827
Views
11
CrossRef citations to date
0
Altmetric
Review

Enzymatic cross-linking of collagens in organ fibrosis – resolution and assessment

, , , , & ORCID Icon
Pages 1049-1064 | Received 18 Jan 2021, Accepted 28 Jul 2021, Published online: 24 Aug 2021

References

  • Hornstra IK, Birge S, Starcher B, et al. Lysyl oxidase is required for vascular and diaphragmatic development in mice. J Biol Chem. 2003;278(16):14387–14393.
  • Mäki JM, Sormunen R, Lippo S, et al. Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. Am J Pathol. 2005;167(4):927–936.
  • Herchenhan A, Uhlenbrock F, Eliasson P, et al. Lysyl oxidase activity is required for ordered collagen fibrillogenesis by tendon cells. J Biol Chem. 2015;290(26):16440–16450.
  • Turecek C, Fratzl-Zelman N, Rumpler M, et al. Collagen cross-linking influences osteoblastic differentiation. Calcif Tissue Int. 2008;82(5):392–400.
  • Baum CL, Arpey CJ. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg. 2005;31(6):674–686. discussion 686
  • Fushida-Takemura H, Fukuda M, Maekawa N, et al. Detection of lysyl oxidase gene expression in rat skin during wound healing. Arch Dermatol Res. 1996;288(1):7–10.
  • Nicholas B, Smethurst P, Verderio E, et al. Cross-linking of cellular proteins by tissue transglutaminase during necrotic cell death: a mechanism for maintaining tissue integrity. Biochem J. 2003;371(2):413–422.
  • Haroon ZA, Hettasch JM, Lai TS, et al. Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis. FASEB J. 1999;13(13):1787–1795.
  • Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications. Mol Aspects Med. 2019;65:2–15.
  • Eyre DR, Wu -J-J. Collagen cross-links, in: top. Curr Chem. 2005;207–229. DOI:https://doi.org/10.1007/b103828
  • Añazco C, López-Jiménez AJ, Rafi M, et al. Lysyl oxidase-like-2 cross-links collagen IV of glomerular basement membrane. J Biol Chem. 2016;291(50):25999–26012.
  • Yamauchi M, Sricholpech M. Lysine post-translational modifications of collagen. Essays Biochem. 2012;52:113–133
  • Griffin M, Casadio R, Bergamini CM. Transglutaminases: nature’s biological glues. Biochem J. 2002;368(2):377–396.
  • Thomázy V, Fésüs L. Differential expression of tissue transglutaminase in human cells. An immunohistochemical study. Cell Tissue Res. 1989;255(1):215–224.
  • Belkin AM. Extracellular TG2: emerging functions and regulation. FEBS J. 2011;278(24):4704–4716.
  • Collighan RJ, Griffin M. Transglutaminase 2 cross-linking of matrix proteins: biological significance and medical applications. Amino Acids. 2009;36(4):659–670.
  • Péterfi Z, Geiszt M. Peroxidasins: novel players in tissue genesis. Trends Biochem Sci. 2014;39(7):305–307.
  • Péterfi Z, Donkó A, Orient A, et al. Peroxidasin is secreted and incorporated into the extracellular matrix of myofibroblasts and fibrotic kidney. Am J Pathol. 2009;175(2):725–735.
  • Sun Z, Guo SS, Fässler R. Integrin-mediated mechanotransduction. J Cell Biol. 2016;215:445–456.
  • Georges PC, Hui -J-J, Gombos Z, et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1147–54.
  • Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fibrosis. J Clin Invest. 2018;128(1):45–53.
  • Parker MW, Rossi D, Peterson M, et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest. 2014;124(4):1622–1635.
  • Wynn TA. Fibrotic disease and the TH1/TH2 paradigm. Nat Rev Immunol. 2004;4(8):583–594.
  • Jensen C, Holm Nielsen S, Eslam M, et al. Cross-linked multimeric pro-peptides of type III collagen (PC3X) in hepatocellular carcinoma - a biomarker that provides additional prognostic value in AFP positive patients. J Hepatocell Carcinoma. 2020;7:301–313.
  • Rosenquist C, Fledelius C, Christgau S, et al. Serum CrossLaps one step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. Clin Chem. 1998;44(11):2281–2289. http://www.ncbi.nlm.nih.gov/pubmed/9799755
  • Bihlet AR, Byrjalsen I, Bay-Jensen AC, et al. Associations between biomarkers of bone and cartilage turnover, gender, pain categories and radiographic severity in knee osteoarthritis. Arthritis Res Ther. 2019;21(1):1–10.
  • Bin Cheng H, Hao B, Sun J, et al. C-terminal cross-linked telopeptides of type II collagen as biomarker for radiological knee osteoarthritis: a meta-analysis. Cartilage. 2020;11(4):512–520.
  • Gjaltema RAF, Bank RA. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit Rev Biochem Mol Biol. 2017;52(1):74–95.
  • Amudeswari S, Liang JN, Chakrabarti B. Polar-apolar characteristics and fibrillogenesis of glycosylated collagen. Collagen Relat Res. 1987;7(3):215–223.
  • Bätge B, Winter C, Notbohm H, et al. Glycosylation of human bone collagen I in relation to lysylhydroxylation and fibril diameter. J Biochem. 1997;122(1):109–115.
  • Notbohm H, Nokelainen M, Myllyharju J, et al. Recombinant human type II collagens with low and high levels of hydroxylysine and its glycosylated forms show marked differences in fibrillogenesis in vitro. J Biol Chem. 1999;274(13):8988–8992.
  • Terajima M, Perdivara I, Sricholpech M, et al. Glycosylation and cross-linking in bone type I collagen. J Biol Chem. 2014;289(33):22636–22647.
  • Sricholpech M, Perdivara I, Yokoyama M, et al. Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J Biol Chem. 2012;287(27):22998–23009.
  • Schegg B, Hülsmeier AJ, Rutschmann C, et al. Core glycosylation of collagen is initiated by two β(1-O)Galactosyltransferases. Mol Cell Biol. 2009;29(4):943–952.
  • Kar K, Ibrar S, Nanda V, et al. Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures. Biochemistry. 2009;48(33):7959–7968.
  • Kar K, Amin P, Bryan MA, et al. Self-association of collagen triple helic peptides into higher order structures. J Biol Chem. 2006;281(44):33283–33290.
  • Doege KJ, Fessler JH. Folding of carboxyl domain and assembly of procollagen I. J Biol Chem. 1986;261(19):8924–8935. http://www.ncbi.nlm.nih.gov/pubmed/3722183
  • Bächinger HP, Bruckner P, Timpl R, et al. Folding mechanism of the triple helix in type-III collagen and type-III pN-collagen. Role of disulfide bridges and peptide bond isomerization. Eur J Biochem. 1980;106(2):619–632.
  • Lees JF, Bulleid NJ. The role of cysteine residues in the folding and association of the COOH- terminal propeptide of types I and III procollagen. J Biol Chem. 1994;269(39):24354–24360.
  • DiChiara AS, Li RC, Suen PH, et al. A cysteine-based molecular code informs collagen C-propeptide assembly. Nat Commun. 2018;9(1):4206.
  • Pace JM, Kuslich CD, Willing MC, et al. Disruption of one intra-chain disulphide bond in the carboxyl-terminal propeptide of the proalpha1(I) chain of type I procollagen permits slow assembly and secretion of overmodified, but stable procollagen trimers and results in mild osteogenesis imperfec. J Med Genet. 2001;38(7):443–449.
  • Siebold B, Deutzmann R, Kühn K. The arrangement of intra- and intermolecular disulfide bonds in the carboxyterminal, non-collagenous aggregation and cross-linking domain of basement-membrane type IV collagen. Eur J Biochem. 1988;176(3):617–624.
  • Duncan KG, Fessler LI, Bächinger HP, et al. Procollagen IV. Association to tetramers. J Biol Chem. 1983;258(9):5869–5877. http://www.ncbi.nlm.nih.gov/pubmed/6853554
  • Hudson DM, Archer M, King KB, et al. Glycation of type I collagen selectively targets the same helical domain lysine sites as lysyl oxidase-mediated cross-linking. J Biol Chem. 2018;293(40):15620–15627.
  • Gautieri A, Redaelli A, Buehler MJ, et al. Age- and diabetes-related nonenzymatic crosslinks in collagen fibrils: candidate amino acids involved in Advanced Glycation End-products. Matrix Biol. 2014;34:89–95.
  • Collier TA, Nash A, Birch HL, et al. Effect on the mechanical properties of type I collagen of intra-molecular lysine-arginine derived advanced glycation end-product cross-linking. J Biomech. 2018;67:55–61.
  • Verzijl N, DeGroot J. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage. Arthritis Rheumatism. 2002;46:114–123.
  • Chen A, Temple M, Ng D, et al. Age-related crosslinking alters tensile properties of articular cartilage. Orthop Res Soc. 2001;26:0128.
  • Hausmann E. Cofactor requirements for the enzymatic hydroxylation of lysine in a polypeptide precursor of collagen. Biochim Biophys Acta. 1967;133(3):591–593.
  • Hautala T, Byers MG, Eddy RL, et al. Cloning of human lysyl hydroxylase: complete cDNA-derived amino acid sequence and assignment of the gene (PLOD) to chromosome 1p36.3→p36.2. Genomics. 1992;13(1):62–69.
  • Takaluoma K, Lantto J, Myllyharju J. Lysyl hydroxylase 2 is a specific telopeptide hydroxylase, while all three isoenzymes hydroxylate collagenous sequences. Matrix Biol. 2007;26(5):396–403.
  • Kellokumpu S, Sormunen R, Heikkinen J, et al. Lysyl hydroxylase, a collagen processing enzyme, exemplifies a novel class of luminally-oriented peripheral membrane proteins in the endoplasmic reticulum. J Biol Chem. 1994;269(48):30524–30529.
  • Suokas M, Lampela O, Juffer AH, et al. Retrieval-independent localization of lysyl hydroxylase in the endoplasmic reticulum via a peptide fold in its iron-binding domain. Biochem J. 2003;370(3):913–920.
  • Boudko SP, Ishikawa Y, Lerch TF, et al. Crystal structures of wild-type and mutated cyclophilin B that causes hyperelastosis cutis in the American quarter horse. BMC Res Notes. 2012;5(1):626.
  • Ishikawa Y, Vranka JA, Boudko SP, et al. Mutation in cyclophilin B that causes hyperelastosis cutis in american quarter horse does not affect peptidylprolyl cis-trans isomerase activity but shows altered cyclophilin b-protein interactions and affects collagen folding. J Biol Chem. 2012;287(26):22253–22265.
  • Heard ME, Besio R, Weis MA, et al. Sc65-null mice provide evidence for a novel endoplasmic reticulum complex regulating collagen lysyl hydroxylation. PLoS Genet. 2016;12(4):1–24.
  • Gjaltema RAF, van der Stoel MM, Boersema M, et al. Disentangling mechanisms involved in collagen pyridinoline cross-linking: the immunophilin FKBP65 is critical for dimerization of lysyl hydroxylase 2. Proc Natl Acad Sci U S A. 2016;113(26):7142–7147.
  • Duran I, Martin JH, Weis MA, et al. A chaperone complex formed by HSP47, FKBP65, and BiP modulates telopeptide lysyl hydroxylation of type I procollagen. J Bone Miner Res. 2017;32(6):1309–1319.
  • Chen Y, Guo H, Terajima M, et al. Lysyl hydroxylase 2 is secreted by tumor cells and can modify collagen in the extracellular space. J Biol Chem. 2016;291(50):25799–25808.
  • Salo AM, Wang C, Sipilä L, et al. Lysyl hydroxylase 3 (LH3) modifies proteins in the extracellular space, a novel mechanism for matrix remodeling. J Cell Physiol. 2006;207:644–653.
  • Wang C, Ristiluoma MM, Salo AM, et al. Lysyl hydroxylase 3 is secreted from cells by two pathways. J Cell Physiol. 2012;227(2):668–675.
  • Wang C, Kovanen V, Raudasoja P, et al. The glycosyltransferase activities of lysyl hydroxylase 3 (LH3) in the extracellular space are important for cell growth and viability. J Cell Mol Med. 2009;13:508–521.
  • Kivirikko KI, Ryhänen L, Anttinen H, et al. Further hydroxylation of lysyl residues in collagen by protocollagen lysyl hydroxylase in vitro. Biochemistry. 1973;12(24):4966–4971.
  • Puistola U, Turpeenniemi-Hujanen TM, Myllylä R, et al. Studies on the lysyl hydr oxylase reaction. II. Inhibition kinetics and the reaction mechanism. Biochim Biophys Acta. 1980;611(1):51–60.
  • Zdzisińska B, Żurek A, Kandefer-Szerszeń M. Alpha-Ketoglutarate as a molecule with pleiotropic activity: well-known and novel possibilities of therapeutic use. Arch Immunol Ther Exp (Warsz). 2017;65(1):21–36.
  • Martin M, Ferrier B, Baverel G. Transport and utilization of alpha-ketoglutarate by the rat kidney in vivo. Pflugers Arch. 1989;413(3):217–224.
  • Wagner BM, Donnarumma F, Wintersteiger R, et al. Simultaneous quantitative determination of alpha-ketoglutaric acid and 5-hydroxymethylfurfural in human plasma by gas chromatography-mass spectrometry. Anal Bioanal Chem. 2010;396(7):2629–2637.
  • Otto C, Yovkova V, Barth G. Overproduction and secretion of α-ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol. 2011;92(4):689–695.
  • Ruotsalainen H, Sipilä L, Vapola M, et al. Glycosylation catalyzed by lysyl hydroxylase 3 is essential for basement membranes. J Cell Sci. 2006;119(4):625–635.
  • Rautavuoma K, Takaluoma K, Sormunen R, et al. Premature aggregation of type IV collagen and early lethality in lysyl hydroxylase 3 null mice. Proc Natl Acad Sci U S A. 2004;101(39):14120–14125.
  • Heikkinen J, Risteli M, Wang C, et al. Lysyl hydroxylase 3 is a multifunctional protein possessing collagen glucosyltransferase activity. J Biol Chem. 2000;275(46):36158–36163.
  • Csiszar K. Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol. 2001;70:1–32.
  • Maruhashi T, Kii I, Saito M, et al. Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J Biol Chem. 2010;285(17):13294–13303.
  • Kalamajski S, Bihan D, Bonna A, et al. Fibromodulin interacts with collagen cross-linking sites and activates lysyl oxidase. J Biol Chem. 2016;291(15):7951–7960.
  • Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol. 2008;20(5):495–501.
  • Zhao B, Zhou J. Decreased expression of elastin, fibulin-5 and lysyl oxidase-like 1 in the uterosacral ligaments of postmenopausal women with pelvic organ prolapse. J Obstet Gynaecol Res. 2012;38(6):925–931.
  • Fogelgren B, Polgár N, Szauter KM, et al. Cellular fibronectin binds to lysyl oxidase with high affinity and is critical for its proteolytic activation. J Biol Chem. 2005;280(26):24690–24697.
  • López-Jiménez AJ, Basak T, Vanacore RM. Proteolytic processing of lysyl oxidase-like-2 in the extracellular matrix is required for crosslinking of basement membrane collagen IV. J Biol Chem. 2017;292(41):16970–16982.
  • Atsawasuwan P, Mochida Y, Katafuchi M, et al. A novel proteolytic processing of prolysyl oxidase. Connect Tissue Res. 2011;52(6):479–486.
  • Uzel MI, Scott IC, Babakhanlou-Chase H, et al. Multiple bone morphogenetic protein 1-related Mammalian metalloproteinases process pro-lysyl oxidase at the correct physiological site and control lysyl oxidase activation in mouse embryo fibroblast cultures. J Biol Chem. 2001;276(25):22537–22543.
  • Okada K, Moon HJ, Finney J, et al. Extracellular processing of lysyl oxidase-like 2 and its effect on amine oxidase activity. Biochemistry. 2018;57(51):6973–6983.
  • Kessler E, Takahara K, Biniaminov L, et al. Bone morphogenetic protein-1: the type I procollagen C-proteinase. Science. 1996;271(5247):360–362.
  • Kessler E, Fichard A, Chanut-Delalande H, et al. Bone morphogenetic protein-1 (BMP-1) mediates C-terminal processing of procollagen V homotrimer. J Biol Chem. 2001;276(29):27051–27057.
  • Davidson VL. 7.19 - protein-derived cofactors. (Ben) Liu H-W, Mander LBT-CNPII, editors Compr. Nat. Prod. II. Elsevier: Oxford. 2010. 686–687. DOI:https://doi.org/10.1016/B978-008045382-8.00143-X
  • Lucero HA, Kagan HM. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci. 2006;63(19–20):2304–2316.
  • Bains W. Transglutaminse 2 and EGGL, the protein cross-link formed by transglutaminse 2, as therapeutic targets for disabilities of old age. Rejuvenation Res. 2013;16(6):495–517.
  • Chau DYS, Collighan RJ, Verderio EAM, et al. The cellular response to transglutaminase-cross-linked collagen. Biomaterials. 2005;26(33):6518–6529.
  • Tatsukawa H, Tani Y, Otsu R, et al. Global identification and analysis of isozyme-specific possible substrates crosslinked by transglutaminases using substrate peptides in mouse liver fibrosis. Sci Rep. 2017;7(1):45049.
  • Kleman JP, Aeschlimann D, Paulsson M, et al. Transglutaminase-catalyzed cross-linking of fibrils of collagen V/XI in A204 Rhabdomyosarcoma cells. Biochemistry. 1995;34(42):13768–13775.
  • Bowness JM, Folk JE, Timpl R. Identification of a substrate site for liver transglutaminase on the aminopropeptide of type III collagen. J Biol Chem. 1987;262(3):1022–1024.
  • Siegel M, Strnad P, Watts RE, et al. Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLoS One. 2008;3(3):e1861.
  • Akimov SS, Krylov D, Fleischman LF, et al. Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol. 2000;148:825–838.
  • Telci D, Wang Z, Li X, et al. Fibronectin-tissue transglutaminase matrix rescues RGD-impaired cell adhesion through syndecan-4 and beta1 integrin co-signaling. J Biol Chem. 2008;283:20937–20947.
  • Stamnaes J, Cardoso I, Iversen R, et al. Transglutaminase 2 strongly binds to an extracellular matrix component other than fibronectin via its second C-terminal beta-barrel domain. FEBS J. 2016;283(21):3994–4010.
  • Király R, Demény M, Fésüs L. Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+-dependent action of a multifunctional protein. FEBS J. 2011;278(24):4717–4739.
  • Stamnaes J, Pinkas DM, Fleckenstein B, et al. Redox regulation of transglutaminase 2 activity. J Biol Chem. 2010;285(33):25402–25409.
  • Jin X, Stamnaes J, Klöck C, et al. Activation of extracellular transglutaminase 2 by thioredoxin. J Biol Chem. 2011;286(43):37866–37873.
  • Santhanam L, Tuday EC, Webb AK, et al. Decreased S-nitrosylation of tissue transglutaminase contributes to age-related increases in vascular stiffness. Circ Res. 2010;107:117–125.
  • Lai TS, Hausladen A, Slaughter TF, et al. Calcium regulates S-nitrosylation, denitrosylation, and activity of tissue transglutaminase. Biochemistry. 2001;40(16):4904–4910.
  • Huelsz-Prince G, Belkin AM, VanBavel E, et al. Activation of extracellular transglutaminase 2 by mechanical force in the arterial wall. J Vasc Res. 2013;50(5):383–395.
  • Pinkas DM, Strop P, Brunger AT, et al. Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol. 2007;5(12):e327.
  • Keillor JW, Clouthier CM, Apperley KYP, et al. Acyl transfer mechanisms of tissue transglutaminase. Bioorg Chem. 2014;57:186–197.
  • Stamnaes J, Fleckenstein B, Sollid LM. The propensity for deamidation and transamidation of peptides by transglutaminase 2 is dependent on substrate affinity and reaction conditions. Biochim Biophys Acta. 2008;1784(11):1804–1811.
  • Bhave G, Colon S, Ferrell N. The sulfilimine cross-link of collagen IV contributes to kidney tubular basement membrane stiffness. Am J Physiol Renal Physiol. 2017;313(3):F596–F602.
  • Vanacore RM, Friedman DB, Ham AJL, et al. Identification of S-hydroxylysyl-methionine as the covalent cross-link of the noncollagenous (NC1) hexamer of the α1α1α2 collagen IV network: a role for the post-translational modification of lysine 211 to hydroxylysine 211 in hexamer assembly. J Biol Chem. 2005;280(32):29300–29310.
  • Davies MJ, Hawkins CL, Pattison DI, et al. Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10(7):1199–1234.
  • Furtmüller PG, Zederbauer M, Jantschko W, et al. Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys. 2006;445:199–213.
  • Ero-Tolliver IA, Hudson BG, Bhave G. The ancient immunoglobulin domains of peroxidasin are required to form sulfilimine cross-links in collagen IV. J Biol Chem. 2015;290(35):21741–21748.
  • Bhave G, Cummings CF, Vanacore RM, et al. Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis. Nat Chem Biol. 2012;8(9):784–790.
  • McCall AS, Cummings CF, Bhave G, et al. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell. 2014;157(6):1380–1392.
  • Ronsein GE, Winterbourn CC, Di Mascio P, et al. Cross-linking methionine and amine residues with reactive halogen species. Free Radic Biol Med. 2014;70:278–287.
  • Sirokmány G, Kovács HA, Lázár E, et al. Peroxidasin-mediated crosslinking of collagen IV is independent of NADPH oxidases. Redox Biol. 2018;16:314–321.
  • Sirokmány G, Geiszt M. The relationship of NADPH oxidases and heme peroxidases: fallin’ in and out. Front Immunol. 2019;10:1–8.
  • Rees MD, McNiven TN, Davies MJ. Degradation of extracellular matrix and its components by hypobromous acid. Biochem J. 2007;401(2):587–596.
  • Rees MD, Kennett EC, Whitelock JM, et al. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med. 2008;44:1973–2001.
  • Bathish B, Paumann-Page M, Paton LN, et al. Peroxidasin mediates bromination of tyrosine residues in the extracellular matrix. J Biol Chem. 2020;295:12697–12705.
  • Paumann-Page M, Tscheliessnig R, Sevcnikar B, et al. Monomeric and homotrimeric solution structures of truncated human peroxidasin 1 variants. Biochim Biophys Acta Proteins Proteomics. 2020;1868(1):140249.
  • Sevcnikar B, Schaffner I, Chuang CY, et al. The leucine-rich repeat domain of human peroxidasin 1 promotes binding to laminin in basement membranes. Arch Biochem Biophys. 2020;689:108443.
  • Nagaraju CK, Robinson EL, Abdesselem M, et al. Myofibroblast phenotype and reversibility of fibrosis in patients with end-stage heart failure. J Am Coll Cardiol. 2019;73:2267–2282.
  • Westergren-Thorsson G, Hernnäs J, Särnstrand B, et al. Altered expression of small proteoglycans, collagen, and transforming growth factor-β1 in developing bleomycin-induced pulmonary fibrosis in rats. J Clin Invest. 1993;92(2):632–637.
  • Alexakis C, Caruelle JP, Sezeur A, et al. Reversal of abnormal collagen production in Crohn’s disease intestinal biopsies treated with regenerating agents. Gut. 2004;53:85–90.
  • Veidal SS, Karsdal MA, Nawrocki A, et al. Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis. Fibrogenesis Tissue Repair. 2011;4(1):22.
  • Santos A, Lagares D. Matrix stiffness: the conductor of organ fibrosis. Curr Rheumatol Rep. 2018;20(1):2.
  • Klingberg F, Hinz B, White ES. The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol. 2013;229(2):298–309.
  • Piersma B, Bank RA. Collagen cross-linking mediated by lysyl hydroxylase 2: an enzymatic battlefield to combat fibrosis. Essays Biochem. 2019;63(3):377–387.
  • Van Der Slot AJ, Zuurmond AM, Van Den Bogaerdt AJ, et al. Increased formation of pyridinoline cross-links due to higher telopeptide lysyl hydroxylase levels is a general fibrotic phenomenon. Matrix Biol. 2004;23(4):251–257.
  • Van Der Slot AJ, Zuurmond A-M-M, Bardoel AFJJ, et al. Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J Biol Chem. 2003;278(42):40967–40972.
  • Remst DFG, Blaney Davidson EN, Vitters EL, et al. Osteoarthritis-related fibrosis is associated with both elevated pyridinoline cross-link formation and lysyl hydroxylase 2b expression. Osteoarthr Cartil. 2013;21(1):157–164.
  • Shao S, Fang H, Duan L, et al. Lysyl hydroxylase 3 increases collagen deposition and promotes pulmonary fibrosis by activating TGFβ1/Smad3 and Wnt/β-catenin pathways. Arch Med Sci. 2020;16(2):436–445.
  • Brinckmann J, Kim S, Wu J, et al. Interleukin 4 and prolonged hypoxia induce a higher gene expression of lysyl hydroxylase 2 and an altered cross-link pattern: important pathogenetic steps in early and late stage of systemic scleroderma? Matrix Biol. 2005;24(7):459–468.
  • López B, González A, Hermida N, et al. Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects. Am J Physiol Heart Circ Physiol. 2010;299(1):H1–9.
  • Chen L, Li S, Li W. LOX/LOXL in pulmonary fibrosis: potential therapeutic targets. J Drug Target. 2019;27(7):790–796.
  • Benn MC, Weber W, Klotzsch E, et al. Tissue transglutaminase in fibrosis — more than an extracellular matrix cross-linker. Curr Opin Biomed Eng. 2019;10:156–164.
  • Kyung SY, Byun KH, Yoon JY, et al. Advanced glycation end-products and receptor for advanced glycation end-products expression in patients with idiopathic pulmonary fibrosis and NSIP. Int J Clin Exp Pathol. 2014;7:221–228. http://www.ncbi.nlm.nih.gov/pubmed/24427342
  • Hägglund P, Mariotti M, Davies MJ. Identification and characterization of protein cross-links induced by oxidative reactions. Expert Rev Proteomics. 2018;15(8):665–681.
  • Marenzana M, Wilson-Jones N, Mudera V, et al. The origins and regulation of tissue tension: identification of collagen tension-fixation process in vitro. Exp Cell Res. 2006;312(4):423–433.
  • Grinnell F, Petroll WM. Cell motility and mechanics in three-dimensional collagen matrices. Annu Rev Cell Dev Biol. 2010;26:335–361.
  • Lin Y-C, Sung YK, Jiang X, et al. Simultaneously targeting myofibroblast contractility and extracellular matrix cross-linking as a therapeutic concept in airway fibrosis. Am J Transplant. 2017;17(5):1229–1241.
  • Liu SB, Ikenaga N, Peng ZW, et al. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice. FASEB J. 2016;30(4):1599–1609.
  • Robins SP, Milne G, Duncan A, et al. Increased skin collagen extractability and proportions of collagen type III are not normalized after 6 months healing of human excisional wounds. J Invest Dermatol. 2003;121(2):267–272.
  • van den Bos T, Speijer D, Bank RA, et al. Differences in matrix composition between calvaria and long bone in mice suggest differences in biomechanical properties and resorption. Special emphasis on collagen. Bone. 2008;43(2):459–468.
  • van der Slot-Verhoeven AJ, van Dura EA, Attema J, et al. The type of collagen cross-link determines the reversibility of experimental skin fibrosis. Biochim Biophys Acta. 2005;1740:60–67.
  • Philp CJ, Siebeke I, Clements D, et al. Extracellular matrix cross-linking enhances fibroblast growth and protects against matrix proteolysis in lung fibrosis. Am J Respir Cell Mol Biol. 2018;58(5):594–603.
  • Wang Z, Stuckey DJ, Murdoch CE, et al. Cardiac fibrosis can be attenuated by blocking the activity of transglutaminase 2 using a selective small-molecule inhibitor. Cell Death Dis. 2018;9(6):613.
  • Olsen KC, Epa AP, Kulkarni AA, et al. Inhibition of transglutaminase 2, a novel target for pulmonary fibrosis, by two small electrophilic molecules. Am J Respir Cell Mol Biol. 2014;50(4):737–747.
  • Popov Y, Sverdlov DY, Sharma AK, et al. Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. Gastroenterology. 2011;140(5):1642–1652.
  • Klingberg F, Chau G, Walraven M, et al. The fibronectin ED-A domain enhances recruitment of latent TGF-β-binding protein-1 to the fibroblast matrix. J Cell Sci. 2018;131. DOI:https://doi.org/10.1242/jcs.201293.
  • Nunes I, Gleizes PE, Metz CN, et al. Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol. 1997;136:1151–1163.
  • Hinz B, McCulloch CA, Coelho NM. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res. 2019;379(1):119–128.
  • Klingberg F, Chow ML, Koehler A, et al. Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J Cell Biol. 2014;207(2):283–297.
  • Zheng YZ, Liang L. High expression of PXDN is associated with poor prognosis and promotes proliferation, invasion as well as migration in ovarian cancer. Ann Diagn Pathol. 2018;34:161–165.
  • Colon S, Luan H, Liu Y, et al. Peroxidasin and eosinophil peroxidase, but not myeloperoxidase, contribute to renal fibrosis in the murine unilateral ureteral obstruction model. Am J Physiol Physiol. 2019;316(2):F360–F371.
  • Johnson LA, Rodansky ES, Sauder KL, et al. Matrix stiffness corresponding to strictured bowel induces a fibrogenic response in human colonic fibroblasts. Inflamm Bowel Dis. 2013;19(5):891–903.
  • Tschumperlin DJ, Ligresti G, Hilscher MB, et al. Mechanosensing and fibrosis. J Clin Invest. 2018;128(1):74–85.
  • Ciobanasu C, Faivre B, Le Clainche C. Integrating actin dynamics, mechanotransduction and integrin activation: the multiple functions of actin binding proteins in focal adhesions. Eur J Cell Biol. 2013;92(10–11):339–348.
  • Schiller HB, Fässler R. Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep. 2013;14(6):509–519.
  • Solon J, Levental I, Sengupta K, et al. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J. 2007;93(12):4453–4461.
  • Huang X, Yang N, Fiore VF, et al. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol. 2012;47(3):340–348.
  • Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–183.
  • Iyer KV, Pulford S, Mogilner A, et al. Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport. Biophys J. 2012;103(7):1416–1428.
  • Liu F, Lagares D, Choi KM, et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol. 2015;308(4):L344–57.
  • Cockerill M, Rigozzi MK, Terentjev EM. Mechanosensitivity of the 2nd kind: TGF-β mechanism of cell sensing the substrate stiffness. PLoS One. 2015;10(10):e0139959.
  • Munger JS, Sheppard D. Cross talk among TGF-β signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb Perspect Biol. 2011;3(11):a005017.
  • Sethi A, Mao W, Wordinger RJ, et al. Transforming growth factor–β induces extracellular matrix protein cross-linking lysyl oxidase (LOX) genes in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2011;52(8):5240–5250.
  • Roy R, Polgar P, Wang Y, et al. Regulation of lysyl oxidase and cyclooxygenase expression in human lung fibroblasts: interactions among TGF-beta, IL-1 beta, and prostaglandin E. J Cell Biochem. 1996;62(3):411–417.
  • Telci D, Collighan RJ, Basaga H, et al. Increased TG2 expression can result in induction of transforming growth factor beta1, causing increased synthesis and deposition of matrix proteins, which can be regulated by nitric oxide. J Biol Chem. 2009;284:29547–29558.
  • Meng X-M, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–338.
  • Hünerwadel A, Fagagnini S, Rogler G, et al. Severity of local inflammation does not impact development of fibrosis in mouse models of intestinal fibrosis. Sci Rep. 2018;8(1):1–13.
  • Richeldi L, Du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–2082.
  • Noble PW, Albera C, Bradford WZ, et al. Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. Eur Respir J. 2016;47(1):243–253.
  • Horowitz JC, Thannickal VJ. Mechanisms for the resolution of organ fibrosis. Physiology. 2018;34:43–55.
  • Bellaye P-S, Shimbori C, Upagupta C, et al. Lysyl oxidase-like 1 protein deficiency protects mice from adenoviral transforming growth factor-β1-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2018;58:461–470.
  • Harlow CR, Wu X, Van Deemter M, et al. Targeting lysyl oxidase reduces peritoneal fibrosis. PLoS One. 2017;12(8):e0183013.
  • Martínez-Martínez E, Rodríguez C, Galán M, et al. The lysyl oxidase inhibitor (β-aminopropionitrile) reduces leptin profibrotic effects and ameliorates cardiovascular remodeling in diet-induced obesity in rats. J Mol Cell Cardiol. 2016;92:96–104.
  • Murad S, Walker LC, Tajima S, et al. Minimum structural requirements for minoxidil inhibition of lysyl hydroxylase in cultured fibroblasts. Arch Biochem Biophys. 1994;308(1):42–47.
  • Shao S, Zhang X, Duan L, et al. Lysyl hydroxylase inhibition by minoxidil blocks collagen deposition and prevents pulmonary fibrosis via TGF-β₁/Smad3 signaling pathway. Med Sci Monit. 2018;24:8592–8601.
  • Leiva O, Ng SK, Matsuura S, et al. Novel lysyl oxidase inhibitors attenuate hallmarks of primary myelofibrosis in mice. Int J Hematol. 2019;110(6):699–708.
  • Mahjour F, Dambal V, Shrestha N, et al. Mechanism for oral tumor cell lysyl oxidase like-2 in cancer development: synergy with PDGF-AB. Oncogenesis. 2019;8(5):34.
  • Muir AJ, Levy C, Janssen HLA, et al. GS-US-321-0102 investigators, simtuzumab for primary sclerosing cholangitis: phase 2 study results with insights on the natural history of the disease. Hepatology. 2019;69(2):684–698.
  • Harrison SA, Abdelmalek MF, Caldwell S, et al. GS-US-321-0105 and GS-US-321-0106 investigators, simtuzumab is ineffective for patients with bridging fibrosis or compensated cirrhosis caused by nonalcoholic steatohepatitis. Gastroenterology. 2018;155(4):1140–1153.
  • Schilter H, Findlay AD, Perryman L, et al. The lysyl oxidase like 2/3 enzymatic inhibitor, PXS-5153A, reduces crosslinks and ameliorates fibrosis. J Cell Mol Med. 2019;23(3):1759–1770.
  • Puente A, Fortea JI, Cabezas J, et al. LOXL2—A new target in antifibrogenic therapy? Int J Mol Sci. 2019;20(7):1–12.
  • Smithen DA, Leung LMH, Challinor M, et al. 2-aminomethylene-5-sulfonylthiazole inhibitors of lysyl oxidase (LOX) and LOXL2 show significant efficacy in delaying tumor growth. J Med Chem. 2020;63(5):2308–2324.
  • Holvoet T, Devriese S, Castermans K, et al. Treatment of Intestinal fibrosis in experimental inflammatory bowel disease by the pleiotropic actions of a local Rho kinase inhibitor. Gastroenterology. 2017;153(4):1054–1067.
  • Tschumperlin DJ, Lagares D. Mechano-therapeutics: targeting mechanical signaling in fibrosis and tumor stroma. Pharmacol Ther. 2020;212:107575.
  • Ratziu V, Charlotte F, Heurtier A, et al. LIDO study group, sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005;128(7):1898–1906.
  • Laursen TL, Villesen IF, Leeming DJ, et al. Altered balance between collagen formation and degradation after successful direct-acting antiviral therapy of chronic hepatitis C. J Viral Hepat. 2021;28(2):236–244.
  • Kubo S, Siebuhr AS, Bay-Jensen A-C, et al. Correlation between serol ogical biomarkers of extracellular matrix turnover and lung fibrosis and pulm onary artery hyper tension in patients with systemic sclerosis. Int J Rheum Dis. 2020;23(4):532–539.
  • Genovese F, Rasmussen DGK, Karsdal MA, et al. Imbalanced turnover of collagen type III is associated with disease progression and mortality in high-risk chronic kidney disease patients. Clin Kidney J. 2020;1–9. DOI:https://doi.org/10.1093/ckj/sfz174
  • Mortensen JH, Lindholm M, Langholm LL, et al. The intestinal tissue homeostasis - the role of extracellular matrix remodeling in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol. 2019;13(10):977–993.
  • Organ LA, Duggan A-MR, Oballa E, et al. Biomarkers of collagen synthesis predict progression in the PROFILE idiopathic pulmonary fibrosis cohort. Respir Res. 2019;20(1):148.
  • Karsdal MA, Daniels SJ, Holm Nielsen S, et al. Collagen biology and non-invasive biomarkers of liver fibrosis. Liver Int. 2020;1–15. DOI:https://doi.org/10.1111/liv.14390
  • Sharma S, Khalili K, Nguyen GC. Non-invasive diagnosis of advanced fibrosis and cirrhosis. World J Gastroenterol. 2014;20(45):16820–16830.
  • Giuffrida P, Pinzani M, Corazza GR, et al. Biomarkers of intestinal fibrosis – one step towards clinical trials for stricturing inflammatory bowel disease. United Eur Gastroenterol J. 2016;4(4):523–530.
  • Giann andrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech. 2014;7(2):193–203.
  • Ravassa S, Trippel T, Bach D, et al. Biomarker-based phenotyping of myocardial fibrosis identifies patients with heart failure with preserved ejection fraction resistant to the beneficial effects of spironolactone: results from the Aldo-DHF trial. Eur J Heart Fail. 2018;20(9):1290–1299.
  • Leeming DJ, Willumsen N, Sand JMB, et al. A serological marker of the N-terminal neoepitope generated during LOXL2 maturation is elevated in patients with cancer or idiopathic pulmonary fibrosis. Biochem Biophys Rep. 2019;17:38–43.
  • Devkota AK, Veloria JR, Guo H-F, et al. Development of a high-throughput Lysyl Hydroxylase (LH) assay and identification of small-molecule inhibitors against LH2. SLAS Discov Adv Life Sci R D. 2019;24:484–491.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.