http://www.who.int/selection_medicines/committees/expert/20/applications/HeadNeck.pdf
  • Vigneswaran N, Williams M. Epidemiological trends in head and neck cancer and aid in diagnosis. Oral Maxillofac Surg Clin North. 2014;26(2):123–141.
  • Argiris A, Karamouzis MV, Raben D, et al. Head and neck cancer. Lancet. 2008;371:1695–1709.
  • Marur S, D’Souza G, Westra W, et al. HPV-associated head and neck cancer:a virus-related cancer epidemic - a review of epidemiology, biology, virus detection and issues in management. Lancet Oncol. 2010;11(8):781–789.
  • Gillison ML, Chaturvedi AK, Anderson WF. Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. JCO. 2015;33:3235–3242.
  • Jethwa AR, Khariwala SS. Tobacco-related carcinogenesis in head and neck cancer. Cancer Metastasis Rev. 2017;36(3):411–423.
  • Kobayashi K, Hisamatsu K, Suzui N, et al. A review of HPV-related head and neck cancer. J Clin Med. 2018;7(9):241.
  • Luryi AL, Yarbrough WG, Niccolai LM, et al. Public awareness of head and neck cancers a cross-sectional survey. JAMA Otolaryngol Head Neck Surg. 2014;140(7):639–646.
  • Canning M, Guo G, Yu M, et al. Heterogeneity of the head and neck squamous cell carcinoma immune landscape and its impact on immunotherapy. Front Cell Dev Biol. 2019;7:52.
  • Geißler C, Hambek M, Leinung M, et al. The challenge of tumor heterogeneity–different phenotypes of cancer stem cells in a head and neck squamous cell carcinoma xenograft mouse model. In Vivo. 2012;26(4):593–598.
  • Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11(1):9–22.
  • Jager-Wittenaar H, Dijkstra PU, Dijkstra G, et al. High prevalence of cachexia in newly diagnosed head and neck cancer patients: an exploratory study. Nutrition. 2017;35:114–118.
  • Kawada T, Takahashi H, Sakakura K, et al. Circulating tumor cells in patients with head and neck squamous cell carcinoma: feasibility of detection and quantitation. Head Neck. 2017;39:2180–2186.
  • Hristozova T, Konschak R, Stromberger C, et al. The presence of circulating tumor cells (CTCs) correlates with lymph node metastasis in nonresectable squamous cell carcinoma of the head and neck region. Ann Oncol. 2011;22:1878–1885.
  • Kulasinghe A, Perry C, Jovanovic L, et al. Circulating tumour cells in metastatic head and neck cancers. Int J Cancer. 2015;136(11):2515–2523.
  • Wang Y, Springer S, Mulvey CL, et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med. 2015;7(293):293ra104.
  • Mydlarz WK, Hennessey PT, Wang H, et al. Serum biomarkers for detection of head and neck squamous cell carcinoma. Head Neck. 2016;38:9–14.
  • Schröck A, Leisse A, de Vos L, et al. Free-circulating methylated DNA in blood for diagnosis, staging, prognosis, and monitoring of head and neck squamous cell carcinoma patients: an observational prospective cohort study. Clin Chem. 2017;63(7):1288–1296.
  • Molnár B, Tóth K, Barták BK, et al. Plasma methylated septin 9: a colorectal cancer screening marker. Expert Rev Mol Diagn. 2015;15(2):171–184.
  • Liang K, Yang Y, Zha D, et al. Overexpression of lncRNAsnaR is correlated with progression and predicts poor survival of laryngeal squamous cell carcinoma. J Cell Biochem. 2019;120:8492–8498.
  • Sun S, Gong C, Yuan K. LncRNA UCA1 promotes cell proliferation, invasion and migration of laryngeal squamous cell carcinoma cells by activating Wnt/-catenin signaling pathway. Exp Ther Med. 2019;17:1182–1189.
  • Sun S, Li B, Wang Y, et al. Clinical significance of the decreased expression of hsa_circ_001242 in oral squamous cell carcinoma. Dis Markers. 2018;8:6514795.
  • Tan S, Gou Q, Pu W, et al. Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res. 2018;28(6):693–695.
  • Peng Y, Croce CM. The role of microRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.
  • Palmirotta R, Lovero D, Cafforio P, et al. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol. 2018;10:1758835918794630.
  • Zeljic K, Jovanovic I, Jovanovic J, et al. MicroRNA meta-signature of oral cancer: evidence from a meta-analysis. Ups J Med Sci. 2018;123(1):43–49.
  • Lubov J, Maschietto M, Ibrahim I, et al. Meta-analysis of microRNAs expression in head and neck cancer: uncovering association with outcome and mechanisms. Oncotarget. 2017;8(33):55511–55524.
  • Sethi N, Wright A, Wood H, et al. MicroRNAs and head and neck cancer: reviewing the first decade of research. Eur J Cancer. 2014;50(15):2619–2635.
  • Wang H, Peng R, Wang J, et al. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenet. 2018;10:59.
  • Chen Z, Yu T, Cabay RJ, et al. miR-486-3p, miR-139-5p, and miR-21 as biomarkers for the detection of oral tongue squamous cell carcinoma. Biomark Cancer. 2017;9:1–8.
  • Erkul L, Yilmaz I, Gungor A, et al. MicroRNA‐21 in laryngeal squamous cell carcinoma: diagnostic and prognostic features. Laryngoscope. 2017;127(2):62–66.
  • Gombos K, Horvath R, Szele E, et al. MiRNA expression profiles of oral squamous cell carcinomas. Anticancer Res. 2013;33(4):1511–1517.
  • Wang JI, Wang X, Yang D, et al. The expression of microRNA-155 in plasma and tissue is matched in human laryngeal squamous cell carcinoma. Yonsei Med J. 2016;57(2):298–305.
  • Schneider A, Victoria B, Lopez YN, et al. Tissue and serum microRNA profile of oral squamous cell carcinoma patients. Sci Rep. 2018;8:675.
  • Hsu CM, Lin PM, Wang YM, et al. Circulating miRNA is a novel marker for head and neck squamous cell carcinoma. Tumor Biol. 2012;33:1933–1942.
  • Steuer CE, El-Deiry M, Parks JR, et al. An update on larynx cancer. CA Cancer J Clin. 2017;67:31–50.
  • Zhang E, Feng X, Feng Y. MicroRNA-21-3p serves as a novel biomarker for diagnosis of laryngeal cancer. Int J Clin Exp Pathol. 2016;9(11):12136–12141.
  • Zhou B, Dai LL, Xu P, et al. MicroRNA-27a acts as a novel biomarker in the diagnosis of patients with laryngeal squamous cell carcinoma. Int J Clin Exp Pathol. 2016;9(2):2049–2053.
  • Wang LL, Li HX, Yang YY, et al. MiR-31 is a potential biomarker for diagnosis of head and neck squamous cell carcinoma. Int J Clin Exp Pathol. 2018;11(9):4339–4345.
  • Grzelczyk WL, Szemraj J, Kwiatkowska S, et al. Serum expression of selected miRNAs in patients with laryngeal squamous cell carcinoma (LSCC). Diagn Pathol. 2019;14:49.
  • Chang YA, Weng SL, Yang SF, et al. A three–microRNA Signature as a potential biomarker for the early detection of oral cancer. Int J Mol Sci. 2018;19:758.
  • Liu X, Luo HN, Tian WD, et al. Diagnostic and prognostic value of plasma microRNA deregulation in nasopharyngeal carcinoma. Cancer Biol Ther. 2013;14(12):1133–1142.
  • Wen W, Mai SJ, Lin HX, et al. Identification of two microRNA signatures in whole blood as novel biomarkers for diagnosis of nasopharyngeal carcinoma. J Transl Med. 2019;17:186.
  • Zeng X, Xiang J, Wu M, et al. Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. PLoS One. 2012;7(10):e46367.
  • Ries J, Vairaktaris E, Agaimy A, et al. miR-186, miR-3651 and miR-494: potential biomarkers for oral squamous cell carcinoma extracted from whole blood. Oncol Rep. 2014;31(3):1429–1436.
  • Zheng XH, Cui C, Ruan HL, et al. Plasma microRNA profiling in nasopharyngeal carcinoma patients reveals miR-548q and miR-483-5p as potential biomarkers. Chin J Cancer. 2014;33(7):330–338.
  • Lu Z, He Q, Liang J, et al. miR-31-5p is a potential circulating biomarker and therapeutic target for oral cancer. Mol Ther Nucleid Acids. 2019;16:471–480.
  • Liu CJ, Kao SY, Tu HF, et al. Increase of microRNAmiR-31 level in plasma could be apotential marker of oral cancer. Oral Dis. 2010;16:360–364.
  • Lu YC, Chang J, Huang YC, et al. Combined determination of circulating miR-196a and miR-196b levelsproduces high sensitivity and specificity for early detection of oral cancer. Clin Biochem. 2015;48(3):115–121.
  • Khawar MB, Fatima N, Hassan M, et al. Head and neck cancer: epidemiology and role of microRNAs. In: Diagnosis and management of head and neck cancer. Zuhre Akarslan, IntechOpen. 2017:5–35. Doi: 10.5772/intechopen.69418.
  • Ishinaga H, He F, Hou B, et al. A longitudinal study on circulating miR-21 as a therapeutic effect marker in head and neck squamous cell carcinoma. Carcinogenesis. 2019. DOI:10.1093/carcin/bgz075.
  • Summerer I, Unger K, Braselmann H, et al. Circulating microRNAs as prognostic therapy biomarkers in head and neck cancer patients. Br J Cancer. 2015;113(1):76–82.
  • Summerer I, Niyazi M, Unger K, et al. Changes in circulating microRNAs after radiochemotherapy in head and neck cancer patients. Radiat Oncol. 2013;8:296.
  • Xu X, Lu J, Wang F, et al. Dynamic changes in plasma microRNAs have potential predictive values in monitoring recurrence and metastasis of nasopharyngeal carcinoma. Biomed Res Int. 2018;7329195.
  • Hou B, Ishinaga H, Midorikawa K, et al. Circulating microRNAs as novel prognosis biomarkers for head and neck squamous cell carcinoma. Cancer Biol Ther. 2015;16:1042–1046.
  • Higgins KA, Saba NF, Shin DM, et al. Circulating Pre-treatment miRNAs as potential biomarkers to predict radiation toxicity. Int J Radiat Oncol Biol Phys. 2017;99(2):E596.
  • Nakashima H, Yoshida R, Hirosue A, et al. Circulating miRNA-1290 as a potential biomarker for response to chemoradiotherapy and prognosis of patients with advanced oral squamous cell carcinoma: A single-center retrospective study. Tumor Biol. 2019. DOI:10.1177/1010428319826853.
  • He Y, Zhang L, Cheng G, et al. Upregulation of circulating miR-21 is associated with poor prognosis of nasopharyngeal carcinoma. Int J Clin Exp Pathol. 2017;10(7):7362–7368.
  • Chen L, Wen Y, Zhang J, et al. Prediction of radiotherapy response with a 5‐microRNA signature‐based nomogram in head and neck squamous cell carcinoma. Cancer Med. 2018;7(3):726–735.
  • Ahmad P, Sana J, Slavik M, et al. MicroRNAs involvement in radioresistance of head and neck cancer. Dis Markers. 2017;2017:8245345.
  • Chen X, Xu Y, Liao X, et al. Plasma miRNAs in predicting radiosensitivity in non-small cell lung cancer. Tumour Biol. 2016;37:11927–11936.
  • Bi N, Schipper MJ, Stanton P, et al. Serum miRNA signature to identify a patient’s resistance to high-dose radiation therapy for unresectable non-small cell lung cancer. J Clin Oncol. 2013;31(suppl):7580.
  • Kumarasamy C, Madhav MR, Sabarimurugan S, et al. Prognostic value of miRNAs in head and neck cancers: a comprehensive systematic and meta-analysis. Cells. 2019;8(8):772.
  • Kumarasamy C, Devi A, Jayaraj R. Prognostic value of microRNAs in head and neck cancers: a systematic review and meta-analysis protocol. Syst Rev. 2018;7:150.
  • Sun L, Liu L, Fu H, et al. Association of decreased expression of serum mir-9 with poor prognosis of oral squamous cell carcinoma patients. Med Sci Monit. 2016;22:289–294.
  • Shi J, Bao X, Liu Z, et al. Serum miR-626 and miR-5100 are promising prognosis predictors for oral squamous cell carcinoma. Theranostics. 2019;9(4):920–931.
  • Guo L, Cai X, Hu W, et al. Expression and clinical significance of miRNA-145 and miRNA-218 in laryngeal cancer. Oncol Lett. 2019;18:764–770.
  • Xu H, Yang Y, Zhao H, et al. Serum miR-483-5p: a novel diagnostic and prognostic biomarker for patients with oral squamous cell carcinoma. Tumor Biol. 2016;37:447–453.
  • Liu CJ, Lin JS, Cheng HW, et al. Plasma miR-187* is a potential biomarker for oral carcinoma. Clin Oral Invest. 2017;21:1131–1138.
  • Rapado-Gonzales O, Majem B, Muinelo-Romay L, et al. Human salivary microRNAs in cancer. J Cancer. 2018;9(4):638–649.
  • Salazar C, Nagadia R, Pandit P, et al. A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell Oncol. 2014;37(5):331–338.
  • Momen-Heravi F, Trachtenberg AJ, Kuo WP, et al. Genomewide study of salivary microRNAs for detection of oral cancer. J Dent Res. 2014;93(Suppl 7):S86–S93.
  • Zahran F, Ghalwash D, Shaker O, et al. Salivary microRNAs in oral cancer. Oral Dis. 2015;21(6):739–747.
  • Poel D, Buffart TE, Oosterling-Jansen J, et al. Evaluation of several methodological challenges in circulating miRNA qPCR studies in patients with head and neck cancer. Exp Mol Med. 2018;50:e454.
  • Moody L, He H, Pan YX, et al. Methods and novel technology for microRNA quantification in colorectal cancer screening. Clin Epigenetics. 2017;9:119.
  • Feng YH, Tsao CJ. Emerging role of microRNA-21 in cancer (review). Biomed Rep. 2016;5(4):395–402.
  • Yu T, Ma P, Wu D, et al. Functions and mechanisms of microRNA-31 in human cancers. Biomed Pharmacother. 2018;108:1162–1169.
  • Peng Q, Zhang X, Min M, et al. The clinical role of microRNA-21 as a promising biomarker in the diagnosis and prognosis of colorectal cancer: a systematic review and meta-analysis. Oncotarget. 2017;8(27):44893–44909.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.