712
Views
4
CrossRef citations to date
0
Altmetric
Review

Human tear fluid analysis for clinical applications: progress and prospects

, , , , , , , , & show all
Pages 767-787 | Received 28 Jan 2021, Accepted 08 Jun 2021, Published online: 23 Jun 2021

References

  • Menlo Park, Calif, GRAIL announces positive new data with multi-cancer early detection blood test from CCGA study”. Data Presented at 2019 ASCO Annual Meeting Support Feasibility of GRAIL’s Multi-Cancer Approach. GRAIL Press Release, Chicago. May 31, 2019.
  • Karemore G, Mullick JB, Sujatha R, et al. Classification of protein profiles using fuzzy clustering techniques: an application in early diagnosis of oral, cervical and ovarian cancer. In2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. Buenos Aires, Argentina, 2010 Sep 4 (pp. 6361–6364). IEEE.
  • Weiss S, Klingler J, Hioe C, et al. A high through-put assay for circulating antibodies directed against the S protein of severe acute respiratory syndrome corona virus 2. medRxiv. 2020 Jan 1. doi: 10.1101/2020.04.14.20059501.
  • Spurr-Michaud S, Argüeso P, Gipson I. Assay of mucins in human tear fluid. Exp Eye Res. 2007 May 1;84(5):939–950.
  • Zhou L, Beuerman RW, Foo Y, et al. Characterisation of human tear proteins using high-resolution mass spectrometry. Ann Acad Med Singap. 2006 Jun 1;35(6):400.
  • Murube J. Basal, reflex, and psycho-emotional tears. Ocul Surf. 2009 Apr 1;7(2):60 6.
  • Hagan S, Martin E, Enríquez-de-salamanca A. Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine. EPMA J. 2016 Dec 1;7(1):15.
  • Farris RL, Stuchell RN, Mandel ID. Basal and reflex human tear analysis: i. Physical measurements: osmolarity, basal volumes, and reflex flow rate. Ophthalmology. 1981;88(8):852–857.
  • Stuchell RN, Feldman JJ, Farris RL, et al. The effect of collection technique on tear composition. Investig. Ophthalmol. Vis. 1984 Mar 1;25(3):374–377.
  • Tiffany JM. The normal tear film. In: InSurgery for the dry eye Dev Ophthalmol. Karger. 2008Vol. 41 1–20.
  • Salvisberg C, Tajouri N, Hainard A, et al. Exploring the human tear fluid: discovery of new biomarkers in multiple sclerosis. Proteomics Clin Appl. 2014 Apr;8(3–4):185–194.
  • Grus FH, Franz H, Vladimir N, et al. SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Investig. Ophthalmol. Vis. 2005;46(3):863–876.
  • N.v.T. und Hohenstein-Blaul NVT, Funke S, and F.H.J.E.e.r. Grus, Tears as a source of biomarkers for ocular and systemic diseases. 2013. 117: p. 126–137.
  • Filik J, Stone N. Analysis of human tear fluid by Raman spectroscopy. Anal Chim Acta. 2008;616(2):177–184.
  • Tsuji F, Kawazu K. Biomarker identification of tear fluid. Metabolomics. 2012;2(105):2153–2769.
  • Leonardi A. Allergy and allergic mediators in tears. Exp Eye Res. 2013 Dec 1;117:106–117.
  • Grus FH, Augustin AJ. High performance liquid chromatography analysis of tear protein patterns in diabetic and non-diabetic dry-eye patients. Eur J Ophthalmol. 2001 Jan;11(1):19–24.
  • Suttorp-Schulten MS, Luyendijk L, Kok JH, et al. HPLC analysis of tear proteins in giant papillary conjunctivitis. Doc Ophthalmol. 1989 Aug 1;72(3–4):235–240.
  • Issaq HJ, Veenstra TD. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. Biotechniques. 2008 Apr;44(5):697–700.
  • Coyle PK, Sibony PA. Tear immunoglobulins measured by ELISA. Invest Ophthalmol Vis Sci. 1986 Apr;27(4):622–625.
  • Ng V, Cho P, To C. Cho P and To C. Tear proteins of normal young Hong Kong Chinese. Graefe’s archive for clinical and experimental ophthalmology. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie. 2000 Sep 1;238(9):738–745.
  • Zhou L, Beuerman RW. Tear analysis in ocular surface diseases. Prog Retin Eye Res. 2012 Nov 1;31(6):527–550.
  • Fung K, Morris C, Duncan M. Mass spectrometric techniques applied to the analysis of human tears: a focus on the peptide and protein constituents. In: InLacrimal gland, tear film, and dry eye syndromes. David A. Sullivan, Vol. 3. Boston, MA: Springer; 2002. p. 601–605.
  • Taormina CR, Baca JT, Asher SA, et al. Analysis of tear glucose concentration with electrospray ionization mass spectrometry. J J Am Soc Mass Spectrom. 2007 Feb 1;18(2):332–336.
  • Boonstra A, Breebaart AC, Brinkman CJ, et al. Factors influencing the quantitative determination of tear proteins by high performance liquid chromatography. Curr Eye Res. 1988 Jan 1;7(9):893–901.
  • Lin CC, Kuo MT, Chang HC. Raman spectroscopy–a novel tool for noninvasive analysis of ocular surface fluid. J Med Biol Eng. 2010 Dec 1;30(6):343–354.
  • Butler HJ, Ashton L, Bird B, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016 Apr;11(4):664–687.
  • Erckens RJ, Jongsma FH, Wicksted JP, et al. Raman spectroscopy in ophthalmology: from experimental tool to applications in vivo. Lasers in Medical Science. 2001 Oct 1;16(4):236–252.
  • Seah I, Agrawal R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm. 2020 Apr 2;28(3):391–395.
  • Peng Y, Zhou YH. Is novel coronavirus disease (COVID‐19) transmitted through conjunctiva? J Med Virol. 2020 Mar 16;92(9):1408–1409.
  • Tiffany JM. Tears in health and disease. Eye. 2003 Nov;17(8):923–926.
  • García-Porta N, Mann A, Sáez-Martínez V, et al. The potential influence of Schirmer strip variables on dry eye disease characterisation, and on tear collection and analysis. Cont Lens Anterior Eye. 2018 Feb 1;41(1):47–53.
  • Lam SM, Tong L, Duan X, et al. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J Lipid Res. 2014 Feb 1;55(2):289–298.
  • Small D, Hevy J, Di T-L. Comparison of tear sampling techniques for pharmacokinetic analysis: ofloxacin concentrations in rabbit tears after sampling with Schirmer tear strips, capillary tubes, or surgical sponges. J Ocul Pharmacol Ther. 2000 Oct;16(5):439–446.
  • Choy CK, Cho P, Benzie IF. Antioxidant content and ultraviolet absorption characteristics of human tears. Optom Vis Sci. 2011 Apr 1;88(4):507–511.
  • Zapata F, De La Ossa MÁ, García-Ruiz C. Emerging spectrometric techniques for the forensic analysis of body fluids. Trends Analyt Chem. 2015 Jan;64:53–63.
  • Lakowicz JR, editor. Principles of fluorescence spectroscopy: Springer science & business media, New York. 2013 Apr 17.
  • Chidananda CM, Venkatakrishna K, Kartha VB,, . Autofluorescence of oral tissue for optical pathology in oral malignancy. J Photochem Photobiol B. 2004Jan23;73(1–2):49–58
  • Gasymov OK, Abduragimov AR, Glasgow BJ. Characterization of fluorescence of ANS–Tear Lipocalin complex: evidence for multiple‐Binding modes. J Photochem Photobiol B. 2007 Nov;83(6):1405–1414.
  • Borchman D, Foulks GN, Yappert MC, et al. Spectroscopic evaluation of human tear lipids. Chem Phys Lipids. 2007 Jun 1;147(2):87–102.44.
  • Glinská G, Tomečková V, Krajčíková K. Autofluorescence of tear proteins. Med Res Chron. 2016 Oct;3(5):442–449.
  • Glinská G, Krajčíková K, Zakutanská K, et al. Noninvasive diagnostic methods for diabetes mellitus from tear fluid. RSC Adv. 2019;9(31):18050–18059.
  • Balan V, Mihai CT, Cojocaru FD, et al. Vibrational spectroscopy fingerprinting in medicine: from molecular to clinical practice. Materials. 2019 Jan;12(18):2884.
  • Borchman D. From the bench to the bedside: infrared spectroscopy and the diagnosis and treatment of dry eye and cataracts. Spectrosc. 2014 Feb 1;29(2):38–52.
  • Travo A, Paya C, Déléris G, et al. Potential of FTIR spectroscopy for analysis of tears for diagnosis purposes. Anal Bioanal Chem. 2014 Apr 1;406(9–10):2367–2376.
  • Xu H, Bjerneld EJ, Käll M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett. 1999 Nov 22;83(21):4357.
  • Le Ru E, Etchegoin P. Principles of surface-Enhanced raman spectroscopy and related plasmonic effects. Elsevier, Amsterdam, Netherlands. 2008.
  • Parker FS. Applications of infrared, Raman, and resonance Raman spectroscopy in biochemistry. Springer Science & Business Media; New York. 1983.
  • Stöckle RM, Suh YD, Deckert V, et al. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett. 2000 Feb 18;318(1–3):131–136.
  • Azuhata T, Sota T, Suzuki K, et al. Polarized raman spectra in GaN. J Phys Condens Matter. 1995 Mar 6;7(10):L129.
  • Basiev T, Sobol AA, Zverev PG, et al. Raman spectroscopy of crystals for stimulated Raman scattering. Opt Mater. 1999 Mar 1;11(4):307–314.
  • Griffen JA, Owen AW, Burley J, et al. Rapid quantification of low level polymorph content in a solid dose form using transmission Raman spectroscopy. J Pharm Biomed Anal. 2016 Sep 5;128:35–45.
  • Matousek P, Clark IP, Draper ER, et al. Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc. 2005 Apr 1;59(4):393–400.
  • Ziegler LD. Hyper‐Raman spectroscopy. J Raman Spectrosc. 1990 Dec;21(12):769–779.
  • Long DA. The Raman effect: a unified treatment of the theory of Raman scattering by molecules. John Wiley and Sons, New Jersey. 2002 May.
  • Kneipp K, Kartha VB, Manoharan R, et al. Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys Rev E. 1998 Jun 1;57(6):R6281.
  • Sharifzadeh M, Zhao DY, Bernstein PS, et al. Resonance Raman imaging of macular pigment distributions in the human retina. JOSA A. 2008 Apr 1;25(4):947–957.
  • Narasimhan V, Siddique RH, Park H, et al. Bioinspired disordered flexible metasurfaces for human tear analysis using broadband surface-Enhanced Raman Scattering. ACS Omega. 2020 May 22;5(22):12915–12922.
  • Kim S, Kim TG, Lee SH, et al. Raman spectroscopy biosensor for On-Site breast cancer detection using human tears. ACS Appl Mater Interfaces. 2020 Jan 23;12(7):7897–7904.
  • Hu P, Zheng XS, Zong C, et al. Drop‐coating deposition and surface‐enhanced Raman spectroscopies (DCDRS and SERS) provide complementary information of whole human tears. J Raman Spectrosc. 2014 Jul;45(7):565–573.
  • Zhang D, Xie Y, Mrozek MF, et al. Raman detection of proteomic analytes. Anal Chem. 2003 Nov 1;75(21):5703–5709.
  • Filik J, Stone N. Raman point mapping of tear ferning patterns. Biomed Optical Spectroscop Int Biomed Optics Soc. 2008 Feb 8;6853: 685309.
  • Kopecký JV, Baumruk V. Structure of the ring in drop coating deposited proteins and its implication for Raman spectroscopy of biomolecules. Vib Spectrosc. 2006 Nov 24;42(2):184–187.
  • Rusciano G, Capriglione P, Pesce G, et al. Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis. PLoS One. 2013 Aug 20;8(8):e72127.
  • Leordean C, Canpean V, Surface-enhanced AS. Raman scattering (SERS) analysis of urea trace in urine, fingerprint, and tear samples. Spectrosc Lett. 2012 Oct 1;45(8):550–555.
  • Park M, Jung H, Jeong Y, et al. Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano. 2017 Jan 24;11(1):438–443.
  • Zief M, Crane LJ, Dekker M, Chromatographic chiral separations. Analytica Chimica Acta, 1990: New York.
  • Neue UD, El Fallah MZ. HPLC columns: theory, technology, and practice. Vol. 26, New York: Wiley-VcH; Instrumentation Science & Technology; 1998. DOI: 10.1080/10739149808001913.
  • Katz E, Riggin R. High performance liquid chromatography: principles and methods in biotechnology. England: Wiley Chichester; 1996 April.
  • Swartz ME. UPLC™: an introduction and review. J Liq Chromatogr Relat Technol. 2005 Apr 1;28(7–8):1253–1263.
  • Wu N, Lippert JA, Lee ML. Practical aspects of ultrahigh pressure capillary liquid chromatography. J Chromatogr A. 2001 Mar 9;911(1):1–2.
  • Fekete S, Beck A, Veuthey JL, et al. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal. 2014 Dec 1;101:161–173.
  • Patil A, Choudhari K, Prabhu V, et al. Highly sensitive high performance liquid chromatography-laser induced fluorescence for proteomics applications. ISRN. 2012 June;2012:643979.
  • Venkatakrishna K, Kartha VB, Pai KM, et al. HPLC-LIF for early detection of oralcancer. Curr Sci. 2003;84(4):551–557.
  • Bhat S, Patil A, Rai L, et al. Application of HPLC combined with laser induced fluorescence for protein profile analysis of tissue homogenates in cervical cancer. Sci World J. 2012 Jan 1;2012:1–7.
  • Patil A, Bhat S, Pai KM, et al. Ultra-sensitive high performance liquid chromatography–laser-induced fluorescence based proteomics for clinical applications. J Proteomics. 2015 Sep 8;127:202–210.
  • Mahboubi A, Alviri MG, Afshar M, et al. Development and Validation of A Fast, Simple And Specific Stability Indicating RP-HPLC Method for Determination of Dexpanthenol in Eye Gel Formulation. Iran J Pharm Sci. 2019;18(2):670.
  • Okur NÜ, Yozgatli V, Okur ME. In vitro–in vivo evaluation of tetrahydrozoline‐loaded ocular in situ gels on rabbits for allergic conjunctivitis management. Drug Dev Res. 2020 May 2;81(6):716–727.
  • Bettero A, Galiano F, Benassi CA, et al. A rapid HPLC technique for determining levels of histamine in tears from normal and inflamed human eyes. Food Chem Toxicol. 1985 Feb 1;23(2):303–304.
  • Venza I, Visalli M, Ceci G, et al. Quantitative determination of histamine in tears during conjunctivitis by a novel HPLC method. Ophthalmic Res. 2004;36(1):62–69.
  • Saha BI, Patel RP, Halder TR. Ultraviolet‐high performance liquid chromatographic method development and validation for quantification of besifloxacin hydrochloride. Asian J Pharm Clin Res. 2017;10(5):10–14.
  • Peral A, Carracedo G, Pintor J. Diadenosine polyphosphates in the tears of aniridia patients. Acta Ophthalmol. 2015 Aug;93(5):e337–42.
  • Venkata SJ, Narayanasamy A, Srinivasan V, et al. Tear ascorbic acid levels and the total antioxidant status in contact lens wearers: a pilot study. Indian J Ophthalmol. 2009 Jul;57(4):289.
  • Raja SN, Rai L, Kumar P, et al. Serum protein profile study of normal and cervical cancer subjects by high performance liquid chromatography with laser-induced fluorescence. J Biomed Opt. 2008;13(5):54062.
  • Karemore G, Rai L, Pai KM, et al. Performance liquid chromatography-Laser induced fluorescence: case of cervical and oralcancers. California. InProc. of SPIE 2009.
  • Boukes RJ, Boonstra A, Breebaart AC, et al. Analysis of human tear protein profiles using high performance liquid chromatography (HPLC). Doc Ophthalmol. 1987 Sep 1;67(1–2):105–113.
  • Chevallet M, Luche S, Rabilloud T. Silver staining of proteins in polyacrylamide gels. Nat Protoc. 2006 Nov;1(4):1852.
  • Ladner CL, Yang J, Turner RJ, et al. Visible fluorescent detection of proteins in polyacrylamide gels without staining. Anal Biochem. 2004 Mar 1;326(1):13–20.
  • Jisnuson S, Bhinyo P. SDS-polyacrylamide gel electrophoresis. A simple explanation of why it works. J Chem Educ. 1977 Sep;54(9):560.
  • Brunelle JL, One-dimensional GR. SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Meth Enzymol. 2014 Jan;541:151–159.
  • Li K, Chen Z, Duan F, et al. Quantification of tear proteins by SDS-PAGE with an internal standard protein: a new method with special reference to small volume tears. Graefes Arch Clin Exp Ophthalmol. 2010 Jun 1;248(6):853–862.
  • Matthew G, Amy LH, Michael TB. Capillary Electrophoresis. Anal Chem. 2012 Jan;84(2):577–596.
  • Capillary Electrophoresis, (2020, August 16). Retrieved June 17, 2021, from https://chem.libretexts.org/@go/page/294
  • Gummadi S, Kandula VN. A review on electrophoresis, capillary electrophoresis and hyphenations. Int J Pharm Sci and Res. 2020 Dec;11(12):6038–6056.
  • Gupte R, Clinical applications of capillary electrophoresis methods, in “clinical lab manager. November 28, 2019.
  • Gerhardus de J. Detection in Capillary Electrophoresis – an introduction”. In: Gerhardus de J, editor. Capillary Electrophoresis–Mass Spectrometry (CE-MS): principles and applications. Grmany: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. p. 1–5.
  • Kelley S, Darryl JB. Detection in capillary electrophoresis. Electrophoresis. 2000 April;21(7):1239–1250.
  • Vojtech A, Marketa V. Capillary electrophoresis in nanotechnologies versus nanotechnologies in capillary electrophoresis. In: George ZK, Athanasios CM, editors. Novel Nanomaterials - Synthesis and applications. IntechOpen, London, UK. 2018. p. 311–325.
  • Sameer-ul H. Microchip Electrophoresis. Encyclopedia. 2021;1:30–41.
  • Constantine DG, Fotini NL, Ioanna NK, et al. Tear analysis of ascorbic acid, uric acid and malondialdehyde with capillary electrophoresis. Biomed Chromat. 2010 July;24(8):852–857.
  • Anis B, Scott AS. Thread-based assay for quantitative small molecule analysis of mice tear fluid by capillary electrophoresis. Anal Bioanal Chem. 2019 Jan;411(2):329–338.
  • Andreea C. Tear biomarkers in dry eye disease. Eur Ophth. 2019 July;13(1):21–26.
  • Chiva A. Electrophoresis of tear proteins as a new diagnostic tool for two high risk groups for dry eye: computer users and contact lens wearers. J Med Life. 2011 Aug 15;4(3):228–233.
  • Patil A, Khoobram SC, Unnikrishnan VK, et al. Salivary protein markers: a noninvasive protein profile-based method for the early diagnosis of oral premalignancy and malignancy. J Biomed Opt. 2013 Aug;18(10):101317.
  • Sujatha B, Kartha VB, Lavanya R, et al. A comparison of protein profiles of cervical tissue homogenate, exfoliated cells from cervix and serum in normal and cervical malignancy conditions. J Chromatogr Sci. 2015 Jan;53(1):167–176.
  • Ma H, Shieh K-J-JNS. Study Of Elisa Technique. Nat Sci. 2006;4(2):36–37.
  • De La Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol. 2012 Dec;7(12):821–824.
  • Fullard RJ, Snyder C. Protein levels in nonstimulated and stimulated tears of normal human subjects. Invest Ophthalmol Vis Sci. 1990 Jun 1;31(6):1119–1126.
  • Yaginuma S, Akune Y, Shigeyasu C, et al. Tear protein analysis in presumed congenital alacrima. Clin Ophthalmol. 2018;12:2591.
  • Baier G, Wollensak G, Mur E, et al. Analysis of human tear proteins by different high-performance liquid chromatographic techniques. J Chromatogr B Biomed. 1990 Jan 1;525:319–328.
  • Stolwijk TR, Kuizenga AB, Van Haeringen NJ, et al. Analysis of tear fluid proteins in insulin‐dependent diabetes mellitus. Acta Ophthalmol. 1994 Jun;72(3):357–362.
  • Sitaramamma T, Shivaji S, Rao GN. HPLC analysis of closed, open, and reflex eye tear proteins. Indian J Ophthalmol. 1998 Oct 1;46(4):239.
  • Downard KM. Francis William Aston: the man behind the mass spectrograph. Eur J Mass Spectrom. 2007 Jun;13(3):177–190.
  • Huang Z, Du CX, Pan XD. The use of in-strip digestion for fast proteomic analysis on tear fluid from dry eye patients. PloS One. 2018 Aug 3;13(8):e0200702.
  • Soria J, Acera A, Merayo-lloves J, et al. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep. 2017 Dec 12;7(1):1–5.
  • Perumal N, Funke S, Pfeiffer N, et al. Proteomics analysis of human tears from aqueous-deficient and evaporative dry eye patients. Sci Rep. 2016 Jul 20;6(1):1–2.
  • Li B, Sheng M, Li J, et al. Tear proteomic analysis of Sjögren syndrome patients with dry eye syndrome by two-dimensional-nano-liquid chromatography coupled with tandem mass spectrometry. Sci Rep. 2014 Aug 27;4(1):5772.
  • Li B, Sheng M, Xie L, et al. Tear proteomic analysis of patients with type 2 diabetes and dry eye syndrome by two-dimensional nano-liquid chromatography coupled with tandem mass spectrometry. Invest Ophthalmol Vis Sci. 2014 Jan;55(1):177–186.
  • Liu Q, Liu J, Ren C, et al. Proteomic analysis of tears following acupuncture treatment for menopausal dry eye disease by two-dimensional nano-liquid chromatography coupled with tandem mass spectrometry. Int J Nanomedicine. 2017;12:1663.
  • Yang L, Yang Z, Yu H, et al. Acupuncture therapy is more effective than artificial tears for dry eye syndrome: evidence based on a meta-analysis. Evid -Based Complementary Altern Med. 2015 Jan;2015:143858.
  • Ho CS, Lam C, Chan M, et al. Electrospray ionisation mass spectrometry: principles and clinical applications. Clin Biochem Rev. 2003 Feb;24(1):3.
  • Pitt JJ. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev. 2009 Feb;30(1):19.
  • Rahi P, Prakash O, Shouche YS. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front Microbiol. 2016 Aug 30;7:1359.
  • Lewis JK, Wei J, Siuzdak G. Matrix‐assisted laser desorption/ionization mass spectrometry in peptide and protein analysis. Encycl Anal Chem Appl Theory Instrumen. 2006 Sep 15. DOI:10.1002/9780470027318.a1621.
  • Wollnik H. Time‐of‐flight mass analyzers. Mass Spectrom Rev. 1993 Mar;12(2):89–114.
  • Versura P, Nanni P, Bavelloni A, et al. Tear proteomics in evaporative dry eye disease. Eye. 2010 Aug;24(8):1396–1402.
  • Funke S, Beck S, Lorenz K, et al. Analysis of the effects of preservative-free tafluprost on the tear proteome. AmJ Transl Res. 2016 Oct 15;8(10):4025–4039.
  • Aqrawi LA, Chen X, Jensen JL, et al. Severity of clinical dry eye manifestations influences protein expression in tear fluid of patients with primary Sjögren’s syndrome. PloS One. 2018 Oct 12;13(10):e0205762.
  • Chen L, Zhou L, Chan EC, et al. Characterization of the human tear metabolome by LC–MS/MS. J Proteome Res. 2011 Oct 7;10(10):4876–4882.
  • de Souza GA, de Godoy LM, Mann M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 2006 Aug;7(8):R72.
  • Perry RH, Cooks RG, Noll RJ. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev. 2008 Dec;27(6):661–699.
  • Scigelova M, Makarov A. Orbitrap mass analyzer–overview and applications in proteomics. Proteomics. 2006 Sep;6(S2):16–21.
  • Gibson EJ, Bucknall MP, Golebiowski B, et al. Comparative limitations and benefits of liquid chromatography–mass spectrometry techniques for analysis of sex steroids in tears. Exp Eye Res. 2019 Feb 1;179:168–178.
  • Rantamäki AH, Seppänen-Laakso T, Oresic M, et al., PLoS ONE. Human tear fluid lipidome: from composition to function. PloS One. 2011;6(5):e19553.
  • Saari KM, Aho VV, Paavilainen V, et al. Group II PLA2 content of tears in normal subjects. Investig. Ophthalmol. Vis. 2001 Feb 1;42(2):318–320.
  • Chen J, Green-Church KB, Nichols KK. Shotgun lipidomic analysis of human meibomian gland secretions with electrospray ionization tandem mass spectrometry. Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6220–6231.
  • Picotti P, Aebersold R. Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012 Jun;9(6):555–566.
  • Kalló G, Emri M, Varga Z, et al. Changes in the chemical barrier composition of tears in Alzheimer’s disease reveal potential tear diagnostic biomarkers. PLoS One. 2016 Jun 21;11(6):e0158000.
  • Augusto F, Hantao LW, Mogollón NG, et al. New materials and trends in sorbents for solid-phase extraction. Trends Analyt Chem. 2013 Feb 1;43:14–23.
  • Carson MC. Ion-pair solid-phase extraction. J Chromatogr A. 2000 Jul 14;885(1–2):343–350.
  • Callesen AK, Vach W, Jørgensen PE, et al. Reproducibility of mass spectrometry based protein profiles for diagnosis of breast cancer across clinical studies: a systematic review. J Proteome Res. 2008 Apr 4;7(4):1395–1402.
  • González N, Iloro I, Soria J, et al. Human tear peptide/protein profiling study of ocular surface diseases by SPE-MALDI-TOF mass spectrometry analyses. EuPA Open Proteom. 2014 Jun;1(3):206–215.
  • Karas M, Bahr U, Dülcks T. Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius J Anal Chem. 2000 Mar 1;366(6–7):669–676.
  • Dean AW, Glasgow BJ. Mass spectrometric identification of phospholipids in human tears and tear lipocalin. Invest Ophthalmol Vis Sci. 2012 Apr 1;53(4):1773–1782.
  • Gaikwad AM, To study the difference between three types of tears: using reverse phase- high performance liquid chromatography (RP-HPLC). International Conference OnForensic Research & Technology,Osaka, Japan. 2018.
  • Capaccio A, Sasso A, Rusciano G. Raman analysis of tear fluid alteration following contact lense use. Sensors. 2019 Jan;19(15):3392.
  • Lebercht A, Boehm D, Schmidt M, et al. Diagnosis of breast cancer by tear proteomic pattern. Cancer Genomics-Proteomics. 2009 May 1;6(3):177–182.
  • Boehm D, Keller K, Pieter J, et al. Comparison of tear protein levels in breast cancer patients and healthy controls using a de novo proteomic approach. Oncol Rep. 2012 Aug 1;28(2):429–438.
  • Prashar A. Factors affecting tear health, in shed tears for diagnostics. Springer, Singapore. 2019. p. 103–124.
  • Evans V, Vockler C, Friedlander M, et al. Lacryglobin in human tears, a potential marker for cancer. Clin Experiment Ophthalmol. 2001 Jun;29(3):161–163.
  • Edman MC, Janga SR, Freire D, et al. Tear biomarkers for Parkinson’s disease in basal versus reflex tears. Invest Ophthalmol Vis Sci. 2019 Jul 22;60(9):4196.
  • Aluru SV, Shweta A, Bhaskar S, et al. Tear fluid protein changes in dry eye syndrome associated with rheumatoid arthritis: a proteomic approach. Ocul Surf. 2017 Jan 1;15(1):112–129.
  • Barmada A, Shippy SA. Tear analysis as the next routine body fluid test. Eye. 2020 Oct;34(10):1731–1733.
  • Nidheesh VR, Mohapatra AK, Sinha RK, et al. Breath analysis for the screening and diagnosis of diseases. Appl Spectrosc Rev. 2020 Dec. DOI:10.1080/05704928.2020.1848857.
  • Bhat S, Patil A, Rai L, et al. Protein profile analysis of cellular samples from the cervix for the objective diagnosis of cervical cancer using HPLC-LIF. J Chromatogr B. 2010 Dec 1;878(31):3225–3230.
  • Kumar KK, Chowdary MV, Mathew S, et al. Protein profile study of breast‐tissue homogenates by HPLC‐LIF. J Biophotonics. 2009 May;2(5):313–321.
  • Patil A, Choudhari KS, Unnikrishnan VK, et al. Salivary protein markers: a noninvasive protein profile-based method for the early diagnosis of oral premalignancy and malignancy. J Biomed Opt. 2013 Aug;18(10):101317. 10.1117/1.JBO.18.10.101317.
  • Chng C-L, Seah LL, Yang M, et al. Tear proteins calcium binding protein A4 (S100A4) and Prolactin Induced Protein (PIP) are potential biomarkers for thyroid eye disease. Sci Rep. 2018;8(1):16936.
  • Symeonidis C, Papakonstantinou E, Galli A, et al. Matrix metalloproteinase (MMP-2,-9) and tissue inhibitor (TIMP-1,-2) activity in tear samples of pediatric type 1 diabetic patients. Graefes Arch Clin Exp Ophthalmol. 2013 Mar 1;251(3):741–749.
  • Acera A, Rocha G, Vecino E, et al. Inflammatory markers in the tears of patients with ocular surface disease. Ophthalmic Res. 2008 Oct;40(6):315–321.
  • Lema I, Sobrino T, Duran JA, et al. Subclinical keratoconus and inflammatory molecules from tears. Br J Ophthalmol. 2009 Jun 1;93(6):820–824.
  • Leonardi A, Brun P, Abatangelo G, et al. Tear levels and activity of matrix metalloproteinase (MMP)-1 and MMP-9 in vernal keratoconjunctivitis. Invest Ophthalmol Vis Sci. 2003 Jul 1;44(7):3052–3058.
  • Schargus M, Ivanova S, Kakkassery V, et al. Correlation of tear film osmolarity and 2 different MMP-9 tests with common dry eye tests in a cohort of non–dry eye patients. Cornea. 2015 Jul 1;34(7):739–744.
  • Turlea M, Cioca DP, Mârza F, et al. Lacrimal assessment of IgE in cases with allergic conjunctivitis. Oftalmologia (Bucharest, Romania: 1990). 2009 Jan 1;53(4):96–100.
  • Sorkhabi R, Ghorbanihaghjo A, Taheri N, et al. Tear film inflammatory mediators in patients with keratoconus. Int Ophthalmol. 2015 Aug 1;35(4):467–472.
  • Sambursky R, Davitt III WF, Friedberg M, et al. Prospective, multicenter, clinical evaluation of point-of-care matrix metalloproteinase-9 test for confirming dry eye disease. Cornea. 2014 Aug 1;33(8):812–818.
  • Mimura T, Usui T, Yamagami S, et al. Relation between total tear IgE and severity of acute seasonal allergic conjunctivitis. Curr Eye Res. 2012 Oct 1;37(10):864–870.
  • Cojocaru VM, Ciurtin C, Uyy E, et al. Nano-LC mass spectrometry proteomic tear secretion analysis in patients with secondary Sjögren’s syndrome. Dig J Nanomater Biostructures. 2011 Apr;1(6):491–498.
  • Aqrawi LA, Galtung HK, Vestad B, et al. Identification of potential saliva and tear biomarkers in primary Sjögren’s syndrome, utilising the extraction of extracellular vesicles and proteomics analysis. Arthritis Res Ther. 2017 Dec;19(1):14.
  • Pieragostino D, Bucci S, Agnifili L, et al. Differential protein expression in tears of patients with primary open angle and pseudoexfoliative glaucoma. Mol Biosyst. 2011 Nov;8(4):1017–1028.
  • Çomoğlu SS, Güven H, Acar M, et al. Tear levels of tumor necrosis factor-alpha in patients with Parkinson’s disease. Neurosci Lett. 2013 Oct;11(553):63–67.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.