2,226
Views
9
CrossRef citations to date
0
Altmetric
Review

Potential of CRISPR/Cas system in the diagnosis of COVID-19 infection

, & ORCID Icon
Pages 1179-1189 | Received 22 Apr 2021, Accepted 17 Aug 2021, Published online: 09 Nov 2021

References

  • Cascella M, Rajnik M, Cuomo A, et al. Features, evaluation and treatment coronavirus (COVID-19). Statpearls [internet]. StatPearls Publishing; 2020.
  • Li H, Liu S-M, Yu X-H, et al. Coronavirus disease 2019 (COVID-19): current status and future perspective. Int J Antimicrob Agents. 2020;55(5):105951.
  • Battegay M, Kuehl R, Tschudin-Sutter S, et al. 2019-novel Coronavirus (2019-nCoV): estimating the case fatality rate–a word of caution. Swiss Med Wkly. 2020;150:w20203.
  • Corman VM, Eckerle I, Bleicker T, et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Eurosurveillance 2012;17(39):20285.
  • Organization WH. World Health Organization coronavirus disease 2019 (COVID-19) situation report. 2020.
  • Organization WH. Novel coronavirus (2019-nCoV). Situat Rep. 2020;28
  • Alhazzani W, Møller MH, Arabi YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020;46(5):854–887.
  • Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360(6387): 436–439.
  • Broughton JP, Deng X, Yu G, et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):1–5.
  • Bhadra S, Jiang YS, Kumar MR, et al. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV). PLoS One. 2015;10(4):e0123126.
  • Wang N, Luo C, Liu H, et al. Characterization of a new member of alphacoronavirus with unique genomic features in rhinolophus bats. Viruses 2019;11(4):379.
  • Zaki AM, Van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–1820.
  • Garneau JE, Dupuis M-È, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010;468(7320):67–71.
  • Gasiunas G, Barrangou R, Horvath P, et al. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci. 2012;109:2579–2586.
  • Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337(6096):816–821.
  • Mota DS, Marques JM, Guimarães JM, et al. CRISPR/Cas Class 2 systems and their applications in biotechnological processes. Genet Mol Res. 2020;20:1–10.
  • Makarova KS, Wolf YI, Koonin EV. Classification and nomenclature of CRISPR-Cas systems: where from here? Cris J. 2018;1(5):325–336.
  • Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3(1):237–261.
  • Fung TS, Liu DX. Human coronavirus: host-pathogen interaction. Annu Rev Microbiol. 2019;73(1):529–557.
  • Gorbalenya A, Baker S, Baric R, et al. Coronaviridae study group of the international committee on taxonomy of viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;2020:3–4.
  • Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121(1):190–193.
  • Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J. 2005;24(11):S223–S227.
  • Tyrrell DAJ, Bynoe ML. Cultivation of viruses from a high proportion of patients with colds. Lancet 1966;287(7428):76–77.
  • Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581(7807):215–220.
  • Hofmann H, Pöhlmann S. Cellular entry of the SARS coronavirus. Trends Microbiol. 2004;12(10):466–472.
  • Vennema H, Godeke GJ, Rossen JW, et al. Nucleocapsid‐independent assembly of coronavirus‐like particles by co‐expression of viral envelope protein genes. Embo J. 1996;15(8):2020–2028.
  • Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367(6483):1260–1263.
  • Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033.
  • Zou Y, Liu-Jia-Zi Shao F-S. Perioperative anaphylaxis: a potential hazard to the safety of surgical patients. Chin Med J (Engl). 2020;133(5):609.
  • Lei J, Li J, Li X, et al. CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020;295(1):18.
  • Cheng Z, Lu Y, Cao Q, et al. Clinical features and chest CT manifestations of coronavirus disease 2019 (COVID-19) in a single-center study in Shanghai, China. Am J Roentgenol. 2020;215(1):1–6.
  • Mojica FJM, Díez-Villaseñor C, García-Martínez J, et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009;155(3):733–740.
  • Van Der Oost J, Westra ER, Jackson RN, et al. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat Rev Microbiol. 2014;12(7):479–492.
  • Koonin EV, Makarova KS. Mobile genetic elements and evolution of CRISPR-Cas systems: all the way there and back. Genome Biol Evol. 2017;9(10):2812–2825.
  • Li Y, Li S, Wang J, et al. CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol. 2019;37(7):730–743.
  • Sternberg SH, Richter H, Charpentier E, et al. Adaptation in CRISPR-Cas systems. Mol Cell. 2016;61(6):797–808.
  • Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67–78.
  • O’Connell MR. Molecular mechanisms of RNA targeting by Cas13-containing Type VI CRISPR–Cas systems. J Mol Biol. 2019;431(1):66–87.
  • Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol. 2015;13(11):722–736.
  • Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339(6121):819–823.
  • Guk K, Keem JO, Hwang SG, et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens Bioelectron. 2017;95:67–71.
  • Pardee K, Green AA, Takahashi MK, et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 2016;165(5):1255–1266.
  • Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008;322(5909):1843–1845.
  • Sapranauskas R, Gasiunas G, Fremaux C, et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011;39(21):9275–9282.
  • Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008;321:960–964.
  • Lintner NG, Kerou M, Brumfield SK, et al. Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE). J Biol Chem. 2011;286(24):21643–21656.
  • Mojica FJM, Díez‐Villaseñor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol. 2000;36(1):244–246.
  • Ceasar SA, Rajan V, Prykhozhij SV, et al. Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. Biochim Biophys Acta Mol Cell Res. 2016;9:2334–2344.
  • Lewis KM, Ke A. Building the class 2 CRISPR-Cas arsenal. Mol Cell. 2017;65(3):377–379.
  • Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015;163(3):759–771.
  • Gao P, Yang H, Rajashankar KR, et al. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 2016;26(8):901–913.
  • Yamano T, Nishimasu H, Zetsche B, et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 2016;165(4):949–962.
  • Anders C, Niewoehner O, Duerst A, et al. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 2014;513(7519):569–573.
  • Fonfara I, Le Rhun A, Chylinski K, et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 2014;42(4):2577–2590.
  • East-Seletsky A, O’Connell MR, Knight SC, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016;538(7624):270–273.
  • Smargon AA, Cox DBT, Pyzocha NK, et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell. 2017;65(4):618–630.
  • Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016;353(6299):aaf5573.
  • Liu L, Li X, Ma J, et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 2017;170(4):714–726.
  • Liu L, Li X, Wang J, et al. Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 2017;168(1–2):121–134.
  • Muller V, Rajer F, Frykholm K, et al. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Sci Rep. 2016;6(1):1–11.
  • James PB, Deng XD, Yu GX, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870–874.
  • Qin P, Park M, Alfson KJ, et al. Rapid and fully microfluidic Ebola virus detection with CRISPR-Cas13a. ACS Sens. 2019;4(4):1048–1054.
  • Freije CA, Myhrvold C, Boehm CK, et al. Programmable inhibition and detection of RNA viruses using Cas13. Mol Cell. 2019;76(5):826–837.
  • Sullivan TJ, Dhar AK, Cruz-Flores R, et al. Rapid, CRISPR-based, field-deployable detection of white spot syndrome virus in shrimp. Sci Rep. 2019;9(1):1–7.
  • Chang Y, Deng Y, Li T, et al. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR‐Cas13a. Transbound Emerg Dis. 2020;67(2):564–571.
  • Li Y, Mansour H, Wang T, et al. Naked-eye detection of grapevine red-blotch viral infection using a plasmonic CRISPR Cas12a assay. Anal Chem. 2019;91(18):11510–11513.
  • Wu Y, Liu S-X, Wang F, et al. Room temperature detection of plasma Epstein–Barr virus DNA with CRISPR–Cas13. Clin Chem. 2019;65(4):591–592.
  • Khan H, Khan A, Liu Y, et al. CRISPR-Cas13a mediated nanosystem for attomolar detection of canine parvovirus type 2. Chin Chem Lett. 2019;30(12):2201–2204.
  • Bai J, Lin H, Li H, et al. Cas12a-based on-site and rapid nucleic acid detection of African swine fever. Front Microbiol. 2019;10:2830.
  • Zhang Y, Qian L, Wei W, et al. Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains. ACS Synth Biol. 2017;6(2):211–216.
  • Shen J, Zhou X, Shan Y, et al. Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction. Nat Commun. 2020;11(1):1–10.
  • Xiong E, Jiang L, Tian T, et al. Simultaneous dual‐gene diagnosis of SARS‐CoV‐2 based on CRISPR/Cas9‐mediated lateral flow assay. Angew Chemie. 2021;133(10):5367–5375.
  • Lin W, Tian T, Jiang Y, et al. A CRISPR/Cas9 eraser strategy for contamination‐free PCR end‐point detection. Biotechnol Bioeng. 2021;118(5):2053–2066.
  • He Q, Yu D, Bao M, et al. High-throughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system. Biosens Bioelectron. 2020;154:112068.
  • Satyanarayana M. A COVID-19 diagnostic that uses CRISPR gets a nod from the FDA chemical & engineering news. 2020.
  • Feng M, Li X. Land cover mapping toward finer scales. Sci Bull. 2020;65(19):1604–1606.
  • Jiang Y, Hu M, Liu AA, et al. Detection of SARS-CoV-2 by CRISPR/Cas12a-enhanced colorimetry. ACS Sens. 2021;6(3):1086–1093.
  • Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR–Cas13. Nature 2017;550(7675):280–284.
  • Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336): 438–442.
  • Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018;360(6387):444–448.
  • Metsky HC, Freije CA, Kosoko-Thoroddsen T-SF, et al. CRISPR-based surveillance for COVID-19 using genomically-comprehensive machine learning design. BioRxiv 2020:1–11.
  • Rauch S, Roth N, Schwendt K, et al. mRNA based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus neutralizing antibodies and mediates protection in rodents. BioRxiv 2020:1–25.
  • Tian T, Shu B, Jiang Y, et al. An ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano. 2020;15:1167–1178.
  • Bhattacharyya RP, Thakku SG, Hung DT. Harnessing CRISPR effectors for infectious disease diagnostics. ACS Infect Dis. 2018;4(9):1278–1282.
  • Katalani C, Booneh HA, Hajizade A, et al. CRISPR-based diagnosis of infectious and noninfectious diseases. Biol Proced Online. 2020;22:1–14.
  • Zhang F, Abudayyeh OO, Gootenberg JS. A protocol for detection of COVID-19 using CRISPR diagnostics. A Protoc Detect COVID-19 using Cris diagnostics. 2020;8.
  • Ding X, Yin K, Li Z, et al. All-in-one dual CRISPR-Cas12a (AIOD-CRISPR) assay: a case for rapid, ultrasensitive and visual detection of novel coronavirus SARS-CoV-2 and HIV virus. Preprint. Posted online March 21, 2020. BioRxiv.
  • Batista AC, Pacheco LGC. Detecting pathogens with Zinc-Finger, TALE and CRISPR-based programmable nucleic acid binding proteins. J Microbiol Methods. 2018;152:98–104.
  • Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018;360(6387):439–444.
  • Hajian R, Balderston S, Tran T, et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng. 2019;3:427–437.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.