465
Views
6
CrossRef citations to date
0
Altmetric
Review

Application of selected biosensor techniques in clinical diagnostics

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 925-937 | Received 16 Mar 2021, Accepted 15 Jul 2021, Published online: 31 Jul 2021

References

  • Olaru A, Bala C, Jaffrezic-Renault N, et al. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit Rev Anal Chem. 2015;45(2):97–105.
  • Qian L, Durairaj S, Prins S, et al. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens Bioelectron. 2021;175:112836.
  • El Harrad L, Bourais I, Mohammadi H, et al. Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications. Sensors (Basel). 2018;18(1):164.
  • Liu J, Jalali M, Mahshid S, et al., Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst. 145(2): 364–384. 2020. .
  • Abreu CM, Soares-dos-Reis R, Melo PN, et al. Emerging Biosensing Technologies for Neuroinflammatory and Neurodegenerative Disease Diagnostics. Front Mol Neurosci. 2018;11:164.
  • Zheng Y, Geng X, Yang X, et al. Exploring Interactions of Aptamers with Aβ40 Amyloid Aggregates and Its Application: detection of Amyloid Aggregates. Anal Chem. 2020;92(3):2853–2858.
  • Mauriz E, Dey P, Lechuga LM. Advances in nanoplasmonic biosensors for clinical applications. Analyst. 2019;144(24):7105–7129.
  • Ferhan AR, Jackman JA, Park JH, et al. Nanoplasmonic sensors for detecting circulating cancer biomarkers. Adv Drug Deliv Rev. 2018;125:48–77.
  • Omar NAS, Fen YW, Abdullah J, et al. Sensitive Detection of Dengue Virus Type 2 E-Proteins Signals Using Self-Assembled Monolayers/Reduced Graphene Oxide-PAMAM Dendrimer Thin Film-SPR Optical Sensor. Sci Rep. 2020;10(1):2374.
  • Chen YH, Pulikkathodi AK, Ma YD, et al. A microfluidic platform integrated with field-effect transistors for enumeration of circulating tumor cells. Lab Chip. 2019;19(4):618–625.
  • Farzin L, Shamsipur M, Samandari L, et al. HIV biosensors for early diagnosis of infection: the intertwine of nanotechnology with sensing strategies. Talanta. 2020;206:120201.
  • Zhu Z, Li H, Xiang Y, et al. Pyridinium porphyrins and AuNPs mediated bionetworks as SPR signal amplification tags for the ultrasensitive assay of brain natriuretic peptide. Mikrochim Acta. 2020;187(6):327.
  • Masson JF. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sens. 2017;2(1):16–30.
  • Nabers A, Ollesch J, Schartner J, et al. Amyloid-β-Secondary Structure Distribution in Cerebrospinal Fluid and Blood Measured by an Immuno-Infrared-Sensor: a Biomarker Candidate for Alzheimer’s Disease. Anal Chem. 2016;88(5):2755–2762.
  • Masson JF. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst. 2020;145(11):3776–3800.
  • Chen C, Wang J. Optical biosensors: an exhaustive and comprehensive review. Analyst. 2020;145(5):1605–1628.
  • Bai Y, Xu T, Graphene-Based ZX. Biosensors for Detection of Biomarkers. Micromachines (Basel). 2020;11(1):60.
  • Nurrohman DT, Wang YH, Chiu NF. Exploring Graphene and MoS2 Chips Based Surface Plasmon Resonance Biosensors for Diagnostic Applications. Front Chem. 2020;8:728.
  • Vermisoglou E, Panáček D, Jayaramulu K, et al. Human virus detection with graphene-based materials. Biosens Bioelectron. 2020;166:112436.
  • Rostami S, Mehdinia A, Niroumand R, et al. Enhanced LSPR performance of graphene nanoribbons-silver nanoparticles hybrid as a colorimetric sensor for sequential detection of dopamine and glutathione. Anal Chim Acta. 2020;1120:11–23.
  • Ou J, Zhou Z, Chen Z, et al. Optical Diagnostic Based on Functionalized Gold Nanoparticles. Int J Mol Sci. 2019;20(18):4346.
  • Yaqoob SB, Adnan R, Rameez Khan RM, et al. Gold, Silver, and Palladium Nanoparticles: a Chemical Tool for Biomedical Applications. Front Chem. 2020;8:376.
  • Basso CR, Tozato CC, Junior JPA, et al. A fast and highly sensitive method for the detection of canine distemper virus by the naked eye. Anal Methods. 2015;7(6):2264–2267.
  • Dutta S, Saikia K, Nath P. Smartphone based LSPR sensing platform for bio-conjugation detection and quantification. RSC Adv. 2016;6:21871–21880.
  • Asif M, Aziz A, Dao AQ, et al. Real-time tracking of hydrogen peroxide secreted by live cells using MnO2 nanoparticles intercalated layered doubled hydroxide nanohybrids. Anal Cchim Acta. 2015;898:34–41.
  • Asif M, Aziz A, Ashraf G, et al. Facet-inspired core-shell gold nanoislands on metal oxide octadecahedral Heterostructures: high sensing performance toward sulfide in biotic fluids. ACS Appl Mater Interfaces. 2018;10:36675–36685.
  • Seo G, Lee G, Kim MJ, et al., Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano. 14(4): 5135–5142. 2020. .
  • Wang C, Lakshmipriya T, Gopinath SCB. Amine-Aldehyde Chemical Conjugation on a Potassium Hydroxide-Treated Polystyrene ELISA Surface for Nanosensing an HIV-p24 Antigen. Nanoscale Res Lett. 2019;14(1):21.
  • Luo Z, Chen L, Liang C, et al. Porous carbon films decorated with silver nanoparticles as a sensitive SERS substrate, and their application to virus identification. Microchim Acta. 2017;184:3505–3511.
  • Liu C, Zeng X, An Z, et al. Sensitive Detection of Exosomal Proteins via a Compact Surface Plasmon Resonance Biosensor for Cancer Diagnosis. ACS Sens. 2018;3(8):1471–1479.
  • Zhu X, Zhang Y, Liu M, et al. 2D titanium carbide MXenes as emerging optical biosensing platforms. Biosens Bioelectron. 2021;171:112730.
  • Aziz A, Asif M, Ashraf G, et al. Advancements in electrochemical sensing of hydrogen peroxide, glucose and dopamine by using 2D nanoarchitectures of layered double hydroxides or metal dichalcogenides. A review. Microchim Acta. 2019;186(10):671.
  • Wu Q, Li N, Wang Y, et al. A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection. Biosens Bioelectron. 2019;144:111697.
  • Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol. 2013;8(7):497–501.
  • Hu H, Zavabeti A, Quan H, et al. Recent advances in two-dimensional transition metal dichalcogenides for biological sensing. Biosens Bioelectron. 2019;142:111573.
  • Chiu NF, Yang HT. High-Sensitivity Detection of the Lung Cancer Biomarker CYFRA21-1 in Serum Samples Using a Carboxyl-MoS2 Functional Film for SPR-Based Immunosensors. Front Bioeng Biotechnol. 2020;8:234.
  • Yu T, Wei Q. Plasmonic molecular assays: recent advances and applications for mobile health. Nano Res. 2018;11(10):5439–5473.
  • Clinical ME. Applications of Visual Plasmonic Colorimetric Sensing. Sensors (Basel). 2020;20(21):6214.
  • Liu B, Liu X, Shi S, et al. Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomater. 2016;40:100–118.
  • Mauriz E. Low-Fouling Substrates for Plasmonic Sensing of Circulating Biomarkers in Biological Fluids. Biosensors (Basel). 2020;10(6):63.
  • Vaisocherová-Lísalová H, Surman F, Víšová I, et al. Copolymer Brush-Based Ultralow-Fouling Biorecognition Surface Platform for Food Safety. Anal Chem. 2016;88(21):10533–10539.
  • Andruzzi L, Senaratne W, Hexemer A, et al. Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces. Langmuir. 2005;21(6):2495–2504.
  • Mei Y, Zhong C, Li L, et al. Single-layer graphene-coated gold chip for electrochemical surface plasmon resonance study. Anal Bioanal Chem. 2019;411(19):4577–4585.
  • Li Z, Munro K, Ebralize II, et al. N-Heterocyclic Carbene Self-Assembled Monolayers on Gold as Surface Plasmon Resonance Biosensors. Langmuir. 2017;33(49):13936–13944.
  • Wang YS, Yau S, Chau LK, et al. Functional Biointerfaces Based on Mixed Zwitterionic Self-Assembled Monolayers for Biosensing Applications. Langmuir. 2019;35(5):1652–1661.
  • Reverté L, Campbell K, Rambla-Alegre M, et al. Immunosensor array platforms based on self-assembled dithiols for the electrochemical detection of tetrodotoxins in puffer fish. Anal Chim Acta. 2017;989:95–103.
  • Onaizi SA. Enzymatic removal of protein fouling from self-assembled cellulosic nanofilms: experimental and modeling studies. Eur Biophys J. 2018;47(8):951–960.
  • Kankate L, Aguf A, Großmann H, et al. Vapor Phase Exchange of Self-Assembled Monolayers for Engineering of Biofunctional Surfaces. Langmuir. 2017;33(15):3847–3854.
  • Yuan H, Ji W, Chu S, et al. Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles. Biosens Bioelectron. 2018;117:637–643.
  • Nowinski AK, Sun F, White AD, et al. Sequence, structure, and function of peptide self-assembled monolayers. J Am Chem Soc. 2012;134(13):6000–6005.
  • Haes AJ, Chang L, Klein WL, et al. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc. 2005;127(7):2264–2271.
  • Nie W, Wang Q, Zou L, et al. Low-Fouling Surface Plasmon Resonance Sensor for Highly Sensitive Detection of MicroRNA in a Complex Matrix Based on the DNA Tetrahedron. Anal Chem. 2018;90(21):12584–12591.
  • Badilescu S, Raju D, Bathini S, et al. Gold Nano-Island Platforms for Localized Surface Plasmon Resonance Sensing: a Short Review. Molecules. 2020;25(20):4661.
  • Riedel T, Hageneder S, Surman F, et al. Plasmonic Hepatitis B Biosensor for the Analysis of Clinical Saliva. Anal Chem. 2017;89(5):2972–2977.
  • Leeman M, Albers WM, Bombera R, et al. Asymmetric flow field-flow fractionation coupled to surface plasmon resonance detection for analysis of therapeutic proteins in blood serum. Anal Bioanal Chem. 2021;413(1):117–127.
  • Langer N, Steinicke F, Lindigkeit R, et al. Determination of cross-reactivity of poly- and monoclonal antibodies for synthetic cannabinoids by direct SPR and ELISA. Forensic Sci Int. 2017;280:25–34.
  • Heggestad JT, Fontes CM, Joh DY, et al. In Pursuit of Zero 2.0: recent Developments in Nonfouling Polymer Brushes for Immunoassays. Adv Mater. 2020;32(2):e1903285.
  • Li B, Cheng T, Chen J, et al. Graphene-Enhanced Surface Plasmon Resonance Liquid Refractive Index Sensor Based on Photonic Crystal Fiber. Sensors (Basel). 2019;19(17):3666.
  • Kimoto Y, Terada Y, Hoshino Y, et al. Screening of a Glycopolymer Library of GM1 Mimics Containing Hydrophobic Units Using Surface Plasmon Resonance Imaging. ACS Omega. 2019;4(24):20690–20696.
  • Mojtahed Poor S, Ulshöfer T, Gabriel LA, et al. Immunogenicity assay development and validation for biological therapy as exemplified by ustekinumab. Clin Exp Immunol. 2019;196(2):259–275.
  • Bockova M, Song XC, Gedeonova E, et al. Surface plasmon resonance biosensor for detection of preganancy associated plasma protein A2 in clinical samples. Anal Bioanal Chem. 2016;408(26):7265–7269.
  • Chiu NF, Tai MJ, Wu HP, et al. Development of a bioaffinity SPR immunosensor based on functionalized graphene oxide for the detection of pregnancy-associated plasma protein A2 in human plasma. Int J Nanomed. 2019;14:6735–6748.
  • Surface Plasmon SP. Resonance: a Boon for Viral Diagnostics. Reference Mod Life Sci. 2017.
  • Fan Y, Cui M, Liu Y, et al. Selection and characterization of DNA aptamers for constructing colorimetric biosensor for detection of PBP2a. Spectrochim Acta A Mol Biomol Spectrosc. 2019;228:117735.
  • Odeh F, Nsairat H, Alshaer W, et al., Aptamers Chemistry: chemical Modifications and Conjugation Strategies. Molecules. 25(1): 3. 2019.
  • Zhao J, Liang D, Gao S, et al. Analyte-resolved magnetoplasmonic nanocomposite to enhance SPR signals and dual recognition strategy for detection of BNP in serum samples. Biosens Bioelectron. 2019;141:111440.
  • Kovacevic KD, Gilbert JC, Jilma B. Pharmacokinetics, pharmacodynamics and safety of aptamers. Adv Drug Deliv Rev. 2018;134:36–50.
  • Cao F, Lu X, Hu X, et al. In vitro selection of DNA aptamers binding pesticide fluoroacetamide. Biosci Biotechnol Biochem. 2016;80(5):823–832.
  • Capek I. Polymer decorated gold nanoparticles in nanomedicine conjugates. Adv Colloid Interface Sci. 2017;249:386–399.
  • Cennamo N, Pasquardini L, Arcadio F, et al. D-shaped plastic optical fibre aptasensor for fast thrombin detection in nanomolar range. Sci Rep. 2019;9(1):18740.
  • Ning Y, Hu J, Lu F. Aptamers used for biosensors and targeted therapy. Biomed Pharmacother. 2020;132:110902.
  • Kim MJ, Jeong S. In Vitro Selection of RNA Aptamer and Specific Targeting of ErbB2 in Breast Cancer Cells. Nucleic Acid Ther. 2011;21(3):173–178.
  • Dincer C, Bruch R, Costa-Rama E, et al. Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater. 2019;31(30):e1806739.
  • Poturnayová A, Ľ D, Buríková M, et al. Detection of Breast Cancer Cells Using Acoustics Aptasensor Specific to HER2 Receptors. Biosensors (Basel). 2019;9(2):72.
  • Zhou Y, Xu H, Wang H, et al. Detection of breast cancer-derived exosomes using the horseradish peroxidase-mimicking DNAzyme as an aptasensor. Analyst. 2019;145(1):107–114.
  • Zou X, Wu J, Gu J, et al. Application of Aptamers in Virus Detection and Antiviral Therapy. Front Microbiol. 2019;10:1462.
  • Sypabekova M, Dukenbayev K, Tsepke A, et al. An aptasensor for the detection of Mycobacterium tuberculosis secreted immunogenic protein MPT64 in clinical samples towards tuberculosis detection. Sci Rep. 2019;9(1):16273.
  • Chiu NF, Kuo CT, Chen CY. High-affinity carboxyl-graphene oxide-based SPR aptasensor for the detection of hCG protein in clinical serum samples. Int J Nanomedicine. 2019;14:4833–4847.
  • Yousefi M, Dehghani S, Nosrati R, et al. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: a review. Biosens Bioelectron. 2019;130:1–19.
  • Ren HX, Miao YB, Zhang Y. An aptamer based fluorometric assay for amyloid-β oligomers using a metal-organic framework of type Ru@MIL-101(Al) and enzyme-assisted recycling. Mikrochim Acta. 2020;187(2):114.
  • Shahdost-Fard F, Roushani M. Designing of an ultrasensitive BCM-7 aptasensor based on an SPCE modified with AuNR for promising distinguishing of autism disorder. Talanta. 2020;209:120506.
  • Lepenies B, Lang R. Editorial: lectins and Their Ligands in Shaping Immune Responses. Front Immunol. 2019;10:2379.
  • Busold S, Nagy NA, Tas SW, et al. Various Tastes of Sugar: the Potential of Glycosylation in Targeting and Modulating Human Immunity via C-Type Lectin Receptors. Front Immunol. 2020;11:134.
  • Zhou JY, Oswald DM, Oliva KD, et al. The Glycoscience of Immunity. Trends Immunol. 2018;39(7):523–535.
  • Diwan D, Shinkai K, Tetsuka T, et al. Synthetic Assembly of Mannose Moieties Using Polymer Chemistry and the Biological Evaluation of Its Interaction towards Concanavalin A. Molecules. 2017;22(1):157.
  • Lobry M, Lahem D, Loyez M, et al. Non-enzymatic D-glucose plasmonic optical fiber grating biosensor. Biosens Bioelectron. 2019;142:111506.
  • Shewell LK, Wang JJ, Paton JC, et al. Detection of N-glycolylneuraminic acid biomarkers in sera from patients with ovarian cancer using an engineered N-glycolylneuraminic acid-specific lectin SubB2M. Biochem Biophys Res Commun. 2018;507(1–4):173–177.
  • Wakao M, Watanabe S, Kurahashi Y, et al. Optical Fiber-Type Sugar Chip Using Localized Surface Plasmon Resonance. Anal Chem. 2017;89(2):1086–1091.
  • Cui F, Zhou HS. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens Bioelectron. 2020;165:112349.
  • Chhikara N, Saraswat M, Tomar AK, et al. Human epididymis protein-4 (HE-4): a novel cross-class protease inhibitor. PLoS One. 2012;7(11):e47672.
  • Zhang JW, Xu QQ, Kuang YL, et al. Predictors for spontaneous pregnancy after microsurgical subinguinal varicocelectomy: a prospective cohort study. Int Urol Nephrol. 2017;49(6):955‐960.
  • Guo X, Xin XL, Gan L, et al. Determination of the Accessibility of Acidic Oligosaccharide Sugar Chain to Blood-Brain Barrier Using Surface Plasmon Resonance. Biol Pharm Bull. 2006;29(1):60–63.
  • Yin Z, Cheng X, Wang G, et al. SPR immunosensor combined with Ti4+@TiP nanoparticles for the evaluation of phosphorylated alpha-synuclein level. Mikrochim Acta. 2020;187(9):509.
  • Karami P, Bagheri H, Johari-Ahar M, et al. Dual-modality impedimetric immunosensor for early detection of prostate-specific antigen and myoglobin markers based on antibody-molecularly imprinted polymer. Talanta. 2019;202:111–122.
  • Pallares RM, Thanh NTK, Su X. Sensing of circulating cancer biomarkers with metal nanoparticles. Nanoscale. 2019;11(46):22152–22171.
  • Fattahi Z, Khosroushahi AY, Hasanzadeh M. Recent progress on developing of plasmon biosensing of tumor biomarkers: efficient method towards early stage recognition of cancer. Biomed Pharmacother. 2020;132:110850.
  • Bellassai N, D’Agata R, Jungbluth V, et al. Surface Plasmon Resonance for Biomarker Detection: advances in Non-invasive Cancer Diagnosis. Front Chem. 2019;7:570.
  • Liu C, Meng F, Wang B, et al. Plasmonic nanograting enhanced fluorescence for protein microarray analysis of carcinoembryonic antigen (CEA). Anal Methods. 2018;10:145–150.
  • Xu J, Chen Y. Surface plasmon resonance sensing with adjustable sensitivity based on a flexible liquid core coupling unit. Talanta. 2018;184:468–474.
  • Yeung WK, Chen HY, Sun JJ, et al. Multiplex detection of urinary miRNA biomarkers by transmission surface plasmon resonance. Analyst. 2018;143(19):4715–4722.
  • Cai J, Ding L, Gong P, et al. A colorimetric detection of microRNA-148a in gastric cancer by gold nanoparticle-RNA conjugates. Nanotechnology. 2020;31(9):095501.
  • Blanco-Formoso M, Alvarez-Puebla RA. Cancer Diagnosis through SERS and Other Related Techniques. Int J Mol Sci. 2020;21(6):2253.
  • Sun Z, Shi K, Yang S, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018;17(1):147.
  • Sina AA, Carrascosa LG, Palanisamy R, et al. Methylsorb: a simple method for quantifying DNA methylation using DNA-gold affinity interactions. Anal Chem. 2014;86(20):10179–10185.
  • Carrascosa LG, Sina AA, Palanisamy R, et al. Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation. Chem Commun (Camb). 2014;50(27):3585–3588.
  • Nazmul Islam M, Yadav S, Hakimul Haque M, et al. Optical biosensing strategies for DNA methylation analysis. Biosens Bioelectron. 2017;92:668–678.
  • Zhang Q, Wu Y, Xu Q, et al. Recent advances in biosensors for in vitro detection and in vivo imaging of DNA methylation. Biosens Bioelectron. 2021;171:112712.
  • Lee TH, Hirst DJ, Kulkarni K, et al. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: expanding the Spotlight onto Biomembrane Structure. Chem Rev. 2018;118(11):5392–5487.
  • Xu R, Li J, Liu L, et al. Original signal amplification assay for N-Terminal pro-brain natriuretic peptide detection based on Bi2MoO6 photosensitive matrix. Anal Chim Acta. 2020;1101:58–64.
  • Zhao H, Ma C, Chen M. A novel fluorometric method for inorganic pyrophosphatase detection based on G-quadruplex-thioflavin T. Mol Cell Probes. 2019;43:29–33.
  • Harpaz D, Koh B, Marks RS, et al. Point-of-Care Surface Plasmon Resonance Biosensor for Stroke Biomarkers NT-proBNP and S100β Using a Functionalized Gold Chip with Specific Antibody. Sensors (Basel). 2019;19(11):2533.
  • Asif M, Ajmal M, Ashraf G, et al. The role of biosensors in coronavirus disease-2019 outbreak. Curr Opin Electrochem. 2020;23:174–184.
  • Samson R, Navale GR, Dharne MS. Biosensors: frontiers in rapid detection of COVID-19. 3 Biotech. 2020;10(9):385.
  • Soler M, Estevez MC, Cardenosa-Rubio M, et al. How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sens. 2020;5(9):2663–2678.
  • Hackner K, Errhalt P, Willheim M, et al. Diagnostic accuracy of two commercially available rapid assays for detection of IgG and IgM antibodies to SARS-CoV-2 compared to ELISA in a low-prevalence population. GMS Hyg Infect Control. 2020;15:Doc28.
  • Mauriz E. Recent Progress in Plasmonic Biosensing Schemes for Virus Detection. Sensors (Basel). 2020;20(17):4745.
  • Li Z, Leustean L, Inci F, et al. Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care. Biotechnol Adv. 2019;37(8):107440.
  • Chen H, Liu K, Li Z, et al. Point of care testing for infectious diseases. Clin Chim Acta. 2019;493:138–147.
  • Moulahoum H, Ghorbanizamani F, Zihnioglu F, et al. How should diagnostic kits development adapt quickly in COVID 19-like pandemic models? Pros and cons of sensory platforms used in COVID-19 sensing. Talanta. 2021;222:121534.
  • Sternberg A, Naujokat C. Structural features of coronavirus SARS-CoV-2 spike protein: targets for vaccination. Life Sci. 2020;257:118056.
  • Yu H, Kim K, Ma K, et al. Enhanced detection of virus particles by nanoisland-based localized surface plasmon resonance. Biosens Bioelectron. 2013;41:249–255.
  • Yakes BJ, Papafragkou E, Conrad SM, et al. Surface plasmon resonance biosensor for detection of feline calicivirus, a surrogate for norovirus. Int J Food Microbiol. 2013;162(2):152–158.
  • Xu H, Gu D, He J, et al. Multiplex biomarker analysis biosensor for detection of hepatitis B virus. Biomed Mater Eng. 2015;26(Suppl 1):S2091–100.
  • Ashiba H, Sugiyama Y, Wang X, et al. Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels. Biosens Bioelectron. 2017;93:260–266.
  • Shi L, Sun Q, He J, et al. Development of SPR biosensor for simultaneous detection of multiplex respiratory viruses. Biomed Mater Eng. 2015;26(Suppl1):S2207–16.
  • Bai H, Wang R, Hargis B, et al. A SPR aptasensor for detection of avian influenza virus H5N1. Sensors (Basel). 2012;12(9):12506–12518.
  • Nguyen VT, Seo HB, Kim BC, et al. Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosens Bioelectron. 2016;86:293–300.
  • Das CM, Guo Y, Yang G, et al., Gold Nanorod Assisted Enhanced Plasmonic Detection Scheme of COVID-19 SARS-CoV-2 Spike Protein. Adv Theory Simul. 3(11): 2000185. 2020.
  • Mahari S, Roberts A, Shahdeo D, et al. eCovSens-ultrasensitive in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19. BioRxiv. 2020;1-20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.