270
Views
4
CrossRef citations to date
0
Altmetric
Diagnostic Profile

A profile of the binx health io® molecular point-of-care test for chlamydia and gonorrhea in women and men

ORCID Icon &
Pages 861-868 | Received 01 Nov 2020, Accepted 30 Jun 2021, Published online: 12 Jul 2021

References

  • Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2018. Atlanta: U.S. Department of Health and Human Services; 2019.
  • World Health Organization. Report on Global Sexually Transmitted Infection Surveillance 2018. 2018.
  • Rowley J, Hoorn SV, Korenromp E, et al. Chlamydia, Gonorrhoea, Trichomoniasis and Syphilis: global Prevalence and Incidence Estimates, 2016. Geneva: Bulletin of the World Health Organization; 2019.
  • Wi TE, Ndowa FJ, Ferreyra C, et al., Diagnosing sexually transmitted infections in resource‐constrained settings: challenges and ways forward. J Int AIDS Soc. 2019;22(S6): e25343.
  • Chesson HW, Kirkcaldy RD, Gift TL, et al. An illustration of the potential health and economic benefits of combating antibiotic-resistant gonorrhea. Sex Transm Dis. 2018;45(4):250.
  • LaMontagne DS, Fine DN, Marrazzo JM, et al. Chlamydia trachomatis infection in asymptomatic men. Am J Prev Med. 2003;24(1):36–42.
  • Lewis J, PJ W. Estimating local chlamydia incidence and prevalence using surveillance data. Epidemiol. 2017;28(4):492.
  • Herbst de Cortina S, Cc B, Joseph DD, et al. A systematic review of point of care testing for chlamydia trachomatis, neisseria gonorrhoeae, and trichomonas vaginalis. Infect Dis Obstet Gynecol. 2016;17:1–18.
  • Gaydos C, Hardick J. Point of care diagnostics for sexually transmitted infections: perspectives and advances. Expert Rev Anti Infect Ther. 2014;12(6):657–672.
  • Papp J, Schachter J, Gaydos C, et al. Recommendations for the laboratory-based detection of chlamydia trachomatis and neisseria gonorrhoeae — 2014. MMWR. 2014;63(RR–2):1–24.
  • Cherkaoui A, Renzi G, Mombelli M, et al. Comparison of analytical performances of the roche cobas 6800 CT/NG assay with the abbott m2000 real time CT/NG assay for detecting chlamydia trachomatis and neisseria gonorrhoeae. J Med Microbiol. 2019;68(2):197–200.
  • Unemo M, Hansen M, Hadad R, et al. Sensitivity, specificity, inclusivity and exclusivity of the updated aptima combo 2 assay, which provides detection coverage of the new diagnostic-escape chlamydia trachomatis variants. BMC Infect Dis. 2020;20(1):1–6.
  • Van Der Pol B, Fife K, Taylor SN, et al. Evaluation of the performance of the cobas CT/NG test for use on the cobas 6800/8800 systems for detection of chlamydia trachomatis and neisseria gonorrhoeae in male and female urogenital samples. J Clin Microbiol. 2019;57(4):e01996–01918.
  • Van Der Pol B, Hook EW 3rd, Williams JA, et al. Performance of the BD CTQX and GCQX amplified assays on the BD viper LT compared with the BD viper XTR system. Sex Transm Dis. 2015;42(9):521–523.
  • Nye MB, Osiecki J, Lewinski M, et al. Detection of chlamydia trachomatis and neisseria gonorrhoeae with the cobas CT/NG v2.0 test: performance compared with the BD probetec CT Q(X) and GC Q(X) amplified DNA and aptima AC2 assays. Sex Transm Infect. 2019;95(2):87–93.
  • Van Der Pol B, Torres-Chavolla E, Kodsi S, et al. Clinical Performance of the BD CTGCTV2 assay for the BD max™ system for detection of chlamydia trachomatis, neisseria gonorrhoeae and trichomonas vaginalis infections. Sex Transm Dis. 2021; 48:134-140.
  • Van Der Pol B, Williams JA, Fuller D, et al. Combined testing for chlamydia, gonorrhea, and trichomonas by use of the BD MAX CT/GC/TV assay with genitourinary specimen types. J Clin Microbiol. 2017;55(1):155–164.
  • Bristow CC, Morris SR, Little SJ, et al. Meta-analysis of the cepheid xpert® CT/NG assay for extragenital detection of chlamydia trachomatis (CT) and neisseria gonorrhoeae (NG) infections. Sex Health. 2019;16(4):314–319.
  • Gaydos CA, Van Der Pol B, Jett-Goheen M, et al. Performance of the cepheid CT/NG xpert rapid PCR test for detection of chlamydia trachomatis and neisseria gonorrhoeae. J Clin Microbiol. 2013;51(6):1666–1672.
  • De Salazar A, Espadafor B, Fuentes-López A, et al. Comparison between aptima assays (hologic) and the allplex STI essential assay (seegene) for the diagnosis of sexually transmitted infections. PloS One. 2019;14(9):e0222439.
  • Mm R, Na M, Tl G, et al., Potential for point-of-care tests to reduce chlamydia-associated burden in the United States: a mathematical modeling analysis. Clin Infect Dis. 2020. ;70(9): 1816–1823.
  • Olson-Chen C, Balaram K, Hackney DN, et al. Chlamydia trachomatis and adverse pregnancy outcomes: meta-analysis of patients with and without infection. Matern Child Health J. 2018;22(6):812–821.
  • Arustamyan K, Totoyan E, Karapetyan A, et al. The State of fallopian tubes in women with urogenital chlamydia and infertility. Georgian Med News. 2017;80:268–269.
  • Reekie J, Donovan B, Guy R, et al. Risk of ectopic pregnancy and tubal infertility following gonorrhea and chlamydia infections. Clin Infect Dis. 2019;69(9):1621–1623.
  • Buckner LR, Amedee AM, Albritton HL, et al. Chlamydia trachomatis infection of endocervical epithelial cells enhances early HIV transmission events. PLoS One. 2016;11(1):e0146663.
  • Dm P, Dp S, Holden J, et al. Evaluation of a novel electrochemical detection method for chlamydia trachomatis: application for point-of-care diagnostics. IEEE Trans Biomed Eng. 2010;58(3):755–758.
  • Trotter M, Borst N, Thewes R, et al. Electrochemical DNA sensing–principles, commercial systems, and applications. Biosens Bioelectron. 2020;154:112069.
  • Niemi S, Hiltunen-Back E, Puolakkainen M. et al. Chlamydia trachomatis genotypes and the Swedish new variant among urogenital chlamydia trachomatis strains in Finland. Infect Dis Obstet Gynecol. 2011; 2011.
  • Huntington SE, Burns RM, Harding-Esch E, et al., Modelling-based evaluation of the costs, benefits and cost-effectiveness of multipathogen point-of-care tests for sexually transmitted infections in symptomatic genitourinary medicine clinic attendees. BMJ Open. 2018. ;8(9): e020394.
  • Widdice LE, Hsieh Y-H, Silver B, et al. Performance of the atlas rapid test for chlamydia trachomatis and women’s attitudes toward point-of-care testing. Sex Transm Dis. 2018;45(11):723.
  • Em H-E, Av N, Hegazi A, et al., Impact of deploying multiple point-of-care tests with a ‘Sample First’ approach on a sexual health clinical care pathway. A service evaluation. Sex Transm Infect. 2017. ;93(6): 424–429.
  • Gettinger J, Van WN, Daniels B, et al., Patients are willing to wait for rapid sexually transmitted infection results in a University student health clinic. Sex Transm Dis. 2020. ;47(1): 67–69.
  • Gift T, Pate M, Hook E, et al. The rapid test paradox: when fewer cases detected lead to more cases treated: a decision analysis of tests for hlamydia trachomatis. Sex Transm. Dis. 1999;26(4):232–240.
  • Harding-Esch EM, Cousins EC, Chow S-L, et al. A 30-min Nucleic Acid amplification point-of-care test for genital Chlamydia trachomatis infection in women: a prospective. Multi-Center Study of Diagnostic Accuracy. ebiomed. 2018;28:120–127.
  • Van Der Pol B, Sn T, Mena L, et al., Evaluation of the performance of a point-of-care test for chlamydia and gonorrhea. JAMA Network Open. 2020 ;3(5): e204819–e204819.
  • Lm C, RJ G, Sn T, et al. Molecular test for chlamydia and gonorrhoea used at point of care in remote primary healthcare settings: a diagnostic test evaluation. Sex Transm Infect. 2018;94(5):340–345.
  • Wingrove I, McOwan A, Nwokolo N, et al. Diagnostics within the clinic to test for gonorrhoea and chlamydia reduces the time to treatment: a service evaluation. Sex Transm Infect. 2014;90(6):474.
  • Meyer T, Buder S. The laboratory diagnosis of neisseria gonorrhoeae: current testing and future demands. Pathog. 2020;9(2):91.
  • Mm M. The point-of-care diagnostic landscape for sexually transmitted infections (STIs).[cited 2020 Oct 20]. Available from: https://www.who.int/reproductivehealth/topics/rtis/Diagnostic-Landscape-for-STIs-2019.pdf.
  • Bristow CC, Wierzbicki M, Sarno M, et al. Performance of a single use rapid point-of-care pcr device for the detection of neisseria gonorrhoeae, chlamydia trachomatis and trichomonas vaginalis. Sex Trans Dis. 2020;47(S2):S148.
  • Morris SR, Bristow CC, Wierzbicki MR, et al. Performance of a single-use, rapid, point-of-care PCR device for the detection of neisseria gonorrhoeae, chlamydia trachomatis, and trichomonas vaginalis: a cross-sectional study. Lancet Infect Dis. 2020;5:668-676.
  • Van Der Pol B. Making the most of point-of-care testing for sexually transmitted diseases. Clin Infec Dis. 2019;70(9):1824–1825.
  • Fisk KM, Derouin A, Holm G, et al. Getting it right: the impact of point-of-care testing for gonorrhea and chlamydia in the urgent care setting. J Nurse Pract. 2020;16(5):388–393.
  • Korte BJ, Rompalo A, Manabe YC, et al. Overcoming challenges with the adoption of point-of-care testing: from Technology push and clinical needs to value propositions. Point Care. 2020;19(3):77–83.
  • Pai NP, Vadnais C, Denkinger C, et al. Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low-and middle-income Countries. PLoS Med. 2012;9(9):e1001306.
  • Stewart J, Bukusi E, Celum C, et al. Sexually transmitted infections among African women: an opportunity for combination sexually transmitted infection/HIV prevention. AIDS. 2020;34(5):651–658.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.