1,051
Views
13
CrossRef citations to date
0
Altmetric
Review

Liquid biopsy in head and neck squamous cell carcinoma: circulating tumor cells, circulating tumor DNA, and exosomes

, , , , , , & show all
Pages 1213-1227 | Received 27 Aug 2020, Accepted 23 Nov 2020, Published online: 30 Dec 2020

References

  • Chan JYK, Zhen G, Agrawal N. The role of tumor DNA as a diagnostic tool for head and neck squamous cell carcinoma. Semin Cancer Biol. 2019 Apr;55:1–7. PubMed PMID: 30082187; eng.
  • Conway DI, Purkayastha M, Chestnutt IG. The changing epidemiology of oral cancer: definitions, trends, and risk factors. Br Dent J. 2018;225(9):867–873. PubMed PMID: 30412558; eng
  • D’Souza G, McNeel TS, Fakhry C. Understanding personal risk of oropharyngeal cancer: risk-groups for oncogenic oral HPV infection and oropharyngeal cancer. Ann Oncol. 2017;28(12):3065–3069. PubMed PMID: 29059337; PubMed Central PMCID: PMCPMC5834136. eng
  • Moon DH, Moon SH, Wang K, et al. Incidence of, and risk factors for, mandibular osteoradionecrosis in patients with oral cavity and oropharynx cancers. Oral Oncol. 2017 Sep;72:98–103. PubMed PMID: 28797468; eng.
  • Economopoulou P, de Bree R, Kotsantis I, et al. Diagnostic tumor markers in head and neck squamous cell carcinoma (HNSCC) in the clinical setting. Front Oncol. 2019;9:827. . PubMed PMID: 31555588; PubMed Central PMCID: PMCPMC6727245. eng.
  • Zheng W, Zhang Y, Guo L, et al. Evaluation of therapeutic efficacy with CytoSorter((R)) circulating tumor cell-capture system in patients with locally advanced head and neck squamous cell carcinoma. Cancer Manag Res. 2019;11:5857–5869. . PubMed PMID: 31303792; PubMed Central PMCID: PMCPMC6603285. eng.
  • Parikh AR, Corcoran RB. Monitoring resistance through liquid biopsy. Ann Oncol. 2018;29(1):8–11. . PubMed PMID: 29087449; PubMed Central PMCID: PMCPMC6658708. eng
  • Ashworth T.A case of cancer in which cells similar to those in the tumours were seen in the blood after death.Australasian Medical Journal. 1869;14:146–147.
  • Tibbe AG, Miller MC, Terstappen LW. Statistical considerations for enumeration of circulating tumor cells. Cytometry A. 2007 Mar;71(3):154–162. . PubMed PMID: 17200956; eng
  • Mehes G, Witt A, Kubista E, et al. Circulating breast cancer cells are frequently apoptotic. Am J Pathol. 2001 Jul;;159(1):17–20. PubMed PMID: 11438448; PubMed Central PMCID: PMCPMC1850424. eng.
  • Strilic B, Offermanns S. Intravascular survival and extravasation of tumor cells. Cancer Cell. 2017 Sep 11;32(3):282–293. . PubMed PMID: 28898694; eng
  • Watanabe S. The metastasizability of tumor cells. Cancer. 1954 Mar;;7(2):215–223. . PubMed PMID: 13141212; eng
  • Cho EH, Wendel M, Luttgen M, et al. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol. 2012 Feb;9(1):016001. PubMed PMID: 22306705; PubMed Central PMCID: PMCPMC3387999. eng.
  • Sharma D, Brummel-Ziedins KE, Bouchard BA, et al. Platelets in tumor progression:a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol. 2014 Aug;229(8):1005–1015. PubMed PMID: 24374897; eng.
  • Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 2004;102:6897–6904. PubMed PMID: 15501967; eng.
  • Au SH, Storey BD, Moore JC, et al. Clusters of circulating tumor cells traverse capillary-sized vessels. Proc Natl Acad Sci U S A. 2016 May 3;;113(18):4947–4952. PubMed PMID: 27091969; PubMed Central PMCID: PMCPMC4983862. eng.
  • Fernández-Lázaro D, García Hernández JL, García AC, et al. Liquid Biopsy as Novel Tool in Precision Medicine: Origins, Properties, Identification and Clinical Perspective of Cancer's Biomarkers. Diagnostics (Basel). 2020 Apr 13;10(4). doi:10.3390/diagnostics10040215. PubMed PMID: 32294884; PubMed Central PMCID: PMCPMC7235853. eng.
  • Pantel K, Alix-Panabières C. Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med. 2010 Sep;16(9):398–406. . PubMed PMID: 20667783; eng.
  • Tinhofer I, Staudte S. Circulating tumor cells as biomarkers in head and neck cancer: recent advances and future outlook. Expert Rev Mol Diagn. 2018 Oct;18(10):897–906. . PubMed PMID: 30199647; eng
  • Nisa L, Francica P, Giger R, et al. Targeting the MET receptor tyrosine kinase as a strategy for radiosensitization in loco-regionally advanced head and neck squamous cell carcinoma. Mol Cancer Ther. 2019;10.1158/1535-7163.Mct-18-1274. PubMed PMID: 31744898; eng.
  • Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008 May;;8(5):329–340. . PubMed PMID: 18404148; eng
  • Vaidyanathan R, Soon RH, Zhang P, et al. 2018; Cancer diagnosis: from tumor to liquid biopsy and beyond. Lab Chip.191:11–34. . PubMed PMID: 30480287; eng.
  • Economopoulou P, Kotsantis I, Kyrodimos E, et al. Liquid biopsy: an emerging prognostic and predictive tool in head and neck squamous cell carcinoma (hnscc). focus on circulating tumor cells (CTCs). Oral Oncol. 2017 Nov;74:83–89. PubMed PMID: 29103757; eng.
  • Chowdhury R, Bhatia S, Singh G, et al. Circulating tumor cells: screening and monitoring of oral cancers. J Stomatol Oral Maxillofac Surg. 2018 Dec;119(6):498–502. PubMed PMID: 29959083; eng.
  • Patel S, Shah K, Mirza S, et al. Circulating tumor stem like cells in oral squamous cell carcinoma: an unresolved paradox. Oral Oncol. 2016 Nov;;62:139–146. PubMed PMID: 27865367; eng..
  • Onidani K, Shoji H, Kakizaki T, et al. Monitoring of cancer patients via next-generation sequencing of patient-derived circulating tumor cells and tumor DNA. Cancer Sci. 2019 Aug;110(8):2590–2599. PubMed PMID: 31169336; PubMed Central PMCID: PMCPMC6676129. eng.
  • Jackson JM, Witek MA, Kamande JW, et al. 2017; Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chem Soc Rev.4614:4245–4280. . PubMed PMID: 28632258; PubMed Central PMCID: PMCPMC5576189. eng.
  • Morgan TM, Wang X, Qian X, et al. Measurement of circulating tumor cells in squamous cell carcinoma of the head and neck and patient outcomes. Clin Transl Oncol. 2019 Mar;21(3):342–347. PubMed PMID: 30084036; PubMed Central PMCID: PMCPMC6363890. eng.
  • Kawada T, Takahashi H, Sakakura K, et al. Circulating tumor cells in patients with head and neck squamous cell carcinoma: feasibility of detection and quantitation. Head Neck. 2017 Nov;39(11):2180–2186. PubMed PMID: 28815839; eng.
  • Partridge M, Brakenhoff R, Phillips E, et al. Detection of rare disseminated tumor cells identifies head and neck cancer patients at risk of treatment failure. Clin Cancer Res off J Am Assoc Cancer Res PubMed PMID: 14614011; eng.. 2003 ;9(14): 5287–5294.
  • Zhang H, Gong S, Liu Y, et al. Enumeration and molecular characterization of circulating tumor cell using an in vivo capture system in squamous cell carcinoma of head and neck. Chin J Cancer Res. 2017 Jun;29(3):196–203. PubMed PMID: 28729770; PubMed Central PMCID: PMCPMC5497206. eng.
  • Jatana KR, Balasubramanian P, McMullen KP, et al. Effect of surgical intervention on circulating tumor cells in patients with squamous cell carcinoma of the head and neck using a negative enrichment technology. Head Neck. 2016 Dec;38(12):1799–1803. doi:10.1002/hed.24519. PubMed PMID: 27265898; PubMed Central PMCID: PMCPMC5118182. eng.
  • Tinhofer I, Konschak R, Stromberger C, et al. Detection of circulating tumor cells for prediction of recurrence after adjuvant chemoradiation in locally advanced squamous cell carcinoma of the head and neck. Ann Oncol. 2014 Oct;25(10):2042–2047. PubMed PMID: 25057171; eng.
  • Ramirez JM, Fehm T, Orsini M, et al. Prognostic relevance of viable circulating tumor cells detected by EPISPOT in metastatic breast cancer patients. Clin Chem. 2014 Jan;60(1):214–221. PubMed PMID: 24255082; eng.
  • Denève E, Riethdorf S, Ramos J, et al. Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin Chem. 2013 Sep;59(9):1384–1392. PubMed PMID: 23695297; eng.
  • Chen S, Tauber G, Langsenlehner T et al. In vivo detection of circulating tumor cells in high-risk non-metastatic prostate cancer patients undergoing radiotherapy. Cancers (Basel). 2019 117:10.3390/cancers11070933. PubMed PMID: 31277254; PubMed Central PMCID: PMCPMC6678903. eng.
  • Russo GI, Bier S, Hennenlotter J, et al. Expression of tumour progression-associated genes in circulating tumour cells of patients at different stages of prostate cancer. BJU Int. 2018 Jul;122(1):152–159. PubMed PMID: 29542849; eng.
  • Garrel R, Mazel M, Perriard F, et al. Circulating tumor cells as a prognostic factor in recurrent or metastatic head and neck squamous cell carcinoma: the CIRCUTEC prospective study. Clin Chem. 2019 Oct;65(10):1267–1275. PubMed PMID: 31387885; eng.
  • Wang HM, Wu MH, Chang PH, et al. The change in circulating tumor cells before and during concurrent chemoradiotherapy is associated with survival in patients with locally advanced head and neck cancer. Head Neck. 2019 Aug;41(8):2676–2687. doi:10.1002/hed.25744. PubMed PMID: 30903634; eng.
  • Kulasinghe A, Tran TH, Blick T, et al. 2017; Enrichment of circulating head and neck tumour cells using spiral microfluidic technology. Sci Rep. 71:42517. . PubMed PMID: 28198401; PubMed Central PMCID: PMCPMC5309765. eng.
  • Kulasinghe A, Schmidt H, Perry C, et al. 2018; A collective route to head and neck cancer metastasis. Sci Rep. 81:746. . PubMed PMID: 29335441; PubMed Central PMCID: PMCPMC5768780. eng..
  • Kulasinghe A, Zhou J, Kenny L, et al. 2019; Capture of circulating tumour cell clusters using straight microfluidic chips. Cancers (Basel). 111:89. PubMed PMID: 30646614; PubMed Central PMCID: PMCPMC6356955. eng.
  • Kulasinghe A, Kapeleris J, Kimberley R, et al. The prognostic significance of circulating tumor cells in head and neck and non-small-cell lung cancer. Cancer Med. 2018 Dec;7(12):5910–5919. PubMed PMID: 30565869; PubMed Central PMCID: PMCPMC6308060. eng.
  • Weller P, Nel I, Hassenkamp P, et al. Detection of circulating tumor cell subpopulations in patients with head and neck squamous cell carcinoma (HNSCC). PloS One. 2014;9(12):e113706. . PubMed PMID: 25479539; PubMed Central PMCID: PMCPMC4257624. eng
  • Chang PH, Wu MH, Liu SY et al. The prognostic roles of pretreatment circulating tumor cells, circulating cancer stem-like cells, and programmed cell death-1 expression on peripheral lymphocytes in patients with initially unresectable, recurrent or metastatic head and neck cancer: an exploratory study of three biomarkers in one-time blood drawing. Cancers (Basel). 2019 ;114:10.3390/cancers11040540. PubMed PMID: 30991692; PubMed Central PMCID: PMCPMC6521270. eng.
  • Economopoulou P, Koutsodontis G, Avgeris M, et al. HPV16 E6/E7 expression in circulating tumor cells in oropharyngeal squamous cell cancers: a pilot study. PloS One. 2019;14(5):e0215984. . PubMed PMID: 31071126; PubMed Central PMCID: PMCPMC6508656. eng
  • Kulasinghe A, Perry C, Kenny L, et al. 2017; PD-L1 expressing circulating tumour cells in head and neck cancers. BMC Cancer. 171:333. . PubMed PMID: 28511705; PubMed Central PMCID: PMCPMC5434641. eng.
  • Strati A, Koutsodontis G, Papaxoinis G, et al. 2017; Prognostic significance of PD-L1 expression on circulating tumor cells in patients with head and neck squamous cell carcinoma. Ann Oncol. 288:1923–1933. . PubMed PMID: 28838214; eng.
  • Chikamatsu K, Tada H, Takahashi H, et al. Expression of immune-regulatory molecules in circulating tumor cells derived from patients with head and neck squamous cell carcinoma. Oral Oncol. 2019 Feb;89:34–39. PubMed PMID: 30732956; eng.
  • Leon SA, Shapiro B, Sklaroff DM, et al. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977 Mar;37(3):646–650. PubMed PMID: 837366; eng.
  • Payne K, Spruce R, Beggs A, et al. Circulating tumor DNA as a biomarker and liquid biopsy in head and neck squamous cell carcinoma. Head Neck. 2018 Jul;40(7):1598–1604. doi:10.1002/hed.25140. PubMed PMID: 29542214; eng.
  • Solakoglu O, Steinbach B, Gotz W, et al. Characterization of circulating DNA in plasma of patients after allogeneic bone grafting. Clin Oral Investig. 2019 Dec;23(12):4243–4253. PubMed PMID: 30826920; eng.
  • Zwirner K, Hilke FJ, Demidov G, et al. Circulating cell-free DNA: a potential biomarker to differentiate inflammation and infection during radiochemotherapy. Radiother Oncol. 2018 Dec;129(3):575–581. PubMed PMID: 30097252; eng.
  • Kockan C, Hach F, Sarrafi I, et al. 2017; SiNVICT: ultra-sensitive detection of single nucleotide variants and indels in circulating tumour DNA. Bioinformatics. 331:26–34. PubMed PMID: 27531099; eng.
  • El Messaoudi S, Rolet F, Mouliere F, et al. Circulating cell free DNA: preanalytical considerations. Clin Chim Acta. 2013;424:222–230. PubMed PMID: 23727028; eng
  • Liu S, Huang S, Chen F, et al. 2018; Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history. Cell. 1752:347–359e14. . PubMed PMID: 30290141; eng.
  • Jung A, Kirchner T. Liquid biopsy in tumor genetic diagnosis. Dtsch Arztebl Int. 2018;115(10):169–174. PubMed PMID: 29587961; PubMed Central PMCID: PMCPMC5881079. eng
  • Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget. 2016;7(30):48832–48841. PubMed PMID: 27223063; PubMed Central PMCID: PMCPMC5217053. eng
  • Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res PubMed PMID: 11245480; eng. 2001;61(4): 1659–1665.
  • Mouliere F, Chandrananda D, Piskorz AM, et al. 2018; Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 10466:eaat4921. . PubMed PMID: 30404863; PubMed Central PMCID: PMCPMC6483061. eng.
  • Bettegowda C, Sausen M, Leary RJ, et al. 2014; Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 6224:224ra24. PubMed PMID: 24553385; PubMed Central PMCID: PMCPMC4017867. eng.
  • Haber DA, Velculescu VE. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. 2014 Jun;4(6):650–661. . PubMed PMID: 24801577; PubMed Central PMCID: PMCPMC4433544. eng
  • Yong E. Cancer biomarkers: written in blood. Nature. 2014;511(7511):524–526. PubMed PMID: 25079538; eng
  • Bronkhorst AJ, Aucamp J, Pretorius PJ, Cell-free DNA: preanalytical variables. Clin Chim Acta. PubMed PMID: 26341895; eng 2015 ;450: 243–253.
  • Campos CDM, Jackson JM, Witek MA, et al. Molecular profiling of liquid biopsy samples for precision medicine. Cancer J. 2018 ;24(2):93–103. PubMed PMID: 29601336; PubMed Central PMCID: PMCPMC5880307. eng.
  • Dawson SJ, Tsui DW, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013 Mar 28;;368(13):1199–1209. PubMed PMID: 23484797; eng.
  • Wang J, Han X, Sun Y. DNA methylation signatures in circulating cell-free DNA as biomarkers for the early detection of cancer. Sci China Life Sci. 2017 Apr;60(4):356–362. . PubMed PMID: 28063009; eng
  • Barault L, Amatu A, Siravegna G, et al. Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer. Gut. 2018 Nov;67(11):1995–2005. PubMed PMID: 28982739; PubMed Central PMCID: PMCPMC5897187. eng.
  • Bergheim J, Semaan A, Gevensleben H, et al. Potential of quantitative SEPT9 and SHOX2 methylation in plasmatic circulating cell-free DNA as auxiliary staging parameter in colorectal cancer: a prospective observational cohort study. Br J Cancer. 2018 May;118(9):1217–1228. PubMed PMID: 29610456; PubMed Central PMCID: PMCPMC5943265 research funding from Epigenomics AG, Berlin, Germany. The company aims to commercialize DNA methylation biomarkers (e.g., SHOX2 and SEPT9). Remaining authors declare no competing interests. eng.
  • Sun J, Fei F, Zhang M, et al. 2019; The role of (m)SEPT9 in screening, diagnosis, and recurrence monitoring of colorectal cancer. BMC Cancer. 191:450. PubMed PMID: 31088406; PubMed Central PMCID: PMCPMC6518628. eng.
  • Castilho RM, Squarize CH, Almeida LO. Epigenetic modifications and head and neck cancer: implications for tumor progression and resistance to therapy. Int J Mol Sci. 2017;18(7):1506. PubMed PMID: 28704968; PubMed Central PMCID: PMCPMC5535996. eng.
  • Jung M, Pützer S, Gevensleben H, et al. Diagnostic and prognostic value of SHOX2 and SEPT9 DNA methylation and cytology in benign, paramalignant, and malignant ascites. Clin Epigenetics. 2016;8(1):24. . PubMed PMID: 26937257; PubMed Central PMCID: PMCPMC4774089. eng.
  • Schrock A, Leisse A, de Vos L, et al. Free-circulating methylated DNA in blood for diagnosis, staging, prognosis, and monitoring of head and neck squamous cell carcinoma patients: an observational prospective cohort study. Clin Chem. 2017 Jul;63(7):1288–1296. PubMed PMID: 28515105; eng.
  • de Vos L, Gevensleben H, Schrock A, et al. Comparison of quantification algorithms for circulating cell-free DNA methylation biomarkers in blood plasma from cancer patients. Clin Epigenetics. 2017;9(1):125. . PubMed PMID: 29213339; PubMed Central PMCID: PMCPMC5709918. eng.
  • Nichols AC, Yoo J, Palma DA, et al. Frequent mutations in TP53 and CDKN2A found by next-generation sequencing of head and neck cancer cell lines. Arch Otolaryngology Head Neck Surg. 2012 Aug;138(8):732–739. PubMed PMID: 22911296; eng.
  • Galot R, van Marcke C, Helaers R, et al. Liquid biopsy for mutational profiling of locoregional recurrent and/or metastatic head and neck squamous cell carcinoma. Oral Oncol. 2020 May;104:104631. PubMed PMID: 32169746; eng.
  • van Ginkel JH, Huibers MMH, RJJ VE, et al. 2017; Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients. BMC Cancer. 171:428. . PubMed PMID: 28629339; PubMed Central PMCID: PMCPMC5477260. eng.
  • Mazurek AM, Rutkowski T, Fiszer-Kierzkowska A et al. Assessment of the total cfDNA and HPV16/18 detection in plasma samples of head and neck squamous cell carcinoma patients. Oral Oncol. 2016 Mar;54:36-41. doi:10.1016/j.oraloncology.2015.12.002. PubMed PMID: 26786940; eng.
  • Mazurek AM, Rutkowski T, Snietura M, et al. Detection of circulating HPV16 DNA as a biomarker in the blood of patients with human papillomavirus-positive oropharyngeal squamous cell carcinoma. Head Neck. 2019 Mar;41(3):632–641. PubMed PMID: 30566259; eng.
  • Chera BS, Kumar S, Beaty BT, et al. 2019; Rapid clearance profile of plasma circulating tumor HPV type 16 DNA during chemoradiotherapy correlates with disease control in HPV-associated oropharyngeal cancer. Clin Cancer Res off J Am Assoc Cancer Res. 2515:4682–4690. . PubMed PMID: 31088830; PubMed Central PMCID: PMCPMC6679766. eng.
  • Egyud M, Sridhar P, Devaiah A, et al. Plasma circulating tumor DNA as a potential tool for disease monitoring in head and neck cancer. Head Neck. 2019 May;41(5):1351–1358. doi:10.1002/hed.25563. PubMed PMID: 30554450; PubMed Central PMCID: PMCPMC6467749. eng.
  • Lin LH, Chang KW, Kao SY, et al. 2018; Increased plasma circulating cell-free DNA could be a potential marker for oral cancer. Int J Mol Sci. 1911:3303. . PubMed PMID: 30352977; PubMed Central PMCID: PMCPMC6274798. eng.
  • Dahlstrom KR, Li G, Hussey CS, et al. 2015; Circulating human papillomavirus DNA as a marker for disease extent and recurrence among patients with oropharyngeal cancer. Cancer. 12119:3455–3464. . PubMed PMID: 26094818; PubMed Central PMCID: PMCPMC4575612. eng.
  • Cao H, Banh A, Kwok S, et al. 2012; Quantitation of human papillomavirus DNA in plasma of oropharyngeal carcinoma patients. Int J Radiat Oncol Biol Phys. 823:e351–8. PubMed PMID: 21985946; PubMed Central PMCID: PMCPMC3257411. eng.
  • de Jesus LM, Dos Reis MB, Carvalho RS, et al. Feasibility of methylated ctDNA detection in plasma samples of oropharyngeal squamous cell carcinoma patients. Head Neck. 2020 Jul 20. doi:10.1002/hed.26385. PubMed PMID: 32687251; eng.
  • De Smet C, Loriot A. DNA hypomethylation in cancer: epigenetic scars of a neoplastic journey. Epigenetics. 2010 Apr;;5(3):206–213. . PubMed PMID: 20305381; eng
  • Furlan C, Polesel J, Barzan L, et al. Prognostic significance of LINE-1 hypomethylation in oropharyngeal squamous cell carcinoma. Clin Epigenetics. 2017;9(1):58. . PubMed PMID: 28572862; PubMed Central PMCID: PMCPMC5450111. eng.
  • Jiang AC, Buckingham L, Barbanera W, et al. LINE-1 is preferentially hypomethylated within adenomatous polyps in the presence of synchronous colorectal cancer. Clin Epigenetics. 2017;9(1):25.
  • Misawa K, Yamada S, Mima M, et al. Long interspersed nuclear element 1 hypomethylation has novel prognostic value and potential utility in liquid biopsy for oral cavity cancer. Biomark Res. 2020;8(1):53. . PubMed PMID: 33110605; PubMed Central PMCID: PMCPMC7585304. eng.
  • Ladas I, Yu F, Leong KW, et al. 2018; Enhanced detection of microsatellite instability using pre-PCR elimination of wild-type DNA homo-polymers in tissue and liquid biopsies. Nucleic Acids Res. 4612:e74. . PubMed PMID: 29635638; PubMed Central PMCID: PMCPMC6158611. eng.
  • Nawroz H, Koch W, Anker P, et al. 1996; Microsatellite alterations in serum DNA of head and neck cancer patients. Nature Med. 29:1035–1037. . PubMed PMID: 8782464; eng.
  • Ashazila MJ, Kannan TP, Venkatesh RN, et al. Microsatellite instability and loss of heterozygosity in oral squamous cell carcinoma in Malaysian population. Oral Oncol. 2011 May;47(5):358–364. PubMed PMID: 21450513; eng.
  • Nawroz-Danish H, Eisenberger CF, Yoo GH, et al. Microsatellite analysis of serum DNA in patients with head and neck cancer. Int J Cancer. 2004 Aug 10;;111(1):96–100. PubMed PMID: 15185349; eng.
  • Liu T, Zhang X, Gao S, et al. 2016; Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget. 751:85551–85563. PubMed PMID: 27888803; PubMed Central PMCID: PMCPMC5356757. eng.
  • Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–1232. PubMed PMID: 26967288; eng
  • Kim KM, Abdelmohsen K, Mustapic M, et al. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA. 2017 Jul;8(4). doi:10.1002/wrna.1413. PubMed PMID: 28130830; PubMed Central PMCID: PMCPMC5474163. eng.
  • Guescini M, Genedani S, Stocchi V, et al. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm. 2010 Jan;;117(1):1–4. PubMed PMID: 19680595; eng.
  • Thakur BK, Zhang H, Becker A, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014 Jun;24(6):766–769. PubMed PMID: 24710597; PubMed Central PMCID: PMCPMC4042169. eng.
  • Ruivo CF, Adem B, Silva M, et al. 2017; The biology of cancer exosomes: insights and new perspectives. Cancer Res. 7723:6480–6488. . PubMed PMID: 29162616; eng.
  • Whiteside TL. Exosomes carrying immunoinhibitory proteins and their role in cancer. Clin Exp Immunol. 2017 Sep;189(3):259–267. . PubMed PMID: 28369805; PubMed Central PMCID: PMCPMC5543496. eng
  • Ludwig N, Yerneni SS, Razzo BM, et al. Exosomes from HNSCC promote angiogenesis through reprogramming of endothelial cells. Mol Cancer Res. 2018 Nov;16(11):1798–1808. PubMed PMID: 30042174; eng.
  • Principe S, Hui AB, Bruce J et al. Tumor-derived exosomes and microvesicles in head and neck cancer: implications for tumor biology and biomarker discovery. Proteomics. 2013May. 13.10–11:1608–1623. . PubMed PMID: 23505015; eng.
  • Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002 Aug;;2(8):569–579. . PubMed PMID: 12154376; eng
  • Macias M, Alegre E, Diaz-Lagares A, et al. Liquid biopsy: from basic research to clinical practice. Adv Clin Chem. 2018;83:73–119. . PubMed PMID: 29304904; eng.
  • Contreras-Naranjo JC, Wu HJ, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017;17(21):3558–3577. PubMed PMID: 28832692; PubMed Central PMCID: PMCPMC5656537. eng
  • Arraud N, Linares R, Tan S, et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 2014 May;;12(5):614–627. PubMed PMID: 24618123; eng.
  • Van Deun J, Mestdagh P, Sormunen R, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3(1):24858. . PubMed PMID: 25317274; PubMed Central PMCID: PMCPMC4169610. eng
  • Zhang Z, Wang C, Li T, et al. Comparison of ultracentrifugation and density gradient separation methods for isolating Tca8113 human tongue cancer cell line-derived exosomes. Oncol Lett. 2014 Oct;;8(4):1701–1706. PubMed PMID: 25202395; PubMed Central PMCID: PMCPMC4156197. eng.
  • Jia S, Zocco D, Samuels ML, et al. Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Rev Mol Diagn. 2014 Apr;14(3):307–321. PubMed PMID: 24575799; eng.
  • Momen-Heravi F, Bala S. miRNA regulation of innate immunity. J Leukoc Biol. 2018. 10.1002/jlb.3mir1117-459r. PubMed PMID: 29656417; eng.
  • Momen-Heravi F, Bala S. Extracellular vesicles in oral squamous carcinoma carry oncogenic miRNA profile and reprogram monocytes via NF-κB pathway. Oncotarget. 2018;9(78):34838–34854. PubMed PMID: 30410681; PubMed Central PMCID: PMCPMC6205181. eng
  • Li L, Li C, Wang S, et al. 2016; Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 767:1770–1780. . PubMed PMID: 26992424; eng.
  • Wang J, Zhou Y, Lu J, et al. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol. 2014 Sep;;31(9):148. PubMed PMID: 25099764; eng.
  • Sanada T, Islam A, Kaminota T, et al. Elevated exosomal lysyl oxidase like 2 is a potential biomarker for head and neck squamous cell carcinoma. Laryngoscope. 2019;10.1002/lary.28142.. PubMed PMID: 31219623; eng
  • Cox TR, Gartland A, Erler JT. Lysyl Oxidase, a targetable secreted molecule involved in cancer metastasis. Cancer Res. 2016;76(2):188–192. PubMed PMID: 26732355; eng
  • Erler JT, Bennewith KL, Cox TR, et al. 2009; Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 151:35–44. . PubMed PMID: 19111879; PubMed Central PMCID: PMCPMC3050620. eng.
  • Rodrigues-Junior DM, Tan SS, de Souza Viana L, et al. 2019; A preliminary investigation of circulating extracellular vesicles and biomarker discovery associated with treatment response in head and neck squamous cell carcinoma. BMC Cancer. 191:373. . PubMed PMID: 31014274; PubMed Central PMCID: PMCPMC6480898. eng.
  • Theodoraki MN, Hoffmann TK, Jackson EK, et al. Exosomes in HNSCC plasma as surrogate markers of tumour progression and immune competence. Clin Exp Immunol. 2018 Oct;194(1):67–78. PubMed PMID: 30229863; PubMed Central PMCID: PMCPMC6156813. eng.
  • Mandapathil M, Hilldorfer B, Szczepanski MJ, et al. 2010; Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J Biol Chem. 28510:7176–7186. . PubMed PMID: 19858205; PubMed Central PMCID: PMCPMC2844167. eng.
  • Theodoraki MN, Yerneni S, Gooding WE, et al.; PubMed PMID: 31143513; PubMed Central PMCID: PMCPMC6527269. eng. Circulating exosomes measure responses to therapy in head and neck cancer patients treated with cetuximab, ipilimumab, and IMRT. Oncoimmunology. 2019;8(7):1593805.
  • Beccard IJ, Hofmann L, Schroeder JC et al. Immune suppressive effects of plasma-derived exosome populations in head and neck cancer. Cancers (Basel). 2020;127:10.3390/cancers12071997. PubMed PMID: 32708274; PubMed Central PMCID: PMCPMC7409343. eng.
  • Franzmann EJ, Weed DT, Civantos FJ, et al. A novel CD44 v3 isoform is involved in head and neck squamous cell carcinoma progression. Otolaryngol Head Neck Surg. 2001 Apr;124(4):426–432. PubMed PMID: 11283501; eng.
  • Theodoraki MN, Matsumoto A, Beccard I, et al. CD44v3 protein-carrying tumor-derived exosomes in HNSCC patients’ plasma as potential noninvasive biomarkers of disease activity. Oncoimmunology. 2020;9(1):1747732. PubMed PMID: 32313730; PubMed Central PMCID: PMCPMC7153843. eng
  • Theodoraki M-N, Yerneni SS, Hoffmann TK, et al. 2018; Clinical significance of PD-L+Exosomes in plasma of head and neck cancer patients. Clin Cancer Res off J Am Assoc Cancer Res. 244:896–905. . PubMed PMID: 29233903; PubMed Central PMCID: PMCPMC6126905. eng.
  • Ko J, Baldassano SN, Loh PL, et al. 2018; Machine learning to detect signatures of disease in liquid biopsies – a user’s guide. Lab Chip. 183:395–405. . PubMed PMID: 29192299; PubMed Central PMCID: PMCPMC5955608. eng.
  • Kim Y, Jeon J, Mejia S, et al. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer. Nat Commun. 2016;7:11906. PubMed PMID: 27350604; PubMed Central PMCID: PMCPMC4931234. eng
  • Liu B, Liu Y, Pan X, et al. DNA methylation markers for pan-cancer prediction by deep learning. Genes (Basel). 2019;10:10.. PubMed PMID: 31590287; PubMed Central PMCID: PMCPMC6826785. eng.
  • Shin H, Oh S, Hong S, et al. 2020; Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes. ACS Nano. 145:5435–5444. . PubMed PMID: 32286793; eng.
  • Shen H, Liu T, Cui J et al. A web-based automated machine learning platform to analyze liquid biopsy data. Lab Chip. 2020;10.1039/d0lc00096e. PubMed PMID: 32420563; eng.12
  • Zhang Z, Shiratsuchi H, Lin J, et al. 2014; Expansion of CTCs from early stage lung cancer patients using a microfluidic co-culture model. Oncotarget. 523:12383–12397. . PubMed PMID: 25474037; PubMed Central PMCID: PMCPMC4323004. eng.
  • Sachs N, de Ligt J, Kopper O, et al. 2018; A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 1721–2:373–386.e10. . PubMed PMID: 29224780; eng.
  • Hodgkinson CL, Morrow CJ, Li Y, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014 Aug;;20(8):897–903. PubMed PMID: 24880617; eng.
  • Boehnke K, Iversen PW, Schumacher D, et al. Assay establishment and validation of a high-throughput screening platform for three-dimensional patient-derived colon cancer organoid cultures. J Biomol Screen. 2016 Oct;;21(9):931–941. PubMed PMID: 27233291; PubMed Central PMCID: PMCPMC5030729. eng.
  • Kulasinghe A, Perry C, Warkiani ME, et al. 2016; Short term ex-vivo expansion of circulating head and neck tumour cells. Oncotarget;. 737:60101–60109. . PubMed PMID: 27517751; PubMed Central PMCID: PMCPMC5312371. eng.
  • von Bubnoff N. Liquid biopsy: approaches to dynamic genotyping in cancer. Oncol Res Treat. 2017;40(7–8):409–416. . PubMed PMID: 28693026; eng
  • Okajima W, Komatsu S, Ichikawa D, et al. 2017; Liquid biopsy in patients with hepatocellular carcinoma: circulating tumor cells and cell-free nucleic acids. World J Gastroenterol. 2331:5650–5668. . PubMed PMID: 28883691; PubMed Central PMCID: PMCPMC5569280. eng.
  • Del Re M, Crucitta S, Gianfilippo G, et al. 2019; Understanding the mechanisms of resistance in egfr-positive nsclc: from tissue to liquid biopsy to guide treatment strategy. Int J Mol Sci. 2016:3951. . PubMed PMID: 31416192; PubMed Central PMCID: PMCPMC6720634. eng.
  • Lennon AM, Buchanan AH, Kinde I, et al. 2020; Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science (New York, NY). 3696499:eabb9601. . PubMed PMID: 32345712; eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.